2

Chem 352 - Lecture 8 Carbohydrate Metabolism Part IV: Electron Transport and ATP Synthesis

Introduction

 By combining the reactions of glycolysis with the citric acid cycle we have seen how glucose can be oxidized to CO₂ with the concomitant production of reduced nucleotides (NADH + H⁺ and QH₂)

Glucose + 2 H₂O + 10 NAD+ + 2 Q + 4 ADP + 4 P_i

 $6~{\rm CO_2}~+~10~{\rm NADH}~+~10~{\rm H^+}~+~2~{\rm QH_2}~+~4~{\rm ATP}$

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 2

Introduction

- The oxidation of the reduced nucleotides by oxygen and other electron receptors is tightly coupled to the the synthesis of ATP from ADP + Pi.
- The process is called oxidative phosphorylation.

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 3

3-1

Introduction

Reduction half-reaction	$E^{\circ}'(V)$	S
Acetyl CoA + CO ₂ + H $^{\oplus}$ + 2 e^{Θ} \rightarrow Pyruvate + CoA	-0.48	f ATP
Ferredoxin (spinach), $F_e^{\Theta} + e^{\Theta} \rightarrow F_e^{\Theta}$	-0.43	' ' ' ' '
2 H [⊕] + $2e^{\Theta}$ → H ₂ (at pH 7.0)	-0.42	
α -Ketoglutarate + CO ₂ + 2 H [⊕] + 2 e ^{\ominus} → Isocitrate	-0.38	
Lipoyl dehydrogenase (FAD) + 2 H $^{\oplus}$ + 2e $^{\ominus}$ \rightarrow Lipoyl dehydrogenase (FADH2)	-0.34	0.22
$NADP^{\oplus} + 2 H^{\oplus} + 2e^{\ominus} \rightarrow NADPH + H^{\oplus}$	-0.32	0.23
$NAD^{\oplus} + 2 H^{\oplus} + 2e^{\ominus} \rightarrow NADH + H^{\oplus}$	-0.32	0.29
Lipoic acid + $2 H^{\oplus}$ + $2e^{\ominus} \rightarrow$ Dihydrolipoic acid	-0.29	0.36
Plastocyania, $Cu^{2+} + e^{\Theta} \rightarrow Cu^{+}$		0.37
$NO_3^{\ominus} + 2 H^{\ominus} + 2e^{\ominus} \rightarrow NO_2^{\ominus} + H_2O$		0.42
Photosystem I (P700)		0.43
$Fe^{\Theta} + e^{\Theta} \rightarrow Fe^{\Theta}$		0.77
$^{1}/_{2}O_{2} + 2 H^{\oplus} + 2e^{\ominus} \rightarrow H_{2}O$		0.82
Photosystem II (P680)		1.1

TABLE 10.4 Standard reduction poten	ntials of some important t	oiological	1 1
Problemions Deterrinhentriecthaximum num synthesizedofrom ADP-andofie	ergies of hydrolysis for	d Gibbs free en- common	es by
NADH x_{+} (H hoby P c e c $\rightarrow Fe$ c c d	Metabolite	$\Delta G^{\circ}{}'_{ m hydrolysis}$ (kJ mol $^{-1}$)	ATP
α -Ketoglutarate + CO ₂ + 2 H $^{\oplus}$ + 2 e^{\ominus} \rightarrow Iso	Phosphoenolpyruvate	-62	
Lipoyl dehydrogenase (FAD) + 2 H [⊕] + 2e [⊕]	1,3-Bisphosphoglycerate	-49	
$NADP^{\oplus} + 2 H^{\oplus} + 2e^{\ominus} \rightarrow NADPH + H^{\oplus}$	ATP to AMP + PP _i	-45	0.22
$NAD^{\oplus} + 2 H^{\oplus} + 2e^{\ominus} \rightarrow NADH + H^{\oplus}$	Phosphocreatine	-43	0.23
Lipoic acid + 2 H $^{\oplus}$ + $2e^{\ominus}$ \rightarrow Dihydrolipoic a	Phosphoarginine	-32	0.29
-,	Acetyl CoA	-32	0.36
Plastocyania, $Cu^{2+} + e^{\Theta} \rightarrow Cu^{+}$		-32	0.37
$NO_3^{\ominus} + 2 H^{\ominus} + 2e^{\ominus} \rightarrow NO_2^{\ominus}$	Pyrophosphate	-29	0.42
Photosystem I (P700)	Glucose 1-phosphate	-21	0.43
$F_e^{\bigoplus} + e^{\bigoplus} \rightarrow F_e^{\bigoplus}$	Glucose 6-phosphate	-14	0.77

