Chem 352 - Lecture 10 Lipid, Amino Acid, and Nucleotide Metabolism Part II: Amino Acid Metabolism

Introduction

Amino acid metabolism is complex

We will focus on a couple of important themes:

- · 17.1 Nitrogen fixation and the nitrogen cycle
- 17.2 Assimilation of ammonia
- · 17.3 Synthesis of amino acids (Ala, Asp, Asn, Glu, Gln, Arg, Pro, Ser, Gly)
- · 17.4 Amino acids as precursors
- 17.7 The urea cycle

Chem 352, Lecture 10, Part I: Lipid Metabolism 2

3-1

2

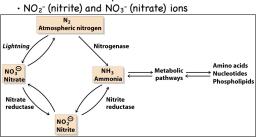
Nitrogen Fixation

Inorganic sources of nitrogen include

- · N₂ from the atmosphere
- · NO₂- (nitrite) and NO₃- (nitrate) ions

Both are reduced to NH3 for assimilation into living systems.

Most animals get their nitrogen from amino acids.


Chem 352, Lecture 10, Part I: Lipid Metabolism 3

Chem 352, Lecture 10, Part I: Lipid Metabolism

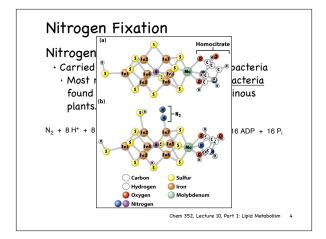
Inorganic sources of nitrogen include

· N₂ from the atmosphere

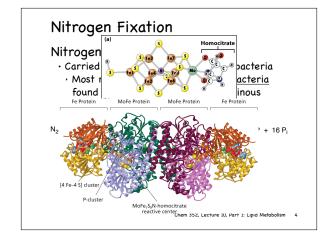
Nitrogen Fixation

റ	•	7
ູ	-,	•
_	_	

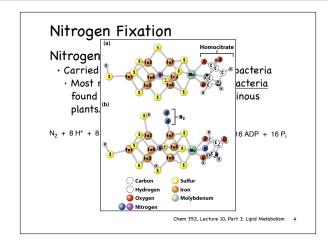
Nitrogen Fixation


Nitrogen fixation.

- · Carried out by a limited number of bacteria
- Most notably, the symbiotic <u>Rhizobacteria</u> found in the root nodules of leguminous plants.


 N_2 + 8 H⁺ + 8 e⁻ + 16 ATP \longrightarrow 2 NH₃ + H₂ + 16 ADP + 16 P_i

Chem 352, Lecture 10, Part I: Lipid Metabolism 4



4-2

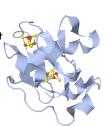
4-3

Nitrogen Fixation

Nitrogen fixation.

- · Carried out by a limited number of bacteria
- Most notably, the symbiotic <u>Rhizobacteria</u> found in the root nodules of leguminous plants.

 N_2 + 8 H⁺ + 8 e⁻ + 16 ATP \longrightarrow 2 NH₃ + H₂ + 16 ADP + 16 P_i

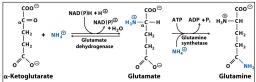

Chem 352, Lecture 10, Part I: Lipid Metabolism 4

4-5

Nitrogen Fixation

Nitrogen fixation.

- The source of electrons are the electron tranport proteins ferredoxin and flavodoxin
- We saw ferredoxin in in the light reactions of photosynthesis


Chem 352, Lecture 10, Part II: Amino Acid Metabolism 5

5

Assimilation of Ammonia

Ammonia is assimilated primarily through the amino acids glutamate and glutamine.

· Mammals do not assimilate much NH3 directly.

Chem 352, Lecture 10, Part I: Lipid Metabolism

6-1

Assimilation of Ammonia

Ammonia is assimilated primarily through the amino acids glutamate and glutamine.

 $\boldsymbol{\cdot}$ Mammals do not assimilate much NH3 directly.

