Chem 352, Fundamentals of Biochemistry Lecture 5 – Supplemental Questions

1.	Draw the Haworth projection for the glycoside D-galactopyranosyl- $\beta(1\rightarrow 4)$ -D-glucopyranose:
	a. What is the common name for this disaccharide?
	b. What glycosidic link is used to connect the two monosachharides?
	c. Is this disaccharide a <i>reducing sugar</i> ?
2.	Which compound is more soluble in water, 1-hexanol or D-glucose? Explain.
2	Write atmentions to show the showistmy of each of the following recetions:
3.	Write structures to show the chemistry of each of the following reactions: a. D-glucose + ATP D-glucose-6-phosphate + ADP
	b. D-lactose + $H_2O \rightleftharpoons$ galactose + glucose
	c. D-glucose ≒ D-fructose
4.	For the reactions in question 3, what class of enzyme would catalyze each of these reactions?
	What is the relationship between each pair of molecules:
	a. D-glyceraldehyde and dihydroxyacetoneb. D-glucose and D-fructose
	c. D-glucose and D-mannose
	d. D-threose and D-erythrose
	 e. D-2-glucosamine and D-2-galactosamine f. α-D-glucose and β-D-glucose
	g. D-glucose and L-glucose

h. D-glucose and D-galactose

6. A solution of one enantiomer of a give in monosaccharide rotates plane-polarized light to the left (counterclockwise) and is called the levorotatory isomer, designated (-); the other enantiomer rotates plane-polarized light to the same extent but to the right (clockwise) and is called the dextrorotatory isomer, designated (+). An equimolar mixture of the (+) and (-) forms does not rotate plane-polarized light.

The optical activity of a stereoisomer is expressed quantitatively by its *optical rotation*, the number of degrees by which plane-polarized light is rotated on passage through a given path length of a solution of the compound at a given concentration. The *specific rotation* $[\alpha]_{\lambda}^{l}$ of an optically active compound is defined as:

$$\left[\alpha\right]_{\lambda}^{r} = \frac{\text{observed optical rotation }^{\circ}}{\text{optical path length (dm) x concentration } \left(g/\text{mL}\right)}$$

The temperature (t) and the wavelength of the light (λ) employed (usually, as here, the D line of sodium, 589 nm) must be specified.

A freshly prepared solution of α -D-glucose shows a specific rotation of +112°. Over time, the rotation of the solution gradually decreases and reaches an equilibrium value corresponding to $\left[\alpha\right]_{D}^{25^{\circ}C}$

- = $+52.5^{\circ}$. In contrast, a freshly prepared solution of β -D-glucose has a specific rotation of $+19^{\circ}$. The rotation of this solution increases over time to the same equilibrium value as that shown by the α -anomer.
- a. Draw the Haworth structures for the α and β forms of D-glucose. What feature distinguishes the two forms?
- b. Why does the specific rotation of the freshly prepared solution of the α form gradually decrease with time? Why do solutions of the α and β forms reach the same specific rotation at equilibrium?
- c. Calculate the percent of each of the two forms of D-glucose present at equilibrium.
- 7. Draw the structural formula for α -D-glucosyl-(1 \rightarrow 6)-D-mannose and circle the part of this structure that makes the compound a reducing sugar.