3-5

_								
т	-	٠.	^	 	•	+;	_	

- The oxidation of the reduced nucleotides by oxygen and other electron receptors is tightly coupled to the the synthesis of ATP from ADP + Pi.
- The process is called oxidative phosphorylation.

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 3

3-	7
•	

The Mitochondria

 For eukaryotes, the coupling of the reoxidation of the reduced nucleotides to the synthesis of ATP from ADP + P_i occurs in the mitochondria.

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 4

4-1

The Mitochondria

 For eukaryotes, the coupling of the reoxidation of the reduced nucleotides to the synthesis of ATP from ADP + P_i occurs in the mitochondria.

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

4-2

The Mitochondria

 For eukaryotes, the coupling of the reoxidation of the reduced nucleotides to the synthesis of ATP from ADP + P_i occurs in the mitochondria.

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 4

i		

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

	ŀ		

Introduction

+ The outer membrane is quite porous to small molecules (<10,000 Da).

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 6

6

The Chemiosmotic Theory

•The chemiosmotic theory was first proposed by Peter Mitchell in the early 1960's.

 The theory explained how the two process are linked

Peter Mitchell (1920 - 1992) Nobel Prize in Chemistry, 1978

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

7

The Chemiosmotic Theory

•Demonstration that the proton flow across membranes is linked to ATP synthesis.

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 8

The Chemiosmotic Theory

•Demonstration that the proton flow across membranes is linked to ATP synthesis.

8-2

The Chemiosmotic Theory

•Demonstration that the proton flow across membranes is linked to ATP synthesis.

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 8

8-3

The Chemiosmotic Theory

•Demonstration that the proton flow across membranes is linked to ATP synthesis.

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

8-4

The Mitochondria

 For eukaryotes, the coupling of the reoxidation of the reduced nucleotides to the synthesis of ATP from ADP + P_i occurs in the mitochondria.

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

The Mitochondria

 For eukaryotes, the coupling of the reoxidation of the reduced nucleotides to the synthesis of ATP from ADP + P_i occurs in the mitochondria.

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 9

9-3

10-1

The Chemiosmotic Theory

•The **protonmotive force** is analogous to the electronmotive force (emf).

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 10

10-2

The Chemiosmotic Theory

•The **protonmotive force** is analogous to the electronmotive force (emf).

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 10

10-4

The Chemiosmotic Theory

•The free energy for proton movement across a membrane

$$\Delta G_{transport} = RT \ln \left(\frac{\left[\mathbf{H}_{n}^{+} \right]}{\left[\mathbf{H}_{out}^{+} \right]} \right) + \mathscr{F} \Delta \Psi$$
$$\Delta G_{transport} = \mathscr{F} \Delta \Psi - 2.303 \ RT \Delta pH$$

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 11

11

Electron Transport

•The electrons are transported from NADH to O₂ through a series of integral membrane proteins.

12-3

12-4

Electron Transport Chain

The electron transport chain comprises a series of electron carriers.

- + These are located in the inner mitochondrial membrane
- They are arrange in the order of increasing reduction potential (increasing affinity for electrons).

13 Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

13

Electron Transport Chain

The electron transport chain comprises a series of electron carriers.

- + These are located in the inner mitochondrial membrane
- They are arrange in the order of increasing reduction potential (increasing affinity for electrons).

