Chem 352 – Lecture 10 Lipid, Amino Acid, and Nucleotide Metabolism Part I: Lipid Metabolism

Introduction

In Lecture 10 we will add some of the peripheral pathways in metabolism that lead to synthesis and degradation three important classes of biomolecules:

- Lipids
- Amino acids
- Nucleotides

Chem 352, Lecture 10, Part I: Lipid Metabolism 2

2-1

In	Other carbohydrates	Starch "Glycogen	he
per	Pentose phosphate pathway (12.5) Glo	Starch synthesis (15.5) Lig Glycogen synthesis (12.5)	
tha	/ /	Calvin cycle (15.4) CO ₂ Photosynthesis	on
thr	DNA	ATP ADI	P + Pi
biopna (2	RNA Ribose,	Gluconeogenesis NADPH NAI	OP+ + H+
, RNA (2	Nucleotide Pyr	ruvate Fatty acid synthesis (16) (16.1) Fatty	
• 6	Amino ← Acet	ryl CoA acids Lipic	ls
• 1	pat (13.	roxylate thway (.7) Membro	ines
	athways Citr	ic acid synthesis (17) synthesis	
	(Amino Pr acids Nitrogen	oteins

2-2

Introduction

In Lecture 10 we will add some of the peripheral pathways in metabolism that lead to synthesis and degradation three important classes of biomolecules:

• Lipids

- Amino acids
- Nucleotides

2-3

-4			

Introduction

In Lecture 10 we will add some of the peripheral pathways in metabolism that lead to synthesis and degradation three important classes of biomolecules:

- Lipids
- Amino acids
- Nucleotides

Chem 352, Lecture 10, Part I: Lipid Metabolism 2

3

Introduction

Lipids play many important cellular roles

- Membrane components (phospholipids, et al. and cholesterol)
- Fuels (Triacylglycerides)
- Meet long term energy needs in mammals
- Regulators (steroids, eicosanoids)

We will focus on just a couple of key metabolic pathways.

Chem 352, Lecture 10, Part I: Lipid Metabolism 3

Introduction

We will focus on the following sections from Chapter 16

- 16.1: Fatty Acid Synthesis
- 16.6: Synthesis of Cholesterol
- 16.7: Fatty Acid Oxidation
- 16.9: Lipid Metabolism is Regulated by Hormones in Mammals
- 16.10: Absorption and Mobilization of Fuel Lipids in Mammals
- 16.11: Ketone Bodies Are Fuel Molecules

4	
-	

Fatty Acid Synthesis

Fatty acids are synthesized by the repetitive addition of 2 carbon units to a growing chain.

- Acetyl-CoA is the source of the 2 carbon units.
- The Acetyl groups are activated by carboxylating them to Malonyl groups

Chem 352, Lecture 10, Part I: Lipid Metabolism 5

5-1

Fatty Acid Synthesis

Fatty acids are synthesized by the repetitive addition of 2 carbon units to a growing chain.

- Acetyl-CoA is the source of the 2 carbon units.
- The Acetyl groups are activated by carboxylating them to Malonyl groups

Chem 352, Lecture 10, Part I: Lipid Metabolism 5

5-2

Fatty Acid Synthesis

5-3

н	Fatty Acids Fatty acids Mechanism is similar to that for pyruvate carboxylase	ore sv		Dv the Oxaloacetat coo c=0 H® cH2 coo	e A
	O + HN1 NH Bicarbonate Biotin	ATP	© Carboxybiotin	H! nz	NH S Enz
		o ⊝o Ma	CH ₂ —COO	e 10, Part I: Lipid Mete	abolism 5

Fatty Acid Synth	esis
------------------	------

Fatty acids are synthesized by the repetitive addition of 2 carbon units to a growing chain.

