Chem 352 - Lecture 8 Carbohydrate Metabolism Part I: Glycolysis

Introduction

Carbohydrate metabolism involves a collection of pathways.

- + Glycolysis
- ightarrow Hexoses ightarrow 3-Carbon molecules
- + Gluconeogenesis
- · 3-Carbon molecules \rightarrow Hexoses
- + Fermentation (anaerobic)
- + Citric Acid Cycle (aerobic)
- . Oxidation all the way to $CO_2 + H_2O$
- + Pentose-Phosphate pathway
- Hexose → Pentose

Chem 352, Lecture 8, Part I: Glycolysis 2

2-1

Introduction

Carbohydrate metabolism involves a collection of pathways.

- + Glycolysis
- Hexoses → 3-Carbon molecules
- + Gluconeogenesis
- · 3-Carbon molecules \rightarrow Hexoses
- Fermentation (anaerobic)
- + Citric Acid Cycle (aerobic)
- · Oxidation all the way to CO2 + H2O
- + Pentose-Phosphate pathway
- Hexose → Pentose

Chem 352, Lecture 8, Part I: Glycolysis 2

2-2

Introduction

Carbohydrate metabolism involves a collection of pathways.

- + Glycolysis
- → Hexoses → 3-Carbon molecules
- + Gluconeogenesis
 - , 3-Carbon molecules \rightarrow Hexoses
- + Fermentation (anaerobic)
- + Citric Acid Cycle (aerobic)
- · Oxidation all the way to $CO_2 + H_2O$
- + Pentose-Phosphate pathway
- Hexose → Pentose

Chem 352, Lecture 8, Part I: Glycolysis 2

The Glycolytic Reactions

- •There are 10 reactions, which lead from glucose to pyruvate.
 - These reactions couple the lysis (splitting) and oxidation of hexose to the synthesis of 2 ATP's from ADP and Pi.

Glucose + 2 NAD+ + 2 ADP + 2 P_i

2 Pyruvate + 2 NADH + H+ + 2 ATP + 2 H₂O

Chem 352, Lecture 8, Part I: Glycolysis 3

3-1

\sim	2
O.	

Th	e Glycolytic Reactions		
٠٦ fi	$\Theta_{0} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$)	
	Adenosine 5'-triphosphate (ATP ^③)	of	
	H ₂ O H⊕ (1) (2) H ₂ O H⊕		
	$ \bigcirc \bigcirc$		
	Adenosine 5'-diphosphate (ADP (ADP (ADP (ADP (ADP (ADP (ADP (ADP	₂ O	
	+ +	_	
	HO−P−O⊖ HO−P−O⊝ O⊝ O⊝		
	Inorganic phosphate (Pi) Inorganic pyrophosphate (PPi)		
	Chem 352 Lecture 8 Part 1: GI	venlusis	3

The Glycolytic Reactions

Reactants and products	$rac{\Delta G^{\circ}{}^{\prime}{}_{ m hydrolysis}$ l $({ m kJ~mol}^{-1})$
$ATP + H_2O \rightarrow ADP + P_i + H^{\oplus}$	-32
$ATP + H_2O \rightarrow AMP + PP_i + H^{\oplus}$	-45
$AMP + H_2O \rightarrow Adenosine + P_i$	-13
$PP_i + H_2O \rightarrow 2 P_i$	-29
(inorganic phosphate) = $HPO_4^{2^-}$ P_i (pyrophosphate) = $HP_2O_7^{3^-}$	
0 ∥ HO−P−0 [©]	HO — P — O — P — O ⊖
,	
Inorganic phosphate (P _i)	Inorganic pyrophosphate (PP _i)

3-3

The Glycolytic Reactions	
• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
он он)
Adenosine 5'-triphosphate (ATP ⁽³⁾) H ₂ O H ₃ O (1) (2) H _⊕	of
7	
$\bigcirc \bigcirc $	
Adenosine 5'-diphosphate(ADP (E)) Adenosine 5'-monophosphate (AMP (E))	₂ O
но-р-о© но-р-о-р-о©	
$egin{array}{c c} & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	

 These reactions couple the lysis (splitting) and oxidation of hexose to the synthesis of 2 ATP's from ADP and Pi.

