Chem 352 - Lecture 9
Photosynthesis

Question for the Day: How is photosynthesis analogous to a
combination of gluconeogenesis, the pentose phosphate pathway, and
the electron transport chain?



Introduction

The evolution of photosynthesis was a
milestone for living system on earth

+ It allowed energy to be obtain from an
extraterrestrial source.

+ This led to the creation of an oxygenated
atmosphere along with a food source for non-
photosynthesizing organisms.
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Introduction

There are two parts to photosynthesis

* Light reactions

e Shares much in common with the electron
transport chain and ATP synthase.

+ Dark reactions

 Fixes atmospheric CO, and shares much in
common with Gluconeogenesis and the
Pentose Phosphate Pathway.
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Introduction

+ The light reactions take place in complex
structures called photosystems.

+ Light energy is used to energetically excite
electrons, and that energy is then used to
make either ATP or reduced NADPH + H+.
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Introduction

+ The light reactions take place in complex
structures called photosystems.

+ There are two different types of
photosystems, PSI and PSII

e Some organisms have one or the other and
some have both.
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The Light-gathering Pigments
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Light-Harvesting Pigments
+ Chlorophvylls
+ Associated Pigments
e 3-carotene
« xanthophvylls
* Phycobilins

e et al.
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Light-Harvesting Pigments

+ Chlorophvylls
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Light-Harvesting Pigments

Photosystems have a special pair of
chlorophylls called the special pair.

+ This is where light energy is used to remove
a high energy electron from special pair.

+ This makes them a strong oxidizing agent.
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Light-Harvesting Pigments
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Light-Harvesting Pigments
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Photosystem II (PSII)

Two related photosystems have evolved in
the the last 2.8 billion years.

+ Photosystem II (PSII)

e Found in
» Purple bacteria
» Green filamentous bacteria
- both are strict anaerobes

+ PSII is combined with cytochrome bc to create a
proton gradient that is used fo synthesize ATP.

» cytochrome bc is complex III from the electron
transport chain.
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ATP Synthase
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ATP Synthase
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Photosystem II (PSII)

Two related photosystems have evolved in
the the last 2.8 billion years.

+ Photosystem II (PSII)

e Found in
» Purple bacteria
» Green filamentous bacteria
- both are strict anaerobes

+ PSII is combined with cytochrome bc to create a
proton gradient that is used fo synthesize ATP.

» cytochrome bc is complex III from the electron
transport chain.
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Photosystem II (PSII)

Two related photosystems have evolved in
the the last 2.8 billion years.

+ Photosystem II (PSII)
e Found in

Table 15.1 Photosystem Il reactions

PSII: 2 P870 + 2 photons —> 2 P8709 + 2 ¢©
Q+2e° + 2H®, — QH,

Cyt bcy: 2QH, + 2 cytc (Fe®) — 2Q + 2 cytc (Fe®) + 4 HE, + 2 €O
Q+2e° +2H® — QH,

PSII: 2 cyt c (Fe®) + 2P8709 — 2 cyt ¢ (Fe®) + 2 P870

Sum: 2 photons + 4 H®,, — 4 HD_,,
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Photosystem I (PSI)

Two related photosystems have evolved
in the the last 2 billion years.

+ Photosystem I (PSI)
e Found in
» Heliobacteria
» Green sulfur bacteria
« Combines PSI with cytochrome bc

» cytochrome bc is complex III from the
electron transport chain.

 Creates either a proton gradient that is used fo
synthesize ATP.

» or reduces NADP+ to NADPH + H+.
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Photosystem I (PSI)

Two related photosystems have evolved
in the the last 2 billion years.

+ Photosystem I (PSI)
e Found in
» Heliobacteria
» Green sulfur bacteria
« Combines PSI with cytochrome bc

» cytochrome bc is complex III from the
electron transport chain.
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TABLE 10.4 Standard reduction potentials of some important biological
half-reactions

Reduction half-reaction E°' (V)
Acetyl CoA + CO; + H® + 2e@—>Pyruvate + CoA —0.438
Ferredoxin (spinach), Fe™ + e© — Fe@ —0.43
2H® + 2¢9 — H, (at pH 7.0) —0.42
a-Ketoglutarate + CO, + 2 H® + 2¢© — Isocitrate —0.38
Lipoyl dehydrogenase (FAD) + 2 HO® + 20 — Lipoyl dehydrogenase (FADH,) —0.34
NADP® + 2 H® + 2¢© — NADPH + H® -0.32
NAD® + 2 H® + 2¢© — NADH + H® -0.32
Lipoic acid + 2 H® + 2¢© — Dihydrolipoic acid =009
Glutathione (oxidized) + 2 H® + 2¢© — 2 Glutathione (reduced) =023
FAD + 2 H® + 2¢© — FADH, -0.22
FMN + 2 H® + 2¢© — FMNH, 0
Acetaldehyde + 2 H® + 2¢© — Ethanol =020
Pyruvate + 2 H® + 2¢© — Lactate 0118
Oxaloacetate + 2 H® + 2¢© — Malate =017
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TABLE 10.4 Standard reduction potentials of some important biological
half-reactions