- Acetyl-CoA is the source of the 2 carbon units.
- The Acetyl groups are activated by carboxylating them to Malonyl groups

Chem 352, Lecture 10, Part I: Lipid Metabolism 5

_	_
h .	
J	- ~

Fatty Acid Synthesis

In eukaryotes, both the growing chain, the acetyl group, and the malonyl group are attached to an acyl carrier protein (ACP)

6-1

Fatty Acid Synthesis

In eukaryotes, both the growing chain, the acetyl group, and the malonyl group are attached to an acyl carrier

6-2

Fatty Acid Synthesis

In eukaryotes, both the growing chain, the acetyl group, and the malonyl group are attached to an acyl carrier protein (ACP)

7-1

Fatty Acid Synthesis

The ligation of an acetyl group to the growing chain is coupled to the decarboxylation of the malonyl group.

7-2

Fatty Acid Synthesis

The ligation of an acetyl group to the growing chain is coupled to the decarboxylation of the malonyl group.

7-3

Fatty Acid Synthesis

The reduction/dehydration/reduction steps similar to a series of reactions found in the citric acid cycle, but in reverse order.

$$\begin{array}{c} \mathsf{O} \\ \| \mathsf{R}_1 - \mathsf{C} - \mathsf{C} \mathsf{H}_2 - \mathsf{R}_2 & \longrightarrow \mathsf{R}_1 - \mathsf{C} - \mathsf{C} \mathsf{H}_2 - \mathsf{R}_2 & \longrightarrow \mathsf{R}_1 - \mathsf{C} = \mathsf{C} - \mathsf{R}_2 & \longrightarrow \mathsf{R}_1 - \mathsf{C} \mathsf{H}_2 - \mathsf{R}_2 \\ \mathsf{H} \\ \mathsf{Reduction} & \mathsf{Dehydration} & \mathsf{Reduction} \\ \end{array}$$

Chem 352, Lecture 10, Part I: Lipid Metabolism

8-2

Fatty Acid Synthesis

The reduction/dehydration/reduction steps similar to a series of reactions found in the citric acid cycle, but in reverse order.

Chem 352, Lecture 10, Part I: Lipid Metabolism 8

8-3

Fatty Acid Synthesis

The elongation continues until reaching 16 carbons (palmitic acid).

• The palmitoyl group is cleaved from the ACP by a thioesterase.

Palmitoyl-ACP
$$\xrightarrow{\text{H}_2\text{O}}$$
 Palmitate (C₁₆) + HS-ACP

9-1

Fatty Acid Synthesis

The elongation continues until reaching 16 carbons (palmitic acid).

• The palmitoyl group is cleaved from the ACP by a thioesterase.

Palmitoyl-ACP
$$\xrightarrow{\text{H}_2\text{O}}$$
 Palmitate (C₁₆) + HS-ACP

Acetyl CoA + 7 Malonyl CoA + 14 NADPH + 14 H $^{\oplus}$ \longrightarrow

Palmitate+ 7 CO₂ + 14 NADP[⊕] + 8 HS-CoA + 6 H₂O

Chem 352, Lecture 10, Part I: Lipid Metabolism 9

Chem 352, Lecture 10, Part I: Lipid Metabolism

The elongation continues until reaching 16 carbons (palmitic acid).

• The palmitoyl group is cleaved from the ACP by a thioesterase.

Palmitoyl-ACP
$$\xrightarrow{\text{H}_2\text{O}}$$
 Palmitate (C₁₆) + HS-ACP

Chem 352, Lecture 10, Part I: Lipid Metabolism 9

9-3

Fatty Acid Synthesis

In eukaryotes, all of the active sites for fatty acid synthesis are located on

10-1

Fatty Acid Synthesis

In eukaryotes, all of the active sites

10-2

Fatty Acid Synthesis

In eukaryotes, all of the active sites for fatty acid synthesis are located on a single polypeptide.

