lame

Chem 352 - Spring 2009 - Quiz 4

Ideal Gas Law Constant, $R = 8.314 \times 10^{-3} \text{ kJ K}^{-1} \text{ mol}^{-1}$; Faraday's constant, $\mathcal{F} = 96.48 \text{ kJ V}^{-1} \text{ mol}^{-1}$

that fits each of the following descriptions: a. A major component of biological membranes that self assemble into lipid bilayers when suspended in aqueous solutions. b. A long-term storage form of chemical energy c. Prostaglandins are a member of this class. d. The gangliosides and cerebrosides are members of this group.		Tucai Gas Law Constant, N = 8.514 x 10 ° kJ K mor , Paraday's constant, 9 = 90.46 kJ V mor
that fits each of the following descriptions: a. A major component of biological membranes that self assemble into lipid bilayers when suspended in aqueous solutions. b. A long-term storage form of chemical energy c. Prostaglandins are a member of this class. d. The gangliosides and cerebrosides are members of this group. 3. Corn oil and palm oil are both vegetable oils. At room temperature corn oil is a liquid while palm of is a soft buttery solid. Explain the structural differences between these two oils that explains this	1.	·
suspended in aqueous solutions. b. A long-term storage form of chemical energy c. Prostaglandins are a member of this class. d. The gangliosides and cerebrosides are members of this group. 3. Corn oil and palm oil are both vegetable oils. At room temperature corn oil is a liquid while palm of is a soft buttery solid. Explain the structural differences between these two oils that explains this	2.	Fatty acids are components of a variety of lipids having different functions. Name the class of lipids that fits each of the following descriptions:
 c. Prostaglandins are a member of this class. d. The gangliosides and cerebrosides are members of this group. 3. Corn oil and palm oil are both vegetable oils. At room temperature corn oil is a liquid while palm oil is a soft buttery solid. Explain the structural differences between these two oils that explains this 		
 d. The gangliosides and cerebrosides are members of this group. 3. Corn oil and palm oil are both vegetable oils. At room temperature corn oil is a liquid while palm oil is a soft buttery solid. Explain the structural differences between these two oils that explains this 		b. A long-term storage form of chemical energy
3. Corn oil and palm oil are both vegetable oils. At room temperature corn oil is a liquid while palm of is a soft buttery solid. Explain the structural differences between these two oils that explains this		c. Prostaglandins are a member of this class.
is a soft buttery solid. Explain the structural differences between these two oils that explains this		d. The gangliosides and cerebrosides are members of this group.
	3.	

4. In signal transduction, what role does cyclic-AMP (cAMP) play?

5. Draw the structural formula for the membrane phospholipid *phosphatidyl serine*, which contains the fatty acids oleate (18:1 Δ^9) at the C1 position, and palmitate (16:0) at the C2 position.

- 6. Describe the difference between the following pairs of terms:
 - a. active vs. passive transport -
 - b. secondary vs. primary transport -
 - c. symport vs. antiport transport -
- 7. The second reaction in alcohol fermentation is the 2-electron reduction of acetaldehyde by NADH + H⁺:

$$CH_3-C-H$$
 + NADH + H⁺ \longrightarrow CH_3-CH_2-OH + NAD⁺ acetaldehyde ethanol

a. If the standard reduction potential (E^o) for the reduction of acetaldehyde to ethanol is -0.20 V, and that for the reduction of NAD⁺ to NADH + H⁺ is -0.32 V, what is the standard free energy change for this reaction?

b. Is this reaction favorable under standard state conditions? Explain: