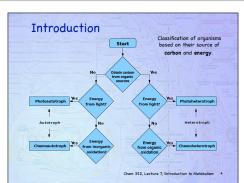
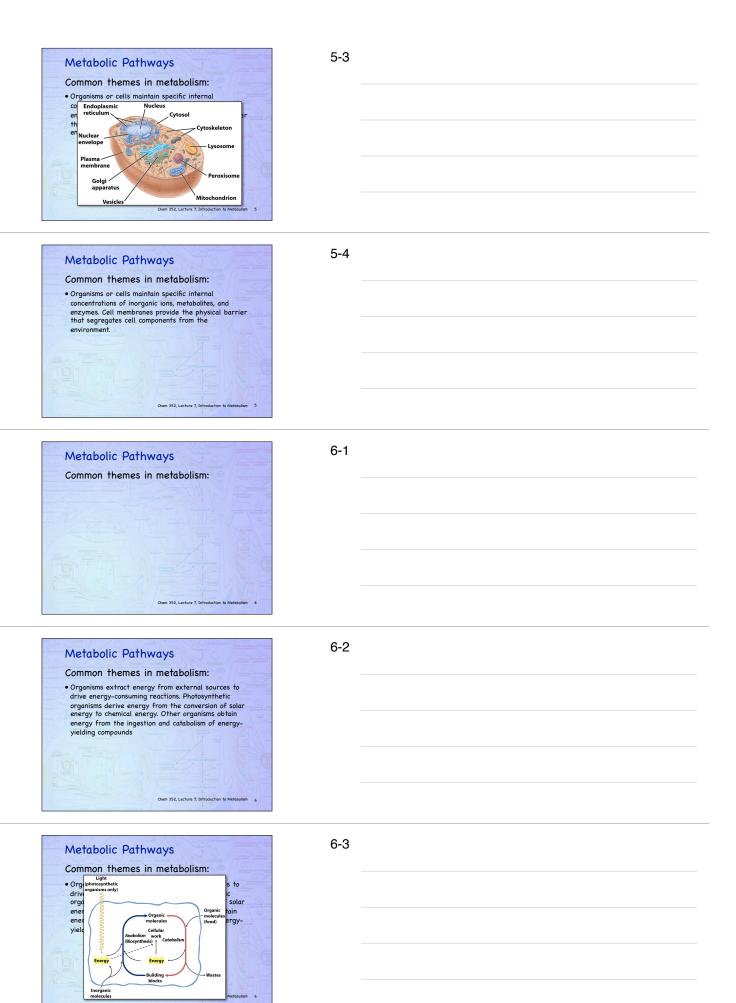

2-4


2-5

Introduction
·Metabolism is divided into two
complimentary sets of reactions.
* Anabolic reactions (anabolism)
 The synthetic reactions, which usually require an input in free energy.
Catabolic reaction (catabolism) The degradative reactions, which usually
lead to a release of free energy.
Chem 352, Lecture 7, Introduction to Metabolism 3

3-1

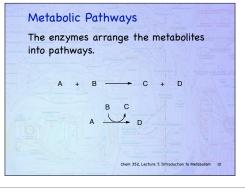
4-1

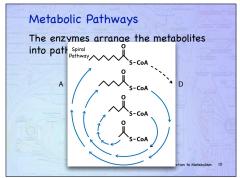

	Fructose		Classification of organism
	St	art	based on their source of
		S. O. \	carbon and energy.
	100	Sales Sales	
	No Obtain	carbon Yes	
		organic uroes	
Yes	Energy	Energy	Yes
Photoautotroph	from light?	from light	
O Nilson -	Contra	7	I to black Street Stree
Autotroph	No	No	Heterotroph
Love	, no	100	The state of the s
	A		P-Glyceraldehyde
Chemoautotroph Yes	Energy from inorganic	Energy from organ	Yes Chemoheterotroph
	oxidation?	oxidation	

4-2

Campaga Hi	ass - Trocase - Southook	T-II-	
Common The	emes in meta	ibolism:	

5-1


Metabolic Pathy	ways Character 1-12 C
Common themes in	n metabolism:
	nic ions, metabolites, and s provide the physical barrier
that segregates cell com environment.	ponents from the
	Aller Annual Park Park Park Park Park Park Park Park
	3 A Ciny and A Line 2017
	Chem 352, Lecture 7, Introduction to Metabolism 5