Glucose + 2 NAD+ + 2 ADP + 2 P_i

2 Pyruvate + 2 NADH + H+ + 2 ATP + 2 H₂O

Chem 352, Lecture 8, Part I: Glycolysis 3

3-5

The Glycolytic Reactions

Chem 352, Lecture 8, Part I: Glycolysis 3

3-6

The Glycolytic Reactions

Chem 352, Lecture 8, Part I: Glycolysis 3

3-7

The Glycolytic Reactions

Chem 352, Lecture 8, Part I: Glycolysis 3

The Glycolytic Reactions

- •There are 10 reactions, which lead from glucose to pyruvate.
 - These reactions couple the lysis (splitting) and oxidation of hexose to the synthesis of 2 ATP's from ADP and P_i.

Chem 352, Lecture 8, Part I: Glycolysis 3

3-9	

The Glycolytic Reactions

Chem 352, Lecture 8, Part I: Glycolysis 4

4

The Glycolytic Reactions

| TABLE 11.1 The reactions and enzymes of glycolysis | 1. (Imasee + ATP → Glacose & phosphate + ADP + H° | 2. (Imasee & phosphate + Factore & phosphate | Factore & phosphate | Factore & phosphate | Factore & phosphate | 3. Practice & phosphate + ATP → Factore & phosphate + ATP → Factore & phosphate + ATP → Factore & phosphate + ADP + H° | 1. S a phosphotypocyte & phosphate | Phosphotypocyte & phosphate | Glycoraldely & 3 phosphate phosphate |

5-1

The Glycolytic Reactions

TABLE 11.1 The reactions and enzymes of glycolysis	
1 Glucose → ATP → Glucose 6-phosphate + ADP + H [⊕]	Hexokinase, glucokinase
2. Glucose 6-phosphate Fructose 6-phosphate	Glucose-6-phosphate isomerase
 Fructose 6-phosphate + ATP → Fructose 1,6-biaphosphate + ADP + H[⊕] 	Phosphofructokinase-1
4. Fructose 1,6-biaphosphate Elikydroxyacetone phosphate + Glyceraldehyde 3-phosphate	Aldolase
 Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate 	Triose phosphate isomerase
6. Glyceraldehyde 3-phosphate + NAD⊕ + P; 1,3-B aphosphoglycerate + NADH + H	Glyceraldehyde 3-phosphate dehydrogenaso
7. 1,3-B isphosphoglycerate + ADP 3-Phosphoglycerate + ATP	Phosphoglycerate kinase
8. 3-Phosphoglycerate === 2-Phosphoglycerate	Phosphoglycerate mutase
9. 2-Phosphoglycerate Phosphoenolpyruvate → H ₂ O	Enolase
IO. Phosphoenolpyruvate + ADP H [⊕] → Pyruvate + ATP	Pyruvate kinase
Glucose + 2 NAD ⁺ + 2 ADP + 2 P _i →	
2 Pyruvate + 2 NADH + H	+ + 2 ATP + 2 H ₂ O

·Reaction 1: Hexokinase

Chem 352, Lecture 8, Part I: Glycolysis 6

6

The Glycolytic Reactions

Clicker Questions:

There are four different hexokinase enzymes (I - IV) with differing K_M values:

Hexokinase	K _M
1, 11, 111	10 ⁻⁴ - 10 ⁻⁶ M
IV	10-2 M

Hexokinase IV, also known as glucokinase, is found in the liver. When the different tissues line up to take glucose from the blood, where is the liver in this lineup?