Fatty Acid Synthesis In eukaryotes, all of the active sites for fatty spiral of the active sites ated on a single AT - octyl transferase MT - malarny transferase CE - dehydrotase RR - envir feductase RR - shebacoyl reductase RF - thioesterase

10-5

Fatty Acid Synthesis	
In eukaryotes, all of the active sites	
for f @ @ d on	
a sin	
AT - acetyl transfer AT - acetyl transfer CE - condensing ency DH - debydratise ER - encyl reductate KR - S-kebool redu TE - thioesterase CGA Malloy ISI	
Chem 35Z, Lecture 10, Part T: Lipid Metabolism	10

10-6

	Fatty Acid Synthesis				
	In eukaryotes, all of the active sites for fatty acid synthesis are located on a single polypeptide.				
MT CE - DH - ER - KR -	- acetyl transferase - malonyl transferase - malonyl transferase - condersing enzyme - dehydratae - s->-ketocyl reductase - sketocyl re				

Fatty	Acid	Syn	thesis
--------------	------	-----	--------

After palmitic acid is synthesized it is elongated and desaturated to form other fatty acids

Chem 352, Lecture 10, Part I: Lipid Metabolism 11

11

Fatty Acid Synthesis

In eukaryotes, the acetyl-CoA for fatty acid synthesis in the cytosol comes from the mitochonrial matrix.

 The citrate/pyruvate shuttle is one of the systems used to move acetyl-CoA out into the cytosol.

Chem 352, Lecture 10, Part I: Lipid Metabolism 12

12-1

Fatty Acid Synthesis

12-2

Fatty Acid Synthesis

In eukaryotes, the acetyl-CoA for fatty acid synthesis in the cytosol comes from the mitochonrial matrix.

 The citrate/pyruvate shuttle is one of the systems used to move acetyl-CoA out into the cytosol. 12-3

Cholesterols is used to modulate the physical properties of membranes in animals

• It is also the starting point for the synthesis of all other steroid molecules

_	\sim

Cholesterol Synthesis

Acetate to Isoprenoid

Chem 352, Lecture 10, Part I: Lipid Metabolism 14

Chem 352, Lecture 10, Part I: Lipid Metabolis

14-1

Cholesterol Synth	asis
Cholesterol Syllin	Acetyl-CoA > 3-hydroxy-3-methylgiutaryl-CoA
Acetate to Isoprenoic	Thiolase (HMG-CoA) HMG-CoA Synthese HMG-CoA reductase
	Acetoacetyl-CoA Mevalonic acid
H ₁ C-C-S-COA H ₂ C-C-S-COA	Mevalonate kinase
Acetyl CoA Acetyl CoA	Mevalonate-5-phosphate Phosphornevalonate kinase
Acetoacetyl CoA thiolase H	V
CoA-S-C-CH1 H ₂ C-C-CH2-C-S-CoA H	Isopentenyi-PP Mevalonate-5-pyrophosphate
Acetyl CoA Acetoacetyl CoA	Dimethylallyl-PP - Isopentenyl-5-pyrophosphate (PP)
H ₂ O HMG - CoA synthase	Famesyl-PP synthase BISPHOSPHONATES
↓ H* + HS-CoA OH O	Geranyl PP
©00C − CH ₂ − C − CH ₂ − C − S − CoA	Famesyl-PP synthese BISPHOSPHONATES
CH ₃ 3-Hydroxy-3-methylglutaryl CoA (HMG CoA)	Geranylgeranyl-PP Geranylgeranyl- / Squalene synthase
HMG-CoA 2 NADP⊕	PP synthase Squalene Synthase Squalene Squalene
HS-COA	Squatene monoxygenase 2,3 oxidosqualene
OH ATP ADP OOC − CH2− C − CH2− CH2− OH → ○	HEME A NADPH Squalene epoxydase
CH ₃ CH ₂ Ch ₂ Ch ₃ Mevalonate kinase	PRENYLATED DOLICHOL Lanosterol PROTEINS UBIQUINON 19 reactions

14-2

Cholesterol Synthesis

Acetate to Isoprenoid

15

Cholesterol Synthesis

Isoprenoid to Squalene

Chem 352, Lecture 10, Part I: Lipid Metabolism 16

16-1

16-2

Chole	
Isopre	
M.C. Dimestrykallyl diphosphate 19. H.C. CH	
H ₃ C = CH I Isopentenyl diphosphate	
President australes NO CONCO Bopentery)	
displayed (C ₁) Geanyl displayed (C ₁) Group to antiferate	
Fameyi	
djohosphate (C ₁ 3) Squalere syrillare (C ₁ 3) Squalere syrillare	;
279, — Mag ©	
Squalene (C ₃₀)	: Lipid Metabolism 16