6-2

Assimilatio	n of Ammonia
Ammonia is a through the glutamine. • Mammals do	COO® COO® COO® NATE OF THE COOR OF THE COO
	coo⊖ H ₃ N − C − H Animals do CH ₂ not have this CH ₂ enzyme O⊕ 2. Glutamate Chem 352, Lecture 10, Part I: Lipid Metabolism 6

Assimilation of Ammonia

Nitrogen can then transferred to other amino acids using the transamination reaction.

Chem 352, Lecture 10, Part I: Lipid Metabolism 7

7-1

Assimilation of Ammonia

 7-2

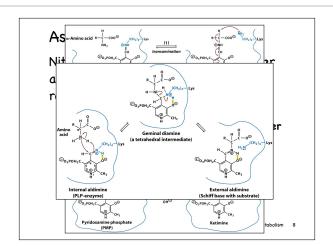
Assimilation of Ammonia

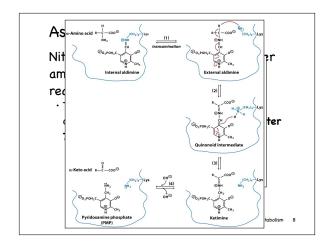
Nitrogen can then transferred to other amino acids using the transamination reaction.

7-3

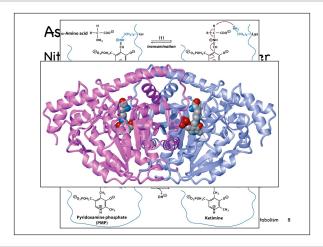
Nitrogen is then transferred to other amino acids by the transamination reaction.

 The transamination reactions uses the coenzyme pyridoxal phosphate (PLP, Chapter 7.8)


Chem 352, Lecture 10, Part I: Lipid Metabolism 8


8-1

Assimilation of Ammonia


8-2

Н		
doxal 5'-phosphate (PLP)		
Chem 352, Lecture 10, Part 1: Lipid Metabolism 8		
$\begin{cases} -\cos \phi & \text{if } f_{i,j,l} = f_{i,j,l} = f_{i,j,l} = f_{i,l} = f_$	8-3	

8-5

8-6

Assimilation of Ammonia

Nitrogen is then transferred to other amino acids by the transamination reaction.

 The transamination reactions uses the coenzyme pyridoxal phosphate (PLP, Chapter 7.8)

Chem 352, Lecture 10, Part I: Lipid Metabolism 8

8-7

Nitr _{NH₄} ⊕	ation of Amm α-Ketoglutarate	\/ er
ami	Glutamate dehydrogenase	Transaminase
rea	\ \	Λ
٠G	Sharana /	/ \
gl	Glutamate	α-Keto acid

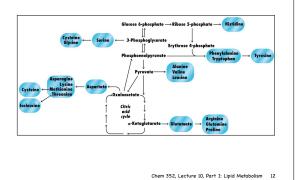
Assimilation of Ammonia

Nitrogen is then transferred to other amino acids by the transamination reaction.

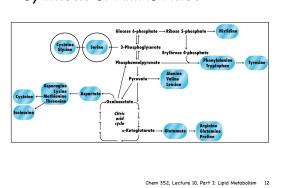
 $\boldsymbol{\cdot}$ Glutamine synthetase has a lower K_m than glutamate dehydrogenase.

Chem 352, Lecture 10, Part I: Lipid Metabolism 10

10

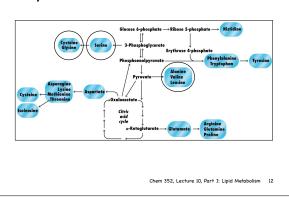

Assimilation of Ammonia

Nitrogen is then transferred to other amino acids by by additional transamination reactions.