- A. First in line
- B. Last in line
- C. Somewhere in the middle

Chem 352, Lecture 8, Part I: Glycolysis 7

7

The Glycolytic Reactions

·Reaction 1: Hexokinase

- Different tissues have different isoforms of hexokinase.
- The liver hexokinase, also called glucokinase, has the highest K_M, which reflects this organs role in regulating blood glucose levels
- + This reaction has a high negative $\Delta\,\text{G.}$
- Except for the liver, once phosphorylated, glucose cannot leave the cell.

Chem 352, Lecture 8, Part I: Glycolysis 8

8

The Glycolytic Reactions

·Reaction 1: Hexokinase

Chem 352, Lecture 8, Part I: Glycolysis 9

9-2

The Glycolytic Reactions

Reaction 1: Hexokinase

Chem 352, Lecture 8, Part I: Glycolysis 9

9-3

The Glycolytic Reactions

·Reaction 1: Hexokinase

Chem 352, Lecture 8, Part I: Glycolysis 9

9-4

The Glycolytic Reactions

·Reaction 2: Glucose 6-Phosphate Isomerase

Chem 352, Lecture 8, Part I: Glycolysis 10

10

The Glycolytic Reactions

•Reaction 2: Glucose 6-Phosphate Isomerase

+ In the cell, this reaction occurs near equilibrium

Chem 352, Lecture 8, Part I: Glycolysis 11

1	1	-1

The Glycolytic Reactions

Reaction 2: Glucose 6-Phosphate

| Some in Seurs near equilibrium, what does this say about the actual \$\Delta\$ for the reaction?

+ In the cell, this reaction occurs near

A. equilibrium

B. ∆G ≈ 0

C. ∆G < 0

Chem 352, Lecture 8, Part I: Glycolysis 11

11-2

The Glycolytic Reactions

·Reaction 3: Phosphofructokinase 1

Chem 352, Lecture 8, Part I: Glycolysis 12

12-1

The Glycolytic Reactions

·Reaction 3: Phosphofructokinase 1

•	

- + This enzyme catalyzes the first committed step in glycolysis.
- + PFK-1 is regulated by numerous allosteric effectors.

13

The Glycolytic Reactions	

·Reaction 4: Aldolase

Chem 352, Lecture 8, Part I: Glycolysis 14

14-1

The Glycolytic Reactions

·Reaction 4: Aldolase

14-2

The Glycolytic Reactions

·Reaction 4: Aldolase

Chem 352, Lecture 8, Part I: Glycolysis 14

·Reaction 4: Aldolase

15-1

15-2

The Glycolytic Reactions

·Reaction 4: Aldolase

The Glycolytic Reactions

·Reaction 4: Aldolase

Chem 352, Lecture 8, Part I: Glycolysis 15

15-3

The Glycolytic Reactions

·Reaction 5: Triose-Phosphate Isomerase

$$\begin{array}{c|cccc} CH_2OH & Triose & H & O \\ & | & & phosphate & C \\ C = O & & & & | & | \\ CH_2OPO_3^{(2)} & & & | & | \\ CH_2OPO_3^{(2)} & & & CH_2OPO_3^{(2)} \\ \end{array}$$
 Dihydroxyacetone Glyceraldehyde phosphate 3-phosphate

Chem 352, Lecture 8, Part I: Glycolysis 16

16

- + This reaction also occurs near equlibrium
- + The reaction mechanism involves an endiol intermediate.

17

Chemical Modes of Enzymatic Catalysis •Acid/Base catalysis

+ Triose phosphate isomerase illustrates both general acid and bases catalysis.

Chem 352, Lecture 4 - Part II, Enzyme Catalysis

Chem 352, Lecture 4 - Part II, Enzyme Catalysis

18-1

Chemical Modes of Enzymatic Catalysis

Interest in the second in the sec

18-2

Chemical Modes of Enzymatic Catalysis

Is merase illustrates both ses catalysis.

