Name

Chem 352 - Spring 2009 - Quiz 5

1	There are seven	,	1 1	. 1 . 1	1	1 ' 1	•
1	I nara ara cavan	reactions in	1	icic winion	are alco ii	icad in dii	ILCONDOCANDEIC
1	THERE ARE SEVER	i Cachons II	1 21066110	SIS WILLUIT	arc arso u	15641 111 211	けいいけいいといけいかい

- a. What is the function of glycolysis?
- b. What is the function gluconeogensis?
- c. Name four of the seven reactions in glycolysis that are used in gluconeogensis:
 - i) _____
 - ii) _____
 - iii)
 - iv) _____
- d. Using structural formulas for the intermediates, write a balanced chemical equation for one of these reactions:

- e. What is the enzyme classification for this reaction?
- 2. The glycolytic pathway contains two reactions that lead to substrate-level phosphorylation of ADP. *Using structures*, write a *balanced chemical reaction* for one of these reactions, *label* the glycolytic intermediates and *name* the enzyme that catalyzes this reaction.

^	D .	• .1	1	1 .	•	1 1	•
3.	Pyruvate	10 the	end	nroduct	ot o	TIMENIX	7010
J.	1 viuvaic	is the	onu	DIOGUCI	OI 8	210001	voio.

- a. Using words, describe three possible fates for the pyruvate. Indicate the purpose for each.
 - i)
 - ii)
 - iii)
- b. Using structural formulas draw a balanced chemical equation that illustrates one of these fates.

- 4. Glycolysis and gluconeogenesis must be coordinately regulated in order to prevent substrate cycling.
 - a. Describe an example of how this is done at the cellular level using allosteric regulation.