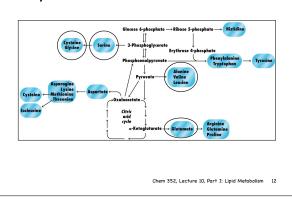

Chem 352, Lecture 10, Part I: Lipid Metabolism 11

11

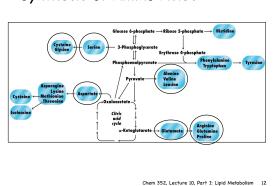
Synthesis of Amino Acids



Synthesis of Amino Acids


12-3

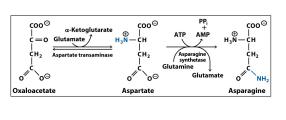
Synthesis of Amino Acids


12-4

Synthesis of Amino Acids

12-6

Synthesis of Amino Acids



12-7

Synthesis of Amino Acids

Aspartate (Asp) & Asparagine (Asn)

· Start at oxaloacetate

Chem 352, Lecture 10, Part I: Lipid Metabolism 13

13

Synthesis of Amino Acids

Alanine (Ala) · Start at pyruvate

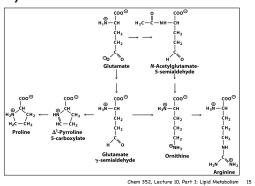
Chem 352, Lecture 10, Part I: Lipid Metabolism 14

Synthesis of Amino Acids

Glutamate (Glu) & Glutamine (Gln)

 $\boldsymbol{\cdot}$ Start at $\alpha\text{-ketoglutarate}$ and transminate

Proline (Pro) & Arginine (Arg)


· Start at Glutamate

Chem 352, Lecture 10, Part I: Lipid Metabolism 15

15-	1
-----	---

1	5-2	

Synthesis of Amino Acids

Synthesis of Amino Acids

Glutamate (Glu) & Glutamine (Gln)

 $\boldsymbol{\cdot}$ Start at $\alpha\text{-ketoglutarate}$ and transminate

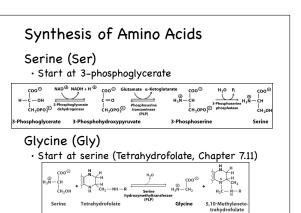
Proline (Pro) & Arginine (Arg)

· Start at Glutamate

15-3

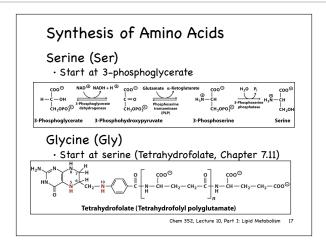
Chem 352, Lecture 10, Part I: Lipid Metabolism 15

-

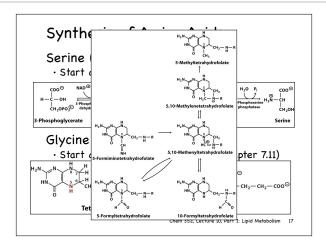

Synthesis of Amino Acids

Serine (Ser)

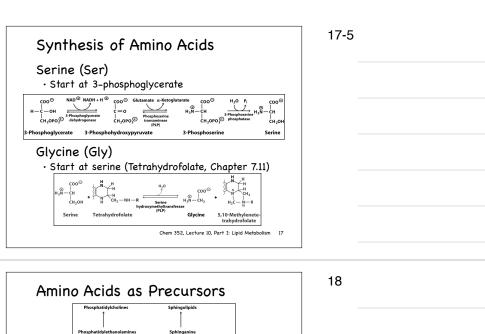
· Start at 3-phosphoglycerate



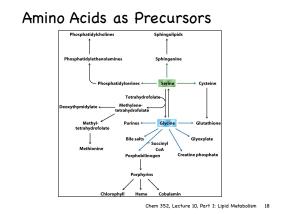
Chem 352, Lecture 10, Part I: Lipid Metabolism 16