Cholesterol Synthesis

Squalene to Cholesterol

17

18

Fatty acid oxidation

The catabolism of fatty acids takes place in the mitochondria

• The fatty acid must first be activated to an acyl-CoA

Chem 352, Lecture 10, Part I: Lipid Metabolism 19

19-1

Fatty acid oxidation

The catabolism of fatty acids takes

19-2

Fatty acid oxidation

The catabolism of fatty acids takes

Fatty acid oxidation

The catabolism of fatty acids takes

19-4

Fatty acid oxidation

The catabolism of fatty acids takes

19-5

Fatty	acid	oxidation
-------	------	-----------

The catabolism of fatty acids takes

19-6

Fatty acid oxidation

The catabolism of fatty acids takes

Fatty acid oxidation

The catabolism of fatty acids takes

19-8

Fatty acid oxidation

The catabolism of fatty acids takes

19-9

Fatty acid oxidation

The catabolism of fatty acids takes place in the mitochondria

• The fatty acid must first be activated to an acyl-CoA

Chem 352, Lecture 10, Part I: Lipid Metabolism 19

19-10

Fatty acid oxidation

In many respects it is the reverse of fatty acid synthesis.

Chem 352, Lecture 10, Part I: Lipid Metabolism 20

20

Fatty acid oxidation

In many respects it is the reverse of

Fatty acid synthesis	β-oxidation		
Acyl ACP (C _{n+2}) NADP [⊕] Reduction	Acyl CoA (C _{n+2})	Synthesis	Oxidation
NADPH + H [⊕] ✓ Reduction trans-Δ²-Enoyl ACP (C _{n + 2})	Oxidation Q QH_2 $trans-\Delta^2$ -Enoyl CoA (C_{n+2})	Cytosol	Mitochondria
Dehydration D-3-Hydroxylacyl ACP (C _{n+2})	Hydration L-3-Hydroxylacyl CoA (C _{n + 2})	NADPH	NAD+ and Q
NADP⊕ Reduction NADPH + H⊕ Reduction 3-Ketoacyl ACP (C _{n+2})	Oxidation NAD [©] NADH + H [©] 3-Ketoacyl CoA (C _{n+2})	Acyl-ACP	Acyl-CoA
Malonyl CoA Hs-CoA + CO ₂ Condensation	Thiolysis Acetyl CoA	D-3-Hydroxy-	L-3-Hydroxy-
Acyl ACP (C _n)	Acyl CoA (C _n)		

fatty acid	l synthesis.		
Fatty acid synthesis	β -oxidation		
Acyl ACP (C_{n+2}) NADP $\bigoplus \checkmark \uparrow$	Acyl CoA (C _{n + 2}) Oxidation	Synthesis	Oxidation
NADPH + H ^{\oplus} \nearrow Reduction trans- Δ^2 -Enoyl ACP (C _{n+2})	$OXIDATION$ \rightarrow QH ₂ $trans-\Delta^2$ -Enoyl CoA (C _{n+2})	Cytosol	Mitochondria
Dehydration D-3-Hydroxylacyl ACP (C _{n+2})	Hydration L-3-Hydroxylacyl CoA (C _{n+2})	NADPH	NAD+ and Q
NADP⊕ ↑ Reduction	Oxidation NAD®	Acyl-ACP	Acyl-CoA
3-Ketoacyl ACP (C _{n+2}) Malonyl CoA Condensation Hs-CoA + CO ₂	3-Ketoacyl CoA (C _{n+2}) Thiolysis → Hs-CoA Acetyl CoA	D-3-Hydroxy-	L-3-Hydroxy-
Acyl ACP (C _n)	Acyl CoA (C _n)		
	Che	m 352, Lecture 10, Part I	: Lipid Metabolism 21

Fatty acid oxidation

Fatty acids enter the mitochondria by way of the carnitine shuttle.