Reduction half-reaction E2' (V)
Cytochrome b5 (microsomal), Fe@ + e — Few 0.02
Fumarate + 2 H® + 2¢© — Succinate 0.03
Ubiquinone (Q) + 2 H® + 2¢© — QH, 0.04
- Cytochrome b (mitochondrial), Fe@ +e© — Fe® 0.08
Cytochrome ¢, Fe@ +¢© — Fe@ 0.22
I Cytochrome ¢, Fe~ + e© — F€® 0.23
c Cytochrome a, Fe@ e Fe@ 0.29
) Cytochrome f; Fe@ + 9 — Fe@ 0.36
Plastocyanin, Cu** + ¢© — Cu™ 0.37
NOLL + 2H® + 2¢© - NO,° + H,0 0.42
B8 Protosystem I (P700) 0.43
ge D+ 0 —r® 0.77
e /0, + 2HO® + 25 > H,0 0.82
Photosystem II (P680) 1.1
™\ 1 L
RO
e
e.
H®
NADP™ + H™
FNR
i -
DP |
2Fd,, > NADPH aApp 1 p; ATP
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Photosystem I (PSI)
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Table 15.2 The photosystem | reactions

PSI: 2 P700 + 2 photons —> 2 P7009 + 2 ¢®
2Fdy, + 262 + — 2 Fd,eq
FNR: Fd;eq + H® + FAD — Fd,, + FADH-

Fd,eq + H® + FADH. — Fd,, + FADH,
FADH, + NADP® —— FAD + NADPH + H®

Sum: 2P700 + 2 photons + NADP® + H® — 2 P700® + NADPH

complex FQR /2 Fdred\ FNR m

2Fd,, 2Fd, >NADPH ppp i p. ATP
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Photosystem I (PSI)

Two related photosystems have evolved
in the the last 2 billion years.

+ Photosystem I (PSI)
e Found in
» Heliobacteria
» Green sulfur bacteria
« Combines PSI with cytochrome bc

» cytochrome bc is complex III from the
electron transport chain.

 Creates either a proton gradient that is used fo
synthesize ATP.

» or reduces NADP+ to NADPH + H+.
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The Evolution of Photosystems

Cyanobacteria coupled the two
systems together.

+ An oxygen evolving complex evolved to supply the
electrons to PSII

+ Cytochrome bf (instead of cytochrome bc) is used
to reoxidize plastoquinone (instead of ubiquinone)
and reduce the blue copper protein, plastocyanin,
or cytochrome ¢

+ Plastocyanin (or cytochrome c) then reduces PSI,
which in turn reduces NADP+ to NADPH + H*.
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The Evolution of Photosystems
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The Evolution of Photosystems
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The Evolution of Photosystems

Cyanobacteria coupled the two
systems together.

+ An oxygen evolving complex evolved to supply the
electrons to PSII

+ Cytochrome bf (instead of cytochrome bc) is used
to reoxidize plastoquinone (instead of ubiquinone)
and reduce the blue copper protein, plastocyanin,
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The Evolution of Photosystems

Cyanobacteria coupled the two

Table 15.3 The photosynthesis reactions in species with both photosystems

PSIl: 2 P680 + 2 photons —> 2 P680® + 2 ¢©
PQ + 2e© + 2H®, — PQH,
OEC: HyO — 10, + 2H®,; + 2 €
2 P6809 + 2 ¢© — 2 P680
Cyt bf: 2 PQH, + 2 plastocyanin (Cu®) — 2 PQ + 2 plastocyanin (Cu®) + 4 H®,,, + 2 €©
PQ + 2H®, + 2 e© — PQH,
PSI: 2 P700 + 2 photons — 2 P7009 + 2 ¢©

2 Fdpy + 2 €© —— 2 Fd,q
2 plastocyanin (Cu®) + 2 P700® — 2 plastocyanin (Cu?*) + 2 P700
FNR: 2 Fd;eg + H® + NADP® —— 2 Fd,, + NADPH

Sum:  H,O + 4 photons + 4 H®,, + NADP® + H® — 10O, + 6 H®,,; + NADPH
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The Evolution of Photosystems

Cyanobacteria coupled the two
systems together.