Chem 352, Lecture 10, Part I: Lipid Metabolism 17



17-2

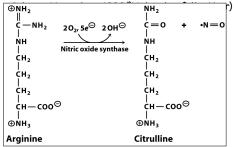


	Synthesis of Amino Acids				
	Serine (Ser) · Start at 3-phosphoglycerate				
	COO® NAD® NADH+H® COO® Glutamate α-Ketoglutarate COO® H,O P, COO® Glutamate α-Ketoglutarate COO® H,O P, COO® Glutamate α-Ketoglutarate COO® H,O P, COO				
	3-Phosphoglycerate 3-Phosphohydroxypyruvate 3-Phosphoserine Serine Glycine (Gly)				
	· Start at serine (Tetrahydrofolate, Chapter 7.11)				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	Tetrahydrofolate (Tetrahydrofolyl polyglutamate)				
_	Chem 352, Lecture 10, Part I: Lipid Metabolism 17				

7-4	

Amino Acids as Precursors

Nitric oxide (NO)


- · Science Magazines 1992 "Molecule of the Year)
- Messenger molecule that stimulates the formation of cGMP
- · Used by macrophages to kill bacteria
- Smooth muscle relaxant, which lowers blood pressure.

Chem 352, Lecture 10, Part I: Lipid Metabolism 19

19-1

Amino Acids as Precursors

Nitric oxide (NO)

19-2	

Amino Acids as Precursors

Nitric oxide (NO)

- · Science Magazines 1992 "Molecule of the Year)
- Messenger molecule that stimulates the formation of cGMP
- · Used by macrophages to kill bacteria
- Smooth muscle relaxant, which lowers blood pressure.

Chem 352, Lecture 10, Part I: Lipid Metabolism 19

19-3

Amino Acids Degradation

Will focus on the strategies that have evolved for the removal of excess nitrogen.

- NH₃ aquatic organisms allow ammonia to diffuse into the surroundings.
- · Urea terrestrial animals excrete urea along with other liquid wastes
- Uric acid avian animals excrete uric acid along with other solid wastes

Chem 352, Lecture 10, Part I: Lipid Metabolism 20

20-1		

Amino Acids Degradation

Will focus on the strategies that have evolved for the removal of excess nitrogen.

$$\begin{array}{c|c} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & \\ & & \\ &$$

Chem 352, Lecture 10, Part I: Lipid Metabolism

20-2		

Amino Acids Degradation

Will focus on the strategies that have evolved for the removal of excess nitrogen.

- NH₃ aquatic organisms allow ammonia to diffuse into the surroundings.
- Urea terrestrial animals excrete urea along with other liquid wastes
- Uric acid avian animals excrete uric acid along with other solid wastes

20-3	

The Urea Cycle

Discovered by Hans Krebs in the 1930's shortly before he discovered the citric acid cycle.

- The first step is the synthesis of carbamoyl phosphate I.
- · In the mitochondria of liver cells
- $\,\cdot\,$ The NH $_{\!3}$ comes from the oxidative deamination of glutamate.

Chem 352, Lecture 10, Part I: Lipid Metabolism 21

Cnem 352, Lecture 10, Part I: Lipid Metabolism 21

21-1

The Urea Cycle

Discovered shortly before acid cycle.

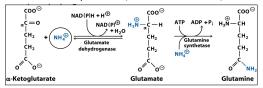
• The first steamont phosphate I I I The NH3 cor of glutamate Carbonate Carbonate

21-2

The Urea Cycle

Discovered by Hans Krebs in the 1930's shortly before he discovered the citric acid cycle.

- The first step is the synthesis of carbamoyl phosphate I.
- · In the mitochondria of liver cells
- $\, \cdot \,$ The NH3 comes from the oxidative deamination of glutamate.


Chem 352, Lecture 10, Part I: Lipid Metabolism 21

21-3

The Urea Cycle

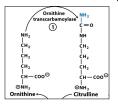
Discovered by Hans Krebs in the 1930's shortly before he discovered the citric acid cycle.

