Chem 352 - Spring 2009 - Quiz 6

- 1. The light reactions of photosynthesis in plants and the electron transport chain share many common features.
 - a. Describe the components of each that fit the following descriptions:

	Photosynthesis	Electron Transport Chain
The initial donor of electrons		
The final acceptor of electrons		
The mobile 1-electron carrier		
The mobile 2-electron carrier		
Site of the Q-cycle		
In what form does each store energy for phosphorylation of ADP		
Cellular location of each		

- b. Write the *net balanced reaction equation* for the light reactions of photosynthesis.
- c. The a standard free energy change for this reaction is highly unfavorable ($\Delta G^{\circ} = 438 \text{ kJ/mol}$). What is the source of energy that is coupled to this reaction to make it favorable?
- d. Compare and contrast *photophosporylation* with *oxidative phosphorylation*.
- e. Write the *net balanced reaction equation* for the dark reactions of photosynthesis.

a. Draw the structure formula for urea
b. What are the sources for the two nitrogen atoms in urea?
c. What three α-amino acids serve as intermediates in the urea cycle? (Hint: Not all of these are the common α-amino acids used to make proteins.)
3. Using structures, write the chemical equations for one round of β-oxidation starting with the fatty acid lauryl(12:0)-CoA:

a. How many ATP's can be generated from the complete oxidation of the products obtained from the

complete β -oxidation of lauryl-CoA, *i.e.*, taking them all the way to CO_2 and H_2O .

Show your calculations:

b. In eukaryotes, what is the cellular location for the β-oxidation of fatty acids? _____