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

14-1

Flactron	Transport	Chain	Table 14.1 Standard of mitocho	ondrial oxidation-
LIECTION	11 ansport	Cildin	reduction	components
			Substrate of Complex	E°' (V)
			NADH	-0.32
			Complex I	
			FMN	-0.30
			Fe-S clusters	-0.25 to -0.05
			Succinate	+0.03
			Complex II	
			FAD	0.0
			Fe-S clusters	-0.26 to 0.00
			QH ₂ /Q	+0.04
			(·Q [⊖] /Q	-0.16)
			(QH ₂ / • Q [⊖]	+0.28)
			Complex III	
			Cytochrome b ₁ .	-0.01
			Cytochrome b _H	+0.03
			Fe-S cluster	+0.28
			Cytochrome c ₁	+0.22
			Cytochrome c	+0.22
			Complex IV	
			Cytochrome a	+0.21
			Cu _A	+0.24
			Cytochrome a ₃	+0.39
	Chem 352, Lecture 8, Par	t TV: Flactron Tra	Cu ₈	+0.34
14	Chem 332, Lecture 8, Par	I IV. LIECTION ITA	O ₂	+0.82

14-2

Electron	Transport	Chain		eduction potential indrial oxidation— components
	H ₃ C NH		Substrate of Complex	E°' (V)
FMN	H ₂ C N N O		NADH	-0.32
	CH ₂		Complex I	
e 0 7	CHOH FAD		FMN	-0.30
H ₂ C NH Isosilovarine	снон		Fe-S clusters	-0.25 to -0.05
H.C N N N O BESTEVAZINE	снон		Succinate	+0.03
H,C ~ N N 0	CH ₂	NH ₂	Complex II	
CHOH	90-P-0-P-0-0H,		FAD	0.0
CHOH Ribited	-0-1-0-0.	√1 *	Fe-S clusters	-0.26 to 0.00
CHOH	N	₩. I I	QH ₂ /Q	+0.04
CH,OH	OH	ОН	(· Q ⊖ / Q	-0.16)
			(QH ₂ / - Q [⊖]	+0.28)
			Complex III	
			Cytochrome b ₁ .	-0.01
			Cytochrome b _H	+0.03
			Fe-S cluster	+0.28
			Cytochrome c ₁	+0.22
			Cytochrome c	+0.22
			Complex IV	
			Cytochrome a	+0.21
			Cu _A	+0.24
			Cytochrome a ₃	+0.39
			Cu ₈	+0.34
14	Chem 352, Lecture 8, Part	IV: Electron Tra	O ₂	+0.82

}				

14-7			

15-3

QH ₂ Q Q Connector module 2 H [©]	FMN 2e [©] m		INSIDE INSIDE enase matrix
	<u>View Mo</u>	<u>del</u>	

16-3

Comp	olex I (NADH-Q Oxidoreductase)
FM + FN	NN NN is a 1-or 2-electron carrier (Chapter 7.5)
	H ₃ C H ₃ C H ₄ C H ₅ C H ₆ C H ₇ C H
17	Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

17

	H ₃ c N N N O	-H [⊕] , -e [⊙]	
	FMN or FAD (quinone form) + H [©] + H [©] NH	H ₃ C NH NH H ₃ C N NO FMNH or FADH- (semiquinone form)	
	H ₃ C NH NH O	_++⊕,ℯ⊖ _/	
	(hydroquinone form)		
,	Chem 352, Lecture 8	3, Part IV: Electron Transpo	rt and ATP Synthesis
	-		

Complex I (NADH-G) Oxidoreductase)
Iron-Sulfur Centers • Some of the complexes contain iron-sulfur centers • Iron-sulfur centers are 1-electron carriers. Fe³+ + 1e⁻ ⇔ Fe²+	Protein Oya Oya Oya Oya Oya Oya Oya Oy
18 Chem 352, Lectu	ire 8, Part IV: Electron Transport and ATP Synthesis