Chem 352, Lecture 10, Part I: Lipid Metabolism 22

22	

ATP Generation

ATP generation of the the complete oxidation of stearic acid (18:0)

Stearoyl-CoA + 8 CoA-SH + 8 Q + 8 NAD+ \rightarrow 9 Acetyl-CoA + 8 QH2 + 8 NADH + 8 H+

Chem 352, Lecture 10, Part I: Lipid Metabolism 23

23-1		

ATP Generation

ATP generation of the the complete oxidation of stearic acid (18:0)

Stearoyl-CoA + 8 CoA-SH + 8 Q + 8 NAD $^{+}$ \rightarrow 9 Acetyl-CoA + 8 QH $_2$ + 8 NADH + 8 H $^{+}$

Source	ATP's
8 QH ₂	12
8 NADH	20
9 Acetyl-CoA	90
Activation of Stearate	-2
Total	120

23-3 ATP Generation ATP generation of the the complete oxidation of stearic acid (18:0) Stearoyl-CoA + 8 CoA-SH Enthusid + 8 G 8 QH₂ + 8 NADH + 8 H* Fatty acid ATP Acyl-CoA synthatase →AMP + PP_i Acyl CoA Activation of Stearate 120 Total Chem 352, Lecture 10, Part I: Lipid Metabolism 23 23-4 ATP Generation ATP generation of the the complete oxidation of stearic acid (18:0) Stearoyl-CoA + 8 CoA-SH + 8 Q + 8 NAD $^+$ \rightarrow 9 Acetyl-CoA + 8 QH $_2$ + 8 NADH + 8 H $^+$ ATP's Source 8 QH₂ 12 8 NADH 20 9 Acetyl-CoA 90 Activation of Stearate -2 Total 120 Chem 352, Lecture 10, Part I: Lipid Metabolism 23 24-1 ATP Generation ATP generation of the the complete oxidation of steric acid (18:0) • Compared to Glucose (on a per C basis) Chem 352, Lecture 10, Part I: Lipid Metabolism 24 24-2 ATP Generation ATP generation of the the complete oxidation of steric acid (18:0) • Compared to Glucose (on a per C basis) ATP's Source 3 x 32 = 96 3 x Glucose Stearate 120

ATP Generation	25-1
ATP generation of the the complete oxidation of stearic acid (18:0) • Compared to Fatty Acid Synthesis	
Chem 352, Lecture 10, Part T: Lipid Metabolism 25	
ATP Generation ATP generation of the the complete oxidation of stearic acid (18:0) • Compared to Fatty Acid Synthesis Source ATP's 8 Acetyl-CoA 8 8 Malonyl-CoA 8 8 Rounds 16 NADPH 40 9 Acetyl-CoA 9 x 17 = 153 Total 201	25-2
ATP Generation ATP generation of the the complete oxidation of stearic acid (18:0) • Compared to Fatty Acid Synthesis Source ATP's 8 Acetyl-CoA → 8 8 Rounds 16 NADPH 40 9 Acetyl-CoA (Calvin cycle) 9 x 17 = 153 Total 201 Yield = 120/201 = 60% Chem 352, Lecture 10, Part 1: Lipid Metabolism 25	25-3
ATP Generation Regulation of Lipid Metabolism • Involves same hormones as carbohydrate metabolism • Glucogon (fasting state) • Epinephrin (excited state) • Insulin (fed state)	26-1