Metabolic Pathways Common themes in metabolism: Organisms extract energy from external sources to drive energy-consuming reactions. Photosynthetic organisms derive energy from the conversion of solar energy to chemical energy. Other organisms obtain energy from the ingestion and catabolism of energy-yielding compounds	6-4	
Metabolic Pathways Common themes in metabolism: Own 352, Lecture 3, Introduction to Metabolism 7	7-1	
Metabolic Pathways Common themes in metabolism: • The metabolic pathways in each organism are specified by the genes it contains in its genome. Ohem 352, Lecture 7, Introduction to Metabolism 7	7-2	
Metabolic Pathways Common themes in metabolism:	7-3	
Metabolic Pathways Common themes in metabolism: • The metabolic pathways in each organism are specified by the genes it contains in its genome. Onem 352, Lecture 7, Introduction to Metabolism 7	7-4	

Metabolic Pathways Common themes in metabolism: Chem 352, Lecture 7, Introduction to Metabolism 8	8-1	
Metabolic Pathways Common themes in metabolism: Organisms and cells interact with their environment. The activities of cells must be geared to the availability of energy. Organisms grow and reproduce when the supply of energy from the environment is plentiful. When the supply of energy from the environment is limited, energy demands can be temporarily met by using internal stores or by slowing metabolic rates as in hibernation, sporulation, or seed formation. If the shortage is prolonged, organisms die.	8-2	
Metabolic Pathways Common themes in metabolism: Chem 352, Lecture 7, Introduction to Nutribulium 9	9-1	
Metabolic Pathways Common themes in metabolism: • The cells of organisms are not static assemblies of molecules. Many cell components are continually synthesized and degraded, that is, they undergo turnover, even though their concentrations may remain virtually constant. The concentrations of other compounds change in response to changes in external or internal conditions.	9-2	
	9-3	

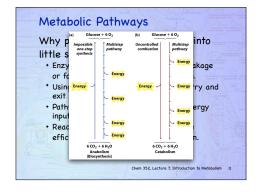
Metabolic Pathways Common themes in metabolism: • The cells of organisms are not static assemblies of molecules. Many cell components are continually synthesized and degraded, that is, they undergo turnover, even though their concentrations may remain virtually constant. The concentrations of other compounds change in response to changes in external or internal conditions.	9-4	
Metabolic Pathways The enzymes arrange the metabolites into pathways. A + B	10-1	
Metabolic Pathways The enzymes arrange the metabolites 3-Phosphoglycerate A 3-Phosphohydroxypyruvate 3-Phosphoserine Linear Pathway Serine n to Metabolism 10	10-2	
Metabolic Pathways The enzymes arrange the metabolites into pathways. A + B	10-3	
Metabolic Pathways The enzymes arrange the metabolites acetyl CoA Oxalo- acetate CoA Oxalo- CoA Oxalo- CoA CoA CoA CoA CoA CoA CoA Co	10-4	

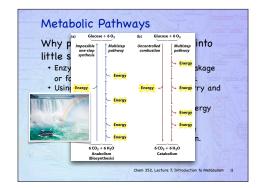
The	enzyme	s arrar	nge the	metabol	ites
into	pathwa	ys.			
	A +	В —	- c	+ D	
		В	С		
		A	1 D		

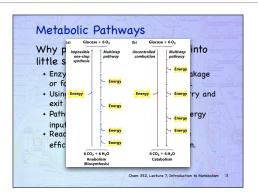
10-7

Metabolic Pathways

Why pathways are broken down into little steps.


• Enzyme specificity allows only for breakage or formation of a few bonds at a time.


• Using pathways allows for multiple entry and exit points for metabolites.


• Pathways allow for finer control of energy input and output.

• Reactions are thermodynamically more efficient if carried out near equilibrium.

11-1

11-4

Metabolic Pathways

Why pathways are broken down into little steps.

• Enzyme specificity allows only for breakage or formation of a few bonds at a time.

• Using pathways allows for multiple entry and exit points for metabolites.

• Pathways allow for finer control of energy input and output.

• Reactions are thermodynamically more efficient if carried out near equilibrium.

11-5

Metabolic Pathways

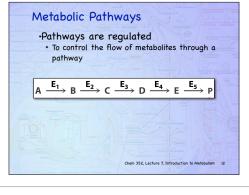
Pathways are regulated

To control the flow of metabolites through a pathway

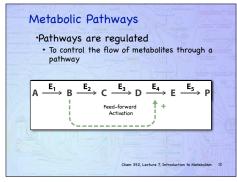
A E₁ B E₂ C E₃ D E₄ E E₅ P

12-1

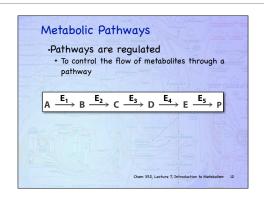
Metabolic Pathways

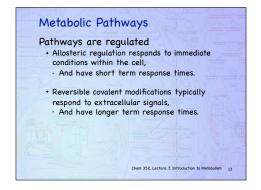

-Pathways are regulated

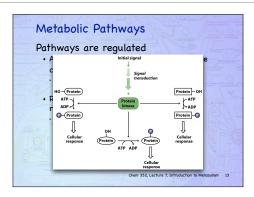
- To control the flow of metabolites through a pathway