Is merase illustrates both ses catalysis.

The Glycolytic Reactions

•Reaction 5: Triose-Phosphate Isomerase

19-1

The Glycolytic Reactions

•Reaction 5: Triose-Phosphate Isomerase

19-2

The Glycolytic Reactions

•Reaction 5: Triose-Phosphate Isomerase

$$\begin{array}{c|cccc} & & & & & & & & & \\ & CH_2OH & & & & & & & & \\ & & & & & & & & \\ C = O & & & & & & & & \\ & CH_2OPO_3^{\textcircled{\tiny 2}} & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\$$

Chem 352, Lecture 8, Part I: Glycolysis 19

Chem 352, Lecture 8, Part I: Glycolysis 19

19-3

The Glycolytic Reactions

- ·Reaction 5: Triose-Phosphate Isomerase
- + This reaction also occurs near equlibrium
- + The reaction mechanism involves an endiol intermediate.

20

Chemical Modes of Enzymatic Catalysis ·Acid/Base catalysis

+ Triose phosphate isomerase illustrates both general acid and bases catalysis.

Chem 352, Lecture 4 - Part II, Enzyme Catalysis

His-95	Enzymatic Catalysis is
CH, CC H-NNN	merase illustrates both
Glu-165 3CH₂OPO₃®	ses catalysis.
On 165 Enediolate intermediate	se hate C hate C H O H O O O O O O O O O O O O O O O O

21-2

HI-95	is
H ₃ C CH ₂ 2CH ₂ OPO ₃ Glu-165	merase illustrates both ses catalysis.
His-95	
Glu-165 Enediclate intermediate	0 C H H C O H N N
His-95	Glu-165 Enediolate intermediate
O C OH H C O H CH3	His-95
Glu-165 Enediol intermediate	0 c 0 H c 0 H-N N
	H ₂ C ^{CH} ₂ H−2C − OH OH ₂ OPO ₃ O OH ₂ OPO ₃ OPO ₃ O OH ₂ OPO ₃ O OH ₃ OPO ₃ OPO ₃ O OH ₃ OPO ₃ OPO ₃ O OH ₃ OPO

21-3

Nitro 55	Nt 95
H6-95	Glu-165 Enediolate intermediate
H ₂ CH ₂ 2CH ₂ CH ₂ CH ₂ CH ₃	His 95 (H ₃ (H ₃ (CH ₃ H-2 C-OH H-1 N N)
	7cH ₂ opo ₃ ©

22

O H	Dehydrogenase Glyceraldehyde 3-phosphate dehydrogenase
H-C-OH + NAD [®] + CH ₂ OPO ₃ Glyceraldehyde 3-phosphate	$P_{i} \longleftrightarrow H - \stackrel{I}{\longleftarrow} - OH + NADH + H^{\textcircled{\oplus}}$ $\downarrow CH_{2}OPO_{3}^{\textcircled{\oplus}}$ $1,3-Bisphosphoglycerate$
	Chem 352, Lecture 8, Part I: Glycolysis 22

The Glycolytic Reactions ·Reaction 6: Glyceraldehyde

3-Phosphate Dehydrogenase

- This reaction also takes place near equilibrium because the 1,3 bisphosphoglycerate is rapidly depleated.
- NAD+ levels in the cell are typically low, so regeneration of NAD+, is critical for this step in glycolysis.