26-2 ATP Generation Regulation of Lipid Metabolism Involvies as carbohydrate met@pinisphrine Glucogon (fasting state) Activate ipases in surpose state) formation and storage · Insulins(fed state) of triacylglycerides Inactivates acetyl-CoA carboxylase Activate acetyl-CoA carboxylase Acetyl-CoA inhibits pyruvate dehydrogenase Malonyl-CoA inhibits Carnitine acyltransferase I Chem 352, Lecture 10, Part I: Lipid Metabolism 26 26-3 ATP Generation Regulation of Lipid Metabolism Involate ydrate met@pi · Gluco 'AERING nd storage Insul nhibits sferase Chem 352, Lecture 10, Part I: Lipid Metabolism 26 26-4 ATP Generation Regulation of Lipid Metabolism InvoGlesasgame&hormones as carbohydrate met@piotisphrine · Glucogon (fasting state) Activate ipases in adipose activate formation and storage • Insulins(fed state) of triacylglycerides Inactivates acetyl-CoA carboxylase Activate acetyl-CoA carboxylase Acetyl-CoA inhibits pyruvate dehydrogenase Malonyl-CoA inhibits Carnitine acyltransferase I

Transport of lipds in Blood

Lipids are transported by lipoprotein complexes

- Chylomicrons
- VLDH (Very Low Density Lipoproteins)
- IDH (Intermediate Density Lipoproteins)
- LDL (Low Density Lipoproteins)
- · HDL (High Density Lipoproteins)

27	4
//-	

Chem 352, Lecture 10, Part I: Lipid Metabolism 27

Transport of lipds in Blood

Lipids are transported by lipoprotein complexes

Chem 352, Lecture 10, Part I: Lipid Metabolism 27

Transport of lipds in Blood

Lipids are transported by lipoprotein complexes

- Chylomicrons
- VLDH (Very Low Density Lipoproteins)
- IDH (Intermediate Density Lipoproteins)
- LDL (Low Density Lipoproteins)
- · HDL (High Density Lipoproteins)

Chem 352, Lecture 10, Part I: Lipid Metabolism 27

27-3

Transport of lipds in Blood

Lipids are transported by lipoprotein

Chem 352, Lecture 10, Part I: Lipid Metabolism 27

27-4

27-5

Transport of lipds in Blood

Lipids are transported by lipoprotein complexes

- Chylomicrons
- VLDH (Very Low Density Lipoproteins)
- IDH (Intermediate Density Lipoproteins)
- LDL (Low Density Lipoproteins)
- · HDL (High Density Lipoproteins)

Ketone Bodies

Ketone bodies are formed from acetyl-CoA as a soluble circulating source of fat-derived energy.

• Produce under conditions of long-term fasting

Chem 352, Lecture 10, Part I: Lipid Metabolism 28

28-1

Ketone Bodies

Ketone b acetyl-Cc Source of Produce
$$\begin{array}{c} OH \\ \ominus OOC-CH_2-CH_2-CH_3 \\ \bullet Produce \end{array}$$

$$\begin{array}{c} OH \\ OM \\ Ilating \\ \bullet Produce \end{array}$$

$$\begin{array}{c} OH \\ OM \\ \bullet Produce \\ \bullet Produce \end{array}$$

$$\begin{array}{c} OH \\ \bullet Produce \\ \bullet P$$

28-2

Ketone Bodies

28-3

Ketone Bodies

28-5

28-6

28-7

Ketone 1	Bodies	
source of • Produce	п β-Hvdroxvbutvrate	om Ilating 7. term fasting
	O H ₃ C — C — CH ₃ Acetone	0, Part I: Lipid Metabolism 28

Lipid Metabolism	29-1	
Chem 352, Lecture 10, Part I: Lipid Metabolism 29		
Lipid Metabolism	29-2	
Question: Draw a general pathway for converting carbohydrates to fatty acids in a liver cell, and indicate which processes occur in the		
cytosol and which occur in mitochondria.		
Chem 352, Lecture 10, Part I: Lipid Metabolism 29		
Lipid Metabolism	29-3	
Lipid Metabolism Chem 352, Lecture 10, Part 1: Lipid Metabolism 29	29-3	
	-	
	29-3	
Chem 352, Lecture 10, Part I: Lipid Metabolism 29 Next Up Lecture 10 - Part II, Amino acid	-	
Chem 352, Lecture 10, Part I: Lipid Metabolism 29 Next Up Lecture 10 - Part II, Amino acid	-	
Chem 352, Lecture 10, Part I: Lipid Metabolism 29 Next Up Lecture 10 - Part II, Amino acid	-	