A E₁ B E₂ C E₃ D E₄ E E₅ P

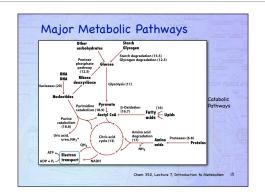
Feedback Inhibition

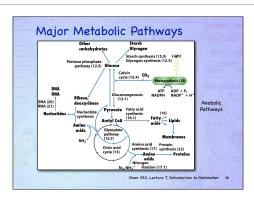

Comm 352, Lecture 7, Introduction to Metabolism 12





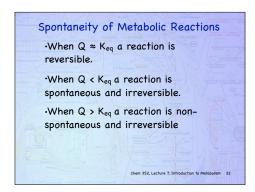

12-5		





3-2	0	
J-2	2	

Metabolic Pathways Metabolic pathways represent the frontline for evolution. Genetic changes affect enzyme activities, which in turn, affect the flow of material through metabolic pathways.

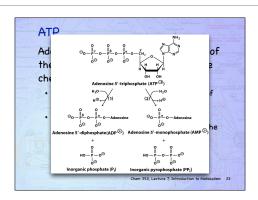


	any organism ated through		
Golgi apparatus P (end-on view) sorting and secretion of some process Mitto-hondria: doi: add vylo, electron transport ATP synthesis, fatty acid degradation (processing) lipids, etc. Ipids. etc. Ipids. etc.			Cytosol: fatty and synthesis, obscionations of the security obscionation of the security obscionation of the security Nucleus: nucleia and synthesis - Endoplasmic reticulum: dali newy of proteins and synthesis of ligits for membranes Nuclear membranes

·The	spontane	eity (f	avorabi	ility) of	a
	mical read			ana l	
fror	m its Gibb	s Free	e Energ	y (∆G)	
	$\Delta G = \Delta G'$	A	[react	tants])	

19 Spontaneity of Metabolic Reactions Clicker Question: A chemical reaction is spontaneous when the the ΔG is A. Equal to 0 B. Greater than 0 C. Less than 0 D. None of the above Chem 352, Lecture 7, Introduction to I 20-1 Spontaneity of Metabolic Reactions Under conditions of constant temperature and pressure there are two contributions to the free energy change • Enthalpy, H • Entropy, S $\Delta G = \Delta H - T \Delta S$ 20-2 Spontaneity of Metabolic Reactions Under conditions of constant temperature and pressure there are two contributions to the free energy change • Enthalpy, H + Entropy, S $\Delta G = \Delta H - T \Delta S$ 20-3 Spontaneity of Metabolic Reactions Under conditions of constant temperature and pressure there are two contributions to the free energy change • Enthalpy, H • Entropy, S $\Delta G = \Delta H - T \Delta S$ for the system 21 Spontaneity of Metabolic Reactions ·The actual conditions within the cell must be considered when determining a ΔG value. $A + B \longrightarrow C + D$ $\Delta G = \Delta G^{o'} + RT \ln \left(\frac{[C][D]}{[A][B]} \right)$

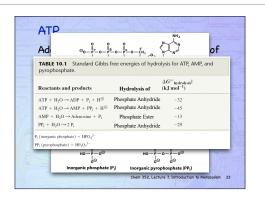
 $Q = \left(\frac{[C][D]}{[A][B]}\right)$ is the mass action ratio

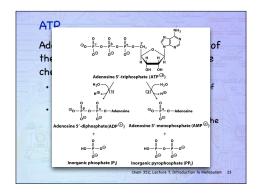

ATP

Adenosine Triphosphate (ATP) is one of the molecules used by a cell to store chemical energy.

• This energy is released by the hydrolysis of the two phosphate anhydride bonds.

• ATP is one of the ways that the energy released from catabolism is used to meet the energy requirements of anabolism


23-1

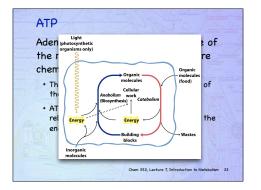


23-2

Ad & \(\begin{array}{cccccccccccccccccccccccccccccccccccc	of
TABLE 10.1 Standard Gibbs fre pyrophosphate.	e energies of hydrolysis for ATP, AMP, and
Reactants and products	$\Delta G^{\circ}{}'_{ m hydrolysis}{}^{ m l} \ ({ m kJ\ mol}^{-1})$
$ATP + H_2O \rightarrow ADP + P_i + H^{\oplus}$	-32
$ATP + H_2O \rightarrow AMP + PP_i + H^{\scriptsize \textcircled{\tiny +}}$	-45
$AMP + H_2O \rightarrow Adenosine + P_i$	-13
$\mathrm{PP_i} + \mathrm{H_2O} \mathop{\longrightarrow} 2 \; \mathrm{P_i}$	-29
(inorganic phosphate) = HPO ₄ ²⁻	
P _i (pyrophosphate) = HP ₂ O ₂ ³⁻	
H0-P-0 [©]	HO - P - O - P - O [©]
	00 00

23-3

ATP


Adenosine Triphosphate (ATP) is one of the molecules used by a cell to store chemical energy.