+ An oxygen evolving complex evolved to supply the
electrons to PSII

+ Cytochrome bf (instead of cytochrome bc) is used
to reoxidize plastoquinone (instead of ubiquinone)
and reduce the blue copper protein, plastocyanin,
or cytochrome ¢

+ Plastocyanin (or cytochrome c) then reduces PSI,
which in turn reduces NADP+ to NADPH + H*.
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The Evolution of Photosystems
By coupling the two systems

+ Cyanobacteria are able to produces both ATP
and reduced NADPH + H+.

+ Use water as as its source of electrons.
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Plant Photosynthesis

Plant photosynthesis takes place in
organelles calls chloroplasts.

+ The chloroplasts found in photo-synthesizing
eukaryotes are believed to have evolved from
cyanobacteria, which established a symbiotic
relationship with eukaryotes
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Plant photosynthesis takes place in
organelles calls chloroplasts.

2 5 e ”\.,

5 :

+ The chloroplasts found in photo-synthesizing

Thylakoid

/ membranes
4

Plasma
membrane

— Peptidoglycan

layer

Carboxysomes Outer membrane
w100 NM
Cyanobacterium Chloroplast

Chem 352, Lecture 9: Photosynthesis 13



Plant Photosynthesis

Plant photosynthesis takes place in
organelles calls chloroplasts.

+ The chloroplasts found in photo-synthesizing

20 -
Cyanobacteria

Photosynthetic Algae

bacteria

A e ORS aeleS
Percent O,
[
o
1

Land plants

Carbox 1 I | [
— —4 —3 —2 —1
Billions of years before present

T EEEET———w————

5

E
7

Chem 352, Lecture 9: Photosynthesis 13



Plant Photosynthesis

Plant photosynthesis takes place in
organelles calls chloroplasts.

2 5 e ”\.,

5 :

+ The chloroplasts found in photo-synthesizing

Thylakoid

/ membranes
4

Plasma
membrane

— Peptidoglycan

layer

Carboxysomes Outer membrane
w100 NM
Cyanobacterium Chloroplast

Chem 352, Lecture 9: Photosynthesis 13



Plant Photosynthesis

Plant photosynthesis takes place in
organelles calls chloroplasts.

+ The chloroplasts found in photo-synthesizing
eukaryotes are believed to have evolved from
cyanobacteria, which established a symbiotic
relationship with eukaryotes

Chem 352, Lecture 9: Photosynthesis 13



Plant Photosynthesis

-Chloroplasts have double membranes,
like mitochondria.
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Plant Photosynthesis
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The Dark Reactions

* The dark reactions of photosynthesis use the
ATP and reduced NADPH + Ht+ from the light
reactions to convert CO. and H:20 into
glycolytic intermediates.

* Called the Calvin Cycle
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The Dark Reactions

Parts of the Calvin Cycle resembles
parts of both

+ Gluconeogenesis (Reduction)

+ Nonoxidative phase of the Pentose Phosphate
Pathway (Regeneration)
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The Dark Reactions
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The Dark Reactions
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The Dark Reactions

Rubisco (Ribulose bisphoshpate
carboxylase/oxygenase
+ 50% of soluble protein in leaves is rubisco
+ Very inefficient (Kcat = 3 s-1)

+ Nearly every organic-based carbon on earth
has passed through the active site of this
enzyme.
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The Dark Reactions
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The Dark Reactions

Rubisco (Ribulose bisphoshpate

carboxylase/oxygenase
+ The oxygenase activity is inefficient
e It consumes ATP and NADPH + H+
« It consumes O;
« The metabolism of the 2-Phosphoglycerate
leads to the release of CO:

* Is called photorespiration

+ Some plants, called C4 plants, can counteract
the oxygenase activity by concentrating CO:
in the leaf cells.

Chem 352, Lecture 9: Photosynthesis 18
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The Dark Reactions

‘Rubisco (Ribulose bisphoshpate

carboxylase/oxygenase

+ The oxygenase activity is inefficient
» It consumes ATP and NADPH + H+
» It consumes O
» The metabolism of the 2-Phosphoglycerate
leads to the release of CO:

*+ Is called photorespiration

+ Xerophilic plants, such as cactus and
pineapples, reduce their H2O loss during the
day by storing up CO: during the night
using the CAM pathway.
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