Chem 352, Lecture 8, Part I: Glycolysis 23

Chem 352, Lecture 8, Part I: Glycolysis 24

Chem 352, Lecture 8, Part I: Glycolysis 24

23

The	G۱۰	ycoly	ytic	Reactions
	•	,	,	

·Reaction 7: Phosphoglycerate Kinase

24-1

The Charletia Decations

24-2

The Glycolytic Reactions **TABLE 10.3** Standard Gibbs free energies of hydrolysis for common metabolites $\Delta G^{\circ}{}'_{\text{hydrolys}}$ (kJ mol⁻¹) 60-Group-transfer potential ($kJ \, mol^{-1}$) Phosphoenolpyruvate 1,3-Bisphosphoglycerat ATP to AMP + PP_i -62High-energy compounds 50reatine -43 -32 40-Acetyl CoA $ATP \ to \ ADP \ + \ P_i$ -32 -32 -29 -21 30-Pyrophosphate Glucose 1-phosphate 20-Low-energy compounds Glycerol 3-phosphate 10-0 -

24-4

The Glycolytic Reactions

·Reaction 7: Phosphoglycerate Kinase

24-5

The Glycolytic Reactions

·Reaction 7: Phosphoglycerate Kinase

- + This enzyme is named for the reverse reaction.
- * This reaction is an example of substratelevel phosphorylation.

Chem 352, Lecture 8, Part I: Glycolysis 25

25

The Glycolytic Reactions

·Reaction 8: Phosphoglycerate Mutase

$$\begin{array}{c|cccc} \mathsf{COO}^{\bigcirc} & \mathsf{Phosphoglycerate} & \mathsf{COO}^{\bigcirc} \\ \mathsf{H} - \mathsf{C} - \mathsf{OH} & & & \mathsf{H} - \mathsf{C} - \mathsf{OPO_3}^{\textcircled{\tiny{2}}} \\ \mathsf{CH_2OPO_3}^{\textcircled{\tiny{2}}} & & \mathsf{CH_2OH} \\ \end{array}$$
 3-Phosphoglycerate 2-Phosphoglycerate

Chem 352, Lecture 8, Part I: Glycolysis 26

26

$$\begin{array}{c|cccc} coo^{\bigodot} & Phosphoglycerate & coo^{\bigodot} \\ | & & mutase & | \\ H-C-OH & \longleftrightarrow & H-C-OPO_3^{\bigodot} \\ | & & CH_2OPO_3^{\bigodot} & & CH_2OH \\ \hline 3-Phosphoglycerate & 2-Phosphoglycerate \\ \end{array}$$

27-1

Chem 352, Lecture 8, Part I: Glycolysis 27

The Glycolytic Reactions

27-2

The Glycolytic Reactions
•Reaction 9: Enolase

COO [©] H-2C-OPO3 [©] H-3C-OH H-3C-H	Enolase, H ₂ O
2-Phosphoglycerate	Phosphoenolpyruvate

28

The Glycolytic Reactions

29-1

The Glycolytic Reactions

·Reaction 10: Pyruvate Kinase

29-2

The Glycolytic Reactions

·Reaction 10: Pyruvate Kinase

29-3

The Glycolytic Reactions

29-4

The Glycolytic Reactions

·Reaction 10: Pyruvate Kinase

·Reaction 10: Pyruvate Kinase

29-6

The Glycolytic Reactions

·Reaction 10: Pyruvate Kinase

- + Like phospglycerate kinase, this enzyme is named for the reverse reaction.
- + This reaction is another example of substrate-level phosphorylation.

Chem 352, Lecture 8, Part I: Glycolysis 30

30

The Fates of Pyruvate

·Pyruvate represents one of the major intersections in metabolism.

31-1

Chem 352, Lecture 8, Part I: Glycolysis 31

The Fates of Pyruvate

·Pyruvate represents one of the major intersections in metabolism.

Chem 352, Lecture 8, Part I: Glycolysis 31

The Fates of Pyruvate

•Fermenatation is used to regenerate oxidized NAD+ when O_2 cannot be utilized to do this.

32-1

The Fates of Pyruv

•Fermenatation is use oxidized NAD+ when (utilized to do this.