- + This energy is released by the hydrolysis of the two phosphate anhydride bonds.
- ATP is one of the ways that the energy released from catabolism is used to meet the energy requirements of anabolism

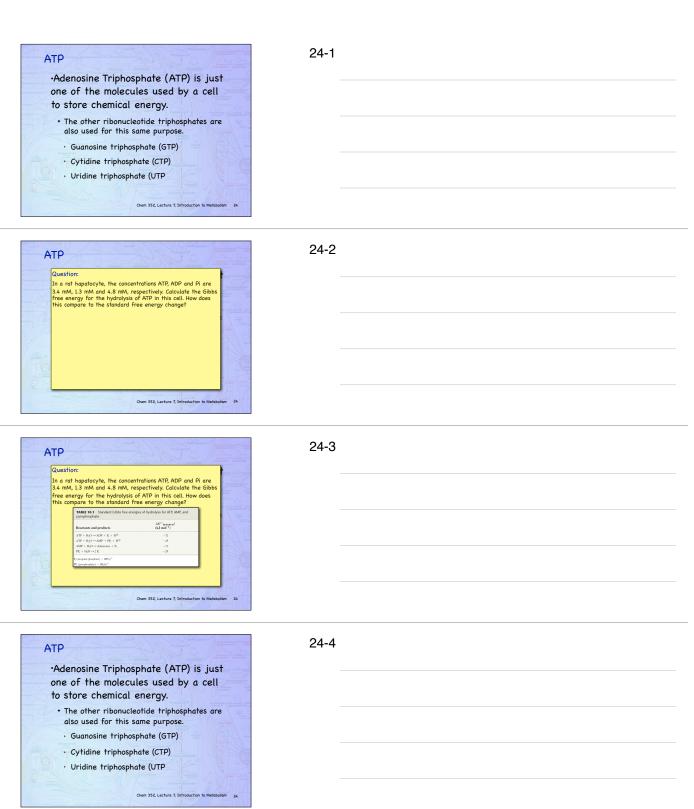
Chem 352, Lecture 7, Introduction to Metabolism 2

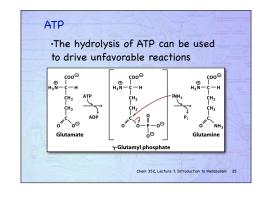
23-6

23-7

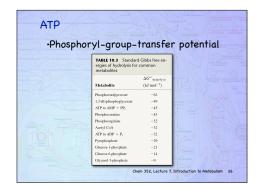
Aden (photosynthetic organism only)

The recent of the rec

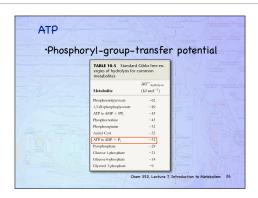

23-8

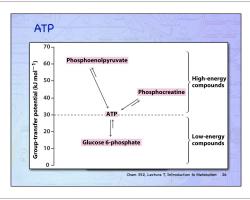

ATP

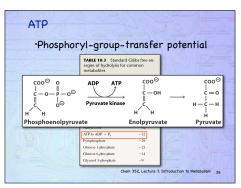
Adenosine Triphosphate (ATP) is one of the molecules used by a cell to store chemical energy.


- + This energy is released by the hydrolysis of the two phosphate anhydride bonds.
- ATP is one of the ways that the energy released from catabolism is used to meet the energy requirements of anabolism

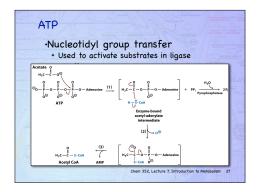
Chem 352, Lecture 7, Introduction to Metabolism 2