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

20

Carriers Between Complexes Coenzyme Q (Ubiquinone) carries the electrons from Complexes I & II to Complex III (Chapter 7.14) Like FMN, ubiquinone is either a 1- or 2-electron carrier. Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

21

Complex II (Succinate Dehydrogenase) Complex II OUTSIDE OUTSIDE OUTSIDE OUTSIDE OUTSIDE OUTSIDE Pe-S INSIDE FADH 2 H FADH Succinate Fumarate Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

Complex II (Succinate Dehydrogenase)

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

22-3

Complex III (Q-Cyt c oxidoreductase)

- + Also called cytochrome bc
- + Location of the "Q"-cycle

23-1

Complex III (Q-Cyt c oxidoreductase)

24-2

3. Carriers Between C	omplexes
•Cytochrome c is a small heme protein that carries the electrons from Complex III to Complex IV	Oxidized
Chem 352, Lecture 8, Part IV: Electure 24	Reduced ron Transport and ATP Synthesis

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

26-1

26-2

27

Electron Transport

27

-At this point, glucose has been completely oxidized to CO_2 and H_2O

glucose ($C_6H_{12}O_6$) + $6O_2 \rightarrow 6CO_2$ + $6H_2O$

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 28

28

Electron Transport

Energy change

- + ΔG°' = -220 kJ/mol = -45.7 kcal/mol
- This is more than enough energy to make 2.5 ATP's (3 x 32 kJ/mol = 96 kJ/mol)

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

29

ATP Synthesis

•The enzyme **ATP Synthase** couples ATP synthesis to the movement of protons across the membrane

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

30-4

ATP Synthesis
·The enzyme ATP Synthase couples
ATP synthesis to the movement of
protons across the membrane
++++ O ₂ H ₂ O H Matrix AIP ADP + P ₁
Membrane
A proton gradient powers the synthesis of ATP
Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 31

31-3

31-4

ATP	Synthesis	
	,	

·ATP is synthesized on β subunit

35

ATP Synthesis

·The turning of the $\gamma\text{-subunit}$ leads to the synthesis and release of ATP

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

36

ATP Synthesis

•The turning of the $\gamma\text{-subunit leads}$ to the synthesis and release of ATP

+ Rotation of the $\gamma\text{-subunit}$ is coupled to proton movement down the proton gradient

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 37

37

ATP Synthesis

•The world's smallest molecular motor •Rotational catalysis

Chem 352, Lecture 8, Part IV: Elect

39

ATP Synthesis

•Proton flow around the c Ring powers ATP synthesis.

- + c, γ and ε subunits constitute the rotor.
- + a, b2 and δ subunites constitute the stator

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 40

40

41

ATP Synthesis
•The combination of the a and c subunits provide a path through the membrane Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis
Chem 332, Lecture 8, Part 1V. Electron manaport and Arr Symmesis

•Proton flow around the c Ring powers ATP synthesis.

- + c, γ and ϵ subunits constitute the rotor.
- + a, b2 and δ subunits constitute the stator

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

43

ATP	Syr	าthe	sis

•Proton flow through ATP synthase leads to the release of tightly bound ATP

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

44

Electron Transport/ATP Synthase Structures

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

45-1

Electron Transport/ATP Synthase Structures

Electron Transport/ATP Synthase Structures

45-3

45-4

45-5

3	

Electron Transport/ATP Synthase Structures

45-7

ATP Transport In/Out of Mitochondria

 \cdot Transport of ATP, ADP and P_i across the inner membrane is driven by both the proton and electropotential gradient.

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis

46

Shuttles

•The NADH + H⁺ that is produced in glycolysis is on the cytosolic side of the mitochondrial inner membrane.

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 47

47

Shuttles

•The NADH + H⁺ that is produced in glycolysis is on the cytosolic side of the mitochondrial inner membrane.

Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 48

Next Up	49	
·Lecture 9 – Photosynthesis Chapter 15 in Moran et al.		
Chem 352, Lecture 8, Part IV: Electron Transport and ATP Synthesis 49		