32-2

The Fates of Pyruv

•Fermenatation is use oxidized NAD+ when (

<u> </u>	itilized to do	this.	CF H—C—OH CH3OPO3 1,3-Bisphosphoglycerate
			↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
cooΘ	NADU U⊕ NAD⊕	cooΘ	decarboxylase CO ₂
coo -	NADH, H - NAD -	но — с — н	C CH ₃ Acetaldehyde
CH ₃ Pyruvate	Lactate dehydrogenase Lactate Fermentation	CH ₃ L- Lactate	Alcohol NADH + HG
CH ₃		l CH₃	Pyruvate Pyruvate CO2 H CO3 Acetaldehyde Alcohol NADH + dehydrogenase H

32-3

Coenzymes and Vitamins (Chapter 7.7)

- •Pyruvate decarboxylase uses the coenzyme thiamine pyrophosphate (TPP).
 - + thiamine pyrophosphate is synthesized from vitamin B₁ (thiamine)

33-1

TABLE 7.2 Major coenzymes			
Coenzyme	Vitamin source	Major metabolic roles	Mechanistic role
Adenosine triphosphate (ATP)	-	Transfer of phosphoryl or nucleotidyl groups	Cosubstrate
S-Adenosylmethionine	-	Transfer of methyl groups	Cosubstrate
Uridine diphosphate glucose	-	Transfer of glycosyl groups	Cosubstrate
Nicotinamide adenine dinucleotide (NAD [⊕]) and nicotinamide adenine dinucleotide phosphate (NADP [⊕])	Nincin	Oxidation-reduction reactions involving two-electron transfers	Cosubstrate
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD)	Riboflavin (B ₂)	Oxidation-reduction reactions involving one- and two-electron transfers	Prosthetic group
Coenzyme A (CoA)	Pantotherate (B ₃)	Transfer of acyl groups	Cosubstrate
Thiamine pyrophosphate (TPP)	Thiamine (B ₁)	Transfer of two-carbon fragments containing a carbonyl group	Prosthetic group
Pyridoxal phosphate (PLP)	Pyridoxine (B ₆)	Transfer of groups to and from amino acids	Prosthetic group
Biotin	Biotin	ATP-dependent carboxylation of substrates or carboxyl-group transfer between substrates	Prosthetic group
Tetrahydrofolate	Folate	Transfer of one-carbon substituents, especially formyl and hydroxymethyl groups; provides the methyl group for thymine in DNA	Cosubstrate
Adenosylcobalamin	Cobalamin (B ₁₂)	Intramolecular rearrangements	Prosthetic group
Methylcobalamin	Cobalamin (B ₁₂)	Transfer of methyl groups	Prosthetic group
Lipcamide	-	Oxidation of a hydroxyalkyl group from TPP and subsequent transfer as an acyl group	Prosthetic group
Retinal	Vitamin A	Vision	Prosthetic group
Vitamin K	Vitamin K	Carboxylation of some glutamate residues	Prosthetic group
Ubiquinone (Q)	_	Lipid-soluble electron carrier	Cosubstrate

33-2

33-3

Coenzymes and Vitamins (Chapter 7.7) ·Pyruvate decarboxylase uses the coenzyme thiamine pyrophosphate (TPP).

+ thiamine pyrophosphate is synthesized from vitamin B1 (thiamine)

Chem 352, Lecture 8, Part I: Glycolysis 33

33-4

Coenzymes and Vitamins (Chapter 7.7) ·Pyruvate decarboxylase uses the

Chem 352, Lecture 8, Part I: Glycolysis 33

Coenzymes and Vitamins (Chapter 7.7)

- ·Pyruvate decarboxylase uses the coenzyme thiamine pyrophosphate (TPP).
 - + thiamine pyrophosphate is synthesized from vitamin B₁ (thiamine)

33-5

Coonzumos	and Vitamins	(Chantar	77
Coenzymes	ana vitamins	Chapter	7.7

- •Thiamine pyrophosphate is used in many decarboxylation reactions,
 - + Including pyruvate decarboxylase

Coenzy

Thian

Many

Incl

Historyethylthiamine
pyrophosphate

Historyethylthiamine

Hist

34-2

Coenzymes and Vitamins (Chapter 7.7)

- •Thiamine pyrophosphate is used in many decarboxylation reactions,
 - + Including pyruvate decarboxylase

Chem 352, Lecture 8, Part I: Glycolysis 34

34-3

34-1

Free Energy Changes in Glycolysis

•The overall free energy change is negative.