26-3



26-4

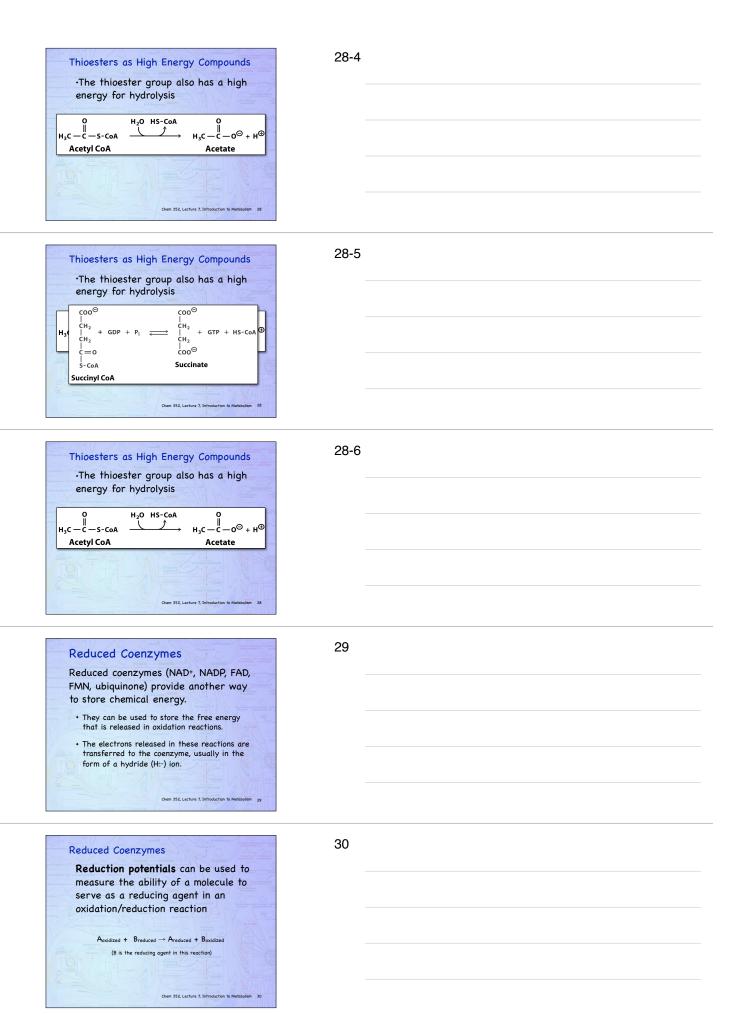
Nucleotidyl group transfer

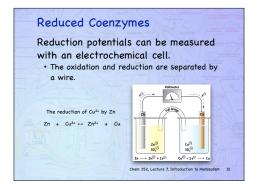
• Used to activate substrates in ligase reactions

Chem 352 Lecture 7. Infroduction to Melabolism 27

·Nucleotic	lyl group	transf	er	
+ Used to	activate su			
reaction	6-A-Glucor		7111/10	

·The thioe	as High Energy Compounds ster group also has a high hydrolysis
O H ₃ C — C — S-CoA Acetyl CoA	$\begin{array}{c} \text{H}_2\text{O} \text{HS-CoA} & \text{O} \\ & \stackrel{\parallel}{\longrightarrow} & \text{H}_3\text{C} - \text{C} - \text{O}^{\Theta} + \text{H}^{\textcircled{E}} \\ & \text{Acetate} \end{array}$
Trends 12	Discourse of the second of the
	Chem 352, Lecture 7, Introduction to Metabolism 28

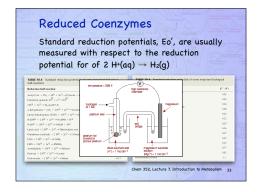

28-1				


·The thio	ester arou	n also k	as a high
energy f	TABLE 10.3 Standar ergies of hydrolysis for metabolites	d Gibbs free en- common	Morratgh u-constitutes D-marcatan
Oursell Constitution 1114		$\Delta G^{\circ\prime}_{ m hydrolysis}$	F1/// Dan 5
0	Metabolite	(kJ mol ⁻¹)	0
Ĭ	Phosphoenolpyruvate	-62	l i
H₃C — Ü —S-CoA	1,3-Bisphosphoglycerate	-49	_с"_о⊝ + н⊕
1 -	ATP to AMP + PP;	-45	
Acetyl CoA	Phosphocreatine	-43	Acetate
CHONGING TO UNU	Phosphoarginine	-32	
	Acetyl CoA	-32	
	ATP to ADP + P _i	-32	raldetryde
	Pyrophosphate	-29	Haby San Co
	Glucose 1-phosphate	-21	NADIO A PERSONALISM
	Glucose 6-phosphate	-14	V, 18/117
	Glycerol 3-phosphate	-9	Glycorate / July