 \cdot The first step is the synthesis of carbamoyl

Chem 352, Lecture 10, Part I: Lipid Metabolism 21

The Urea Cycle

Discovered by Hans Krebs in the 1930's shortly before he discovered the citric acid cycle.

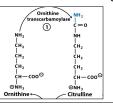

- The first step is the synthesis of carbamoyl phosphate I.
- In the mitochondria of liver cells
- $\,\cdot\,$ The NH $_{\!3}$ comes from the oxidative deamination of glutamate.

Chem 352, Lecture 10, Part I: Lipid Metabolism 21

21-5

The Urea Cycle

- •The urea cycle involves two new α -amino acids.
 - · Ornithine which is similar to lysine.
 - · Citrulline which is similar to arginine

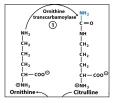

Chem 352, Lecture 10, Part I: Lipid Metabolism 22

22-1

The Urea Cycle

Juhanourea cycle involves two new warming accids bes ornithine from lysine?

- · Ornithine which is similar to lysine.
- · Citrulline which is similar to arginine

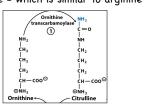


Chem 352, Lecture 10, Part I: Lipid Metabolism 22

22-2

The Urea Cycle

- •The urea cycle involves two new α -amino acids.
 - · Ornithine which is similar to lysine.
 - · Citrulline which is similar to arginine

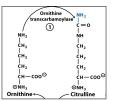


Chem 352, Lecture 10, Part I: Lipid Metabolism 22

The Urea Cycle

Juberourea cycle involves two new Whaming agoids bes citrulling from argining?

- · Ornithine which is similar to lysine.
- · Citrulline which is similar to arginine

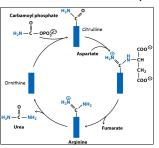


Chem 352, Lecture 10, Part I: Lipid Metabolism 22

22-4

The Urea Cycle

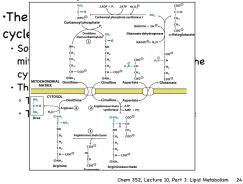
- The urea cycle involves two new α -amino acids.
- · Ornithine which is similar to lysine.
- · Citrulline which is similar to arginine



Chem 352, Lecture 10, Part I: Lipid Metabolism 22

22-5

The Urea Cycle


·The reactions of the urea cycle.

Chem 352, Lecture 10, Part I: Lipid Metabolism 23

23

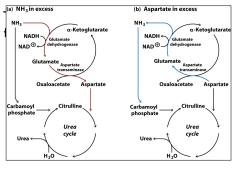
The Urea Cycle

$$NH_3 + HCO_3$$
 + Aspartate + 3 ATP \longrightarrow Urea + Fumarate + 2 ADP + 2 P_i + AMP + PP_i

Chem 352, Lecture 10, Part I: Lipid Metabolism 25

25

The Urea Cycle


The nitrogen atoms in urea comes from NH₃ and aspartate.

· The needs for these two sources can be balanced by altering the flow material.

Chem 352, Lecture 10, Part I: Lipid Metabolism 26

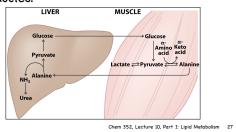
26-1

The Urea Cycle

Chem 352, Lecture 10, Part I: Lipid Metabolism 26

26-2

The Urea Cycle


The nitrogen atoms in urea comes from NH₃ and aspartate.

 \cdot The needs for these two sources can be balanced by altering the flow material.

26-3

THE CIEC CYCLE	The	Urea	Cycl	e
----------------	-----	------	------	---

The pyruvate/aspartate shuttles is used to remove excess NH₃ from the muscles.

27

Next Up

Lecture 10 - Part III, Nucleotide metabolism (Moran et al, Chapter 18)

Lecture 11 - Nucleic acids

Chem 352, Lecture 10, Part I: Lipid Metabolism 28