Free Energy Changes in Glycolysis

•The overall free energy change is negative.

35-2

Regulation of Glycolysis

•The enzymes that catalyze the irreversible reactions are the primary sites of allosteric regulation.

Chem 352, Lecture 8, Part I: Glycolysis 36

36-1

Regu	ulation of Glycolysis
•The	Glucose Hexokinase
irre	- 'i
prin	↓ ltion.
	Phosphofructokinase-1 AMP
	Fructose 1,6- <i>bis</i> phosphate
	1
	↓ Phosphoenolpyruvate
	Pyruvate kinase
	Pyruvate Chem 352, Lecture 8, Part I: Glycolysis 36

36-2

1	Glucose
٠The	Hexokinase +
irre	Feedback inhibition "Things are backing up Glucose 6-phosphate -
prin	further down the line" tion.
.	Fructose 6-phosphate
	Phosphofructokinase-1 AMP
	- Fructose 1,6-bisphosphate
	<u> </u>
	i †
	i
	į į
	↓
	Phosphoenolpyruvate
	Pyruvate kinase
	+ ↓ − Pyruvate

36-5

36-6

36-8

36-9

Regulation of Glycolysis

The irre Glucose

Hexokinase Hexokinase

Phosphofructose 6-phosphate

Phosphofructose 6-phosphate

Phosphofructose 1,6-bisphosphate

Pructose 1,6-bisphosphate

Phosphoenolpyruvate

Pyruvate kinase

Pyruvate kinase

Chem 352, Lecture 8, Part I: Glycolysis 36

36-10

Regulation of Glycolysis

•In the liver, glucokinase, which is livers form of hexokinase, is also regulated by a regulatory protein that binds to glucokinase when fructose 6-phosphate levels are high. 37-1

Regulation of Glycolysis In the livers regulation that by fructo With regulatory e high. protein Chem 352, Lecture 8, Part 1: Glycolysis 37	37-2
Regulation of Glycolysis In the liver, glucokinase, which is livers form of hexokinase, is also regulated by a regulatory protein that binds to glucokinase when fructose 6-phosphate levels are high.	37-3
Regulation of Glycolysis The liver is the only organ that is able to release glucose back into the blood It does so to satisfy the glucose need of other tissues, particularly the brain.	38-1
Chem 352, Lecture 8, Part I: Glycolysis 38	
Regulation of Glycolysis The liver is the only organ that is able to release glucose back into the blood It does so to satisfy the glucose need of Glucose of Glycogen gathway Glucose of Glycogen gathway Glycogen gathway Glycogen phosphate Glycogen of	38-2

Regulation of Glycolysis

- •The liver is the only organ that is able to release glucose back into the blood
- + It does so to satisfy the glucose need of other tissues, particularly the brain.

Chem 352, Lecture 8, Part I: Glycolysis 38

38-3

Regulation of Glycolysis

The liver is the only organ that is able to release glucose back into the blood

- + Under low blood glucose levels, the hormone glucagon signals the liver to halt glycolysis.
 - It does this using a signal transduction pathway.

Chem 352, Lecture 8, Part I: Glycolysis 39

39

Transduction of Extracellular Signals

·G-Proteins

Chem 352, Lecture 6, Part II - Membranes 40

40

Regulation of Glycolysis

- •The liver is the only organ that is able to release glucose back into the blood
- + Under low blood glucose levels, the hormone glucagon signals the liver to halt glycolysis.
 - It does this using a signal transduction pathway.