00.0	
28-2	

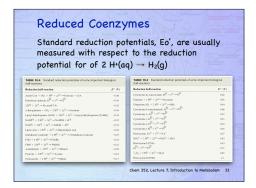
·The thio	ester arou	p also h	as a high
	TABLE 10.3 Standard ergies of hydrolysis for metabolites		ADP Nervetoping
OLI CARROW HIS ASSESSMENT THE		$\Delta G^{\circ}_{\text{hydrolysis}}$	11 / 15 m v
0	Metabolite	(kJ mol ⁻¹)	0
Ĭ	Phosphoenolpyruvate	-62	l i
H ₃ C — Ü — S-CoA		-49	-c-o⊖ + H⊕ Acetate
/I -	ATP to AMP + PP;	-45	
Acetyl CoA	Phosphocreatine	-43	Acetate
CAUGIST STORE	Phosphoarginine	-32	
	Acetyl CoA	-32	
	ATP to ADP + P _i	-32	raldehyde
	Pyrophosphate	-29	LINDY AND
	Glucose 1-phosphate	-21	MADE A STREET
	Glucose 6-phosphate	-14	V, 13/1 /
	Glycerol 3-phosphate	-9	Chycorate high high

28-3		

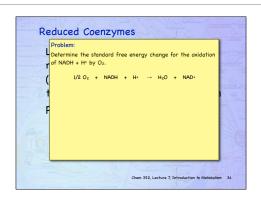


The	change in the reduction potential
	an oxidation/reduction reaction
177	The second secon
	o') can be used to determine the
cha	nge in Free energy for the
rea	ction.
	$\Delta E^{o'} = E^{o'}_{ m electron acceptor} - E^{o'}_{ m electron donor}$
	$\Delta G^{o'} = -n \mathscr{F} \Delta E^{o'}$
	n = number of electrons transferred
	\mathcal{F} = Faraday's constant (96,586 $JV^{-1}mol^{-1}$
	Chem 352, Lecture 7, Introduction to Metabolism

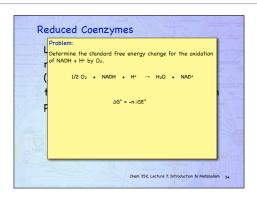
32

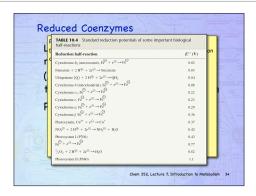

Reduced Coe	IZY	illes	
Standard reduction measured with res	pect	t to the reduction	
potential for of 2 TABLE 16.4 Sproduct reduction potentials of some important biolic half-outdoors	my -	TABLE 10.4 Standard reduction potentials of som half-reactions	to important biological
Reduction half-reaction	$E^{\infty}(V)$	Reduction half-reaction	E. (V
Accept CoA + CO ₂ + H^{2l} + $2e^{(l)}$ \rightarrow Pyrovate + CoA. Formation or insoch H^{2l} + $e^{(l)}$ \rightarrow H^{2l}	-0.68	Cylindrome by determinant, $\mathbb{P}_{k}^{(2)} + x^{(2)} \rightarrow \mathbb{F}_{k}^{(2)}$ Formula: $+ 2 \mathbb{H}^{(k)} + 2 \mathbb{V}^{(k)} \rightarrow \text{Societies}$	0.00
2 H ² + 2r ² - H-04 HTTD	-0.42	Ubiquinose $(Q) + 2H^Q + 2r^Q \rightarrow QH_2$	0.84
a-Ketophianie + CO ₂ + $2H^{\oplus}$ + $3e^{\Theta}$ \rightarrow becarde	-0.38	Cytochronic Ir contractionatrials, Te ^O + e ^O → Te ^O	0.06
Lipsyl deltydrogenius (FAD) + 2 H $^{\oplus}$ + $3e^{\Box}$ \rightarrow Lipsyl deltydrogenius (FADE)	-634	Cytochronic r ₂ , Fe ⁽²⁾ + r ⁽²⁾ \rightarrow Fe ⁽³⁾	0.22
$NADF^{(j)} + 2H^{(j)} + 2r^{(j)} \rightarrow NADFH + H^{(j)}$	-632	Cynchrono c, R ^D + e ^Q → R ^D	0.23
$NAD^{\oplus} + 2H^{\oplus} + 2e^{\ominus} \rightarrow NADH + H^{\oplus}$	-0.32	Cynchrone a, R ^O + s ^O → R ^O	0.29
Lipsic acid + 2 H ^(l) + 2e ^(l) → Dihydrolipsic acid	-0.29	Cytochrono J. No. + 4° - + 1°	0.36
Glatathione (onliked) + 2 $H^{(j)}$ + $2e^{(j)} \rightarrow 2$ Glotathione (reduced)	-0.23	Phenopania, $Or^{2^n} + y^0 \rightarrow Oy^*$ $NOO^2 + 2H^2 + 3y^0 \rightarrow NOO^2 + HoO$	0.37
$FAD + 2 H^{(j)} + 2e^{(j)} \rightarrow FADH_j$	-622	NO/F + 2 H ² + 3/F → NO/F + H ₂ O Hatavales (JP30)	0.42
$PMN + 2H^{2l} + 2r^{2l} \rightarrow PMNH_{2}$	-622	Participates I (2700) Ø + pl → pl	0.43
Accelédatyde + $2 \text{ H}^{(0)} + 2e^{(0)} \Rightarrow \text{Diffused}$	-0.20		
Person a 200 a 3/0 or Lunar	-0.18	¹ / ₂ O ₂ + 2H ^D + 3e ^D → HyO Partnersion II (P60)	0.02
Pytronic = 2 ft ⁻¹ + 2r ⁻¹ = Licinic Distribution + 2 ft ⁻¹ + 2r ⁻¹ = Malair			

