Name	Kej	/

Chem 352 - Fall 2013

Quiz 5

Use constants: Ideal gas law constant, R = 0.08206 (l•atm)/(mol•K) = 8.314 (J/(mol•K); Faraday's constant, $\mathcal{F} = 9.659 \times 10^4 \text{ J/(V•mol)}$; Planck's constant, $h = 6.626 \times 10^{-34} \text{ J•s}$.

5/5

- 1. In its catabolic mode, the citric acid cycle is used to oxidize the equivalent of the two carbons, which enter the cycle as acetyl-CoA and are released as CO₂.
 - a. Using *structural formulas* for the citric acid cycle intermediates, write a *balanced chemical equation* for *just one* of the oxidoreductase reactions in the citric acid cycle (pick one):

Four out of the eight reactions in the citric acid cycle are oxidoreductase reactions, so you have four to choose from:

isocitrate dehydrogenase

α-ketoglutarate dehydrogenase

succinate dehydrogenase

malate dehydrogenase

- b. What is the name of the enzyme that catalyzes the reaction you chose? (see above for options)
- 2. The oxidative stage of the pentose phosphate pathway is used to convert a glycolytic intermediate to a pentose and at the same time produce reducing agents for biosynthetic reactions.

13/13

- a. Which glycolytic intermediate is the starting point for the oxidative stage of the pentose phosphate pathway? glucose 6-phosphate
- b. What is the name of the pentose produced? <u>ribulose 5-phosphate</u>
- c. What reducing agents are formed? NADPH + H+
- d. Besides two oxidoreductase reactions, the oxidative stage also contains a hydrolase reaction. Using *structural formulas* for the pathway intermediates, write the *balanced chemical equation* for this reaction.

D 6-phospogluconolactone

D 6-phosphogluconate

- e. If the pentose produced in the pentose phosphate pathway should not be required by the cell, what two glycolytic intermediates is this pentose converted to in non-oxidative stage of the pentose phosphate pathway?
 - i. fructose 6-phosphate
 - ii. glyceraldehyde 3-phosphate

- 3. In class we discuss how the electron transport chain carries out the re-oxidation of NADH + H⁺ by molecular oxygen by combining lots of little steps.
 - a. Write a *balanced chemical equation* for the net overall reaction that takes place in the electron transport chain, starting with one NADH + H⁺.

NADH + H $^+$ + ½ O₂ \rightarrow NAD $^+$ + H₂O

b. Using the appropriate reduction potentials provided in the table below, calculate the change in the standard free energy per mole of NADH + H⁺ for this overall reaction. (Show your calculations.)

Reduction half-reaction	
Acetyl CoA + CO ₂ + H $^{\oplus}$ + 2 e^{\ominus} \rightarrow Pyruvate + CoA	-0.48
Ferredoxin (spinach). $F_e^{\bigodot} + e^{\bigodot} \rightarrow F_e^{\bigodot}$	-0.43
$2 H^{\oplus} + 2e^{\ominus} \rightarrow H_2 \text{ (at pH 7.0)}$	-0.42
α -Ketoglutarate + CO ₂ + 2 H $^{\oplus}$ + 2 e^{\bigcirc} \rightarrow Isocitrate	-0.38
Lipoyl dehydrogenase (FAD) + 2 H^{\oplus} + $2e^{\ominus}$ \rightarrow Lipoyl dehydrogenase (FADH ₂)	-0.34
$NADP^{\oplus} + H^{\oplus} + 2e^{\bigcirc} \rightarrow NADPH$	-0.32
$NAD^{\oplus} + H^{\oplus} + 2e^{\ominus} \rightarrow NADH$	-0.32
Lipoic acid $+ 2 H^{\oplus} + 2e^{\ominus} \rightarrow$ Dihydrolipoic acid	-0.29
Thioredoxin (oxidized) + $2H^{\oplus}$ + $2e \rightarrow$ Thioredoxin (reduced)	-0.28
Photosystem I (P700)	0.43
$Fe^{\bigcirc} + e^{\bigcirc} \rightarrow Fe^{\bigcirc}$	0.77
$^{1}/_{2}O_{2} + 2 H^{\oplus} + 2e^{\ominus} \rightarrow H_{2}O$	0.82
Photosystem II (P680)	1.1

$$\Delta G^{\circ}' = 220 \text{ kJ/mol}$$

$$NADH + H^{+} \rightarrow NAD^{+} + 2 e^{-} + 2 H^{+} \qquad E^{\circ}' = 0.32 \text{ V}$$

$$1/2 O_{2} + 2 e^{-} + 2 H^{+} \rightarrow H_{2}O \qquad E^{\circ}' = 0.82 \text{ V}$$

$$NADH + H^{+} + 1/2 O_{2} \rightarrow NAD^{+} + H_{2}O \qquad \Delta E^{\circ}' = 1.14 \text{ V}$$

$$\Delta G^{\circ} = n \mathcal{F} \Delta E^{\circ} = 1.14 \text{ V}$$

$$= (2) \left(9.659 \times 10^{4} \frac{\text{J}}{\text{V-mol}} \right) (1.14 \text{ V}) = 220,000 \frac{\text{J}}{\text{mol}} = 220 \frac{\text{kJ}}{\text{mol}}$$

c. This free energy is eventually used to make ATP from ADP + $P_{i.}$ Describe how this energy is first stored up for this purpose within the electron transport chain.

The oxidation of NADH + H^+ by O_2 is coupled to the pumping of protons (H^+ 's) across the inner mitochondrial membrane, creating an electrochemical gradient across the membrane.

d. If the standard free energy change for the hydrolysis of ATP to ADP + P_i is -32 kJ/mol:

ATP +
$$H_2O \rightarrow ADP + P_i \Delta G^{\circ} = -32 \text{ kJ/mol}$$

Potentially how many moles of ATP can be produced from the re-oxidation of one mole of NADH + H⁺ by molecular oxygen? (Show your calculations.)

$$\frac{220 \frac{\text{kJ}}{\text{mol}}}{32 \frac{\text{kJ}}{\text{mol}} / \text{ATP}} = 6.9 \text{ ATP's}$$

25/25

7/7