41-1

41-2

41-3

41-4

•T	(Glucagon transducer) iS
ab	
bl	6-phosphate
+	ATP PFK-2 OH Prmone
	ATP DIYSIS.
	Fructose 2,6-bisphosphate Protein kinase A
	Fructose 2,6-bisphosphatase p _i activity
	G-phosphate Glycolysis
	PFK-1
	Fructose→ Glycolysis 1,6- <i>bi</i> sphosphate
	Chem 352, Lecture 8, Part I: Glycolysis 41

Regulation of Glycolysis

- ·The liver is the only organ that is able to release glucose back into the blood
- + Under low blood glucose levels, the hormone glucagon signals the liver to halt glycolysis.
- · It does this using a signal transduction pathway.

41-5

Regulation of Glycolysis

- ·Regulation of Pyruvate Kinase
 - + Pyruvate Kinase is also regulated in response to glucagon.
 - Phosphorylation by Protein Kinase A in response to glucagon, lowers its activity.

Chem 352, Lecture 8, Part I: Glycolysis 42

42-1

Regulation	of	Glycolysis	

·Regulation of Pyruvate Kinase

Chem 352, Lecture 8, Part I: Glycolysis 42

42-2

Regulation of Glycolysis

42-3

Regulation of Glycolysis

·Regulation of Pyruvate Kinase

Chem 352, Lecture 8, Part I: Glycolysis 42

Regulation of Glycolysis

Regulation of Pyruvate Kinase

+ In addition to being allosterically inhibited by ATP, Pyruvate Kinase is also allosterically activated by frucose 6-phosphate.

43-1

352,	Lecture	8,	Part	I:	Glycolysis	43

Regulation of Glycolysis

Regulation of Pyruvate Kinase

43-2

Regulation of Glycolysis

Regulation of + În ed by Pyruvate kinase activity

43-3

Regulation of Glycolysis

0

Regulation of Pyruvate Kinase

ıte]

ture 8, Part I: Glycolysis 43

Other Points	44	
	_	
Skip Section 11.6 + Entry of other sugars into glycolysis		
Skip Section 11.7	_	
+ Entner-Doudoroff Pathway in Bacteria, which		
lack PFK-1		
	_	
	_	
Chem 352, Lecture 8, Part I: Glycolysis 44		
	45-1	
Review of Glycolysis	10 1	
Questions:	_	
What is the metabolic purpose behind the glycolytic pathway?	_	
	-	
	_	
	_	
Chem 352, Lecture 8, Part I: Glycolysis 45	_	
Review of Glycolysis	45-2	
Questions:	_	
Whea't-lipsthiepmentatiobjbypolyspissenbehin'dtatispliti(schbyinig statushungal formulas, draw the chemical equation for the reaction in		
which a 6-carbon molecule is split into two 3-carbon molecules.	_	
	_	
	_	
Chem 352, Lecture 8, Part I: Glycolysis 45	_	
Review of Glycolysis	45-3	
	_	
Questions: When't Hysothij'e politekt afflykjobly polityspipsubhlovalným čltohíslpekt (Úsatallsjinkig tylarticokvaryal		
கும்seadas,oflowydere, themeicisl குடியாக்களின் itheumizationd in whitathion6ecanthson molecule is split into two 3-carbon	_	
molecules. A. Using structural formulas, draw the chemical equation for this reaction.		
B. What oxidizing reagent is used in this reaction?		
	-	
	_	

Review of Glycolysis Questions: Whach the skylightest adjobly high principal than the Dustrial of State of St	45-4
Chem 352, Lecture 8, Part I: Glycolysis 45	46
Next Up Lecture 8 - Carbohydrate Metabolism Part II: Gluconeogenesis, Pentose Phosphate Pathway, and Glycogen Metabolism (Moran et al., Chapter 12)	
Chem 352, Lecture 8, Part I: Glycolysis 46	