33-1

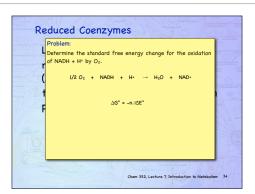


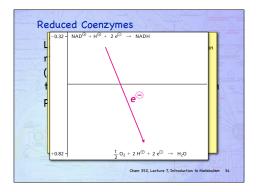
33-2

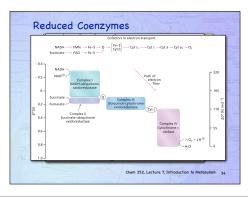

Standard red	duction pote	entials, Eo', ar	re usually
measured wi	th respect	to the reduct	tion
			1011
potential for	of 2 H+(aq	$) \rightarrow H_2(q)$	
Company and Vagoren - mile	fraction-15 True	The state of the s	
TABLE 10.4 Standard reduction potentials of use	no important biological	TABLE 10.4 Standard reduction reduct	ah of some important biological
half-reactions	emperature = 298 K	-V-	
Reduction half-reaction		ngh resistence vOltretor	E. (V)
Accept CoA + CO ₂ + H^{2} + $2e^{(2)}$ \rightarrow Pyrmone + 0	1 2	2.37 V	0.02
Femalesia opiach, P ^D + e ^O → P ^D	m ·	menesum	0.65
$2H^{\otimes} + 2e^{\otimes} \rightarrow H_2(x;pHT,0)$ as Ketophismie + CO ₁ + $2H^{\otimes} + 3e^{\otimes} \rightarrow becker$	titoger	majorator o	0.00
Licent debulgenous (FAD) + 2 H [®] + 3e [©] → L	_		022
NATURE - NEW - NO - NATURE - LEE		* .))	0.23
NADE + 118 + VC+NADE + 118		sat	0.29
Limit and + 2 H [®] + 2r [®] → Ditestrologic soil		tatige — —	0.36
	un tol	0	0.37
EATH A THREE A TAR AND ADDRESS.	ndin		0.42
FMN + 2 H ² + 2y ² → FMNH ₂	us plathum /	4	0.43
Accelédate de $+ 2 H^{(0)} + 3e^{(0)} \Rightarrow$ Difessol	cliute sul phuric east	magnesium sulphate schloor	0.77
Pyravote + 2 H [®] + 2e [®] → Locuse	[H*] = 1 mol dm ⁻³	Mg ²] = 1 moldm ²	0.82
Distriction + 2 M ⁽²⁾ + 2e ⁽²⁾ -+ Malak			1.1

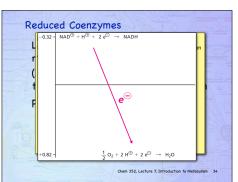

Like ΔG , the observed change in the
reduction potential for a reaction,
(ΔE) , can be determined relative to
the change in the standard reduction potential, ($\Delta E^{o'}$):
PT ([A][B])
$\Delta E = \Delta E^{o'} - \frac{RT}{n \mathcal{F}} \ln \left(\frac{\left[A_{ox} \right] \left[B_{red} \right]}{\left[A_{red} \right] \left[B_{ox} \right]} \right)$

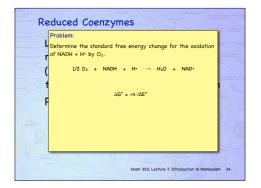
34-2




34-3

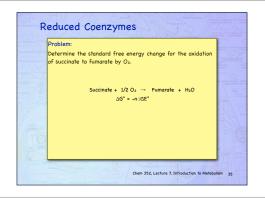


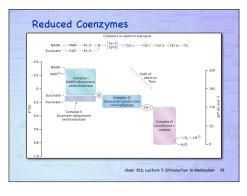


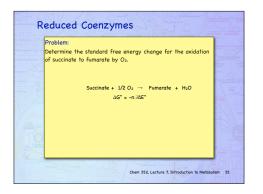


34-7

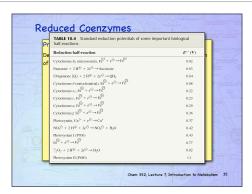
34-8



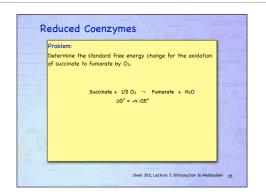

Reduced Coenzymes
Like ΔG , the observed change in the
reduction potential for a reaction,
(ΔE) , can be determined relative to
the change in the standard reduction potential, (ΔE°):
$\Delta E = \Delta E^{o'} - \frac{RT}{n \mathcal{F}} \ln \left(\frac{\left[A_{ox} \right] \left[B_{nod} \right]}{\left[A_{nod} \right] \left[B_{ox} \right]} \right)$
Chem 352, Lecture 7. Introduction to Metabolism 34


Problem:		
Determine t of succinate	he standard free energy to fumarate by O ₂ .	y change for the oxida
	Succinate + 1/2 O ₂ -	→ Fumarate + H2O

35-1



35-2



35-5		

7	TABLE 10.4 Standard reduction potentials of some important biolo half-reactions	gical
)e	Reduction half-reaction	$E^{\circ r}(V)$
f	Acetyl CoA + CO ₂ + H ^{\oplus} + 2 e ^{\ominus} \rightarrow Pyruvute + CoA	-0.48
ı	Ferrodoxin (spinach), $F_e^{\bigcirc} + e^{\bigcirc} \rightarrow F_e^{\bigcirc}$	-0.43
ı	$2 \text{ H}^{\oplus} + 2e^{\ominus} \rightarrow \text{H}_2 \text{ (at pH 7.0)}$	-0.42
ı	α -Ketoglutarate + CO ₂ + 2 H [⊕] + 2 e [⊕] → Isocitrate	-0.38
ı	Lipoyl dehydrogenase (FAD) + 2 H $^{\oplus}$ + 2 e^{\ominus} \rightarrow Lipoyl dehydrogenase (FADH ₂)	-0.34
ı	$NADP^{\oplus} + 2 H^{\oplus} + 2e^{\ominus} \rightarrow NADPH + H^{\oplus}$	-0.32
ı	$NAD^{\oplus} + 2 H^{\oplus} + 2e^{\ominus} \rightarrow NADH + H^{\oplus}$	-0.32
	Lipoic acid + $2 H^{\oplus} + 2e^{\ominus} \rightarrow$ Dihydrotipoic acid	-0.29
ı	Glutathione (oxidized) + 2 H^{\oplus} + $2e^{\ominus} \rightarrow$ 2 Glutathione (reduced)	-0.23
ı	$FAD + 2 H^{\oplus} + 2e^{\ominus} \rightarrow FADH_2$	-0.22
ı	$FMN + 2 H^{\oplus} + 2e^{\ominus} \rightarrow FMNH_2$	-0.22
	Acetaldehyde + 2 H^{\oplus} + $2e^{\bigcirc} \rightarrow$ Ethanol	-0.20
ı	Pyravate + $2 H^{\oplus}$ + $2e^{\ominus} \rightarrow Lactate$	-0.18
ı	Oxalescetate + $2 H^{\oplus} + 2e^{\ominus} \rightarrow Malate$	-0.17

35-6		

35-7	7	

$1/2 O_2 + NADH + H \rightarrow H_2O + NAD$ $ADP + P_1 \rightarrow ATP + H_2O$ $\Delta E = \Delta E^{o'} - \frac{RT}{n \mathcal{F}} \ln \left(\frac{A_{oo}}{A_{red}} \frac{B_{red}}{B_{or}} \right)$	Re	duced Coenzymes
$\Delta E = \Delta E^{o'} - \frac{RT}{n \mathcal{F}} \ln \left(\frac{[A_{ov}][B_{ned}]}{[A_{oed}][B_{oe}]} \right)$		
$\Delta E = \Delta E^{o'} - \frac{RT}{n \mathcal{F}} \ln \left(\frac{[A_{ov}][B_{ned}]}{[A_{red}][B_{ov}]} \right)$		1/2 O ₂ + NADH + H+ -> H ₂ O + NAD+
		ADP + $P_1 \rightarrow ATP + H_2O$
		$\Delta E = \Delta E^{o'} - \frac{RT}{n \mathscr{F}} \ln \left(\frac{\left[A_{oc} \right] \left[B_{oe} \right]}{\left[A_{oe} \right] \left[B_{oc} \right]} \right)$
Chem 352, Lecture 7, Introduction to Metabolism 36		

36		

Next Up	37
Lecture 8 - Carbohydrate Metabolism	
+ Part I: Glycolysis	
The state of the s	
Annual Control of the	
Chem 352, Lecture 7, Introduction to Metabolism 37	