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Part III: Nucleotide Metabolism

Lipid Metabolism
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Lipid Metabolism

Question:

Draw a general pathway for converting carbohydrates to fatty
acids in a liver cell, and indicate which processes occur in the
cytosol and which occur in mitochondria.
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Lipid Metabolism
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‘The nucleotides
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Introduction

+ Nucleotide metabolism provides us with some
nice examples of biochemically intricate and
creative pathways.

+ We will focus on a couple of examples

» 18.1 Synthesis of Purine Nucleotides (Inosine
Monophosphate, IMP)

+ 18.2 Other Purine Nucleotides are Synthesized from
IMP

» 18.3 Synthesis of Pyrimidine Nucleotides (Uridine
monophosphate, UMP)

» 18.4 CTP is Synthesized from UMP

» 18.5 Reduction of Ribonucleotides to
Deoxyribonucleotides
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Introduction

‘We will not cover nucleotide
degradation or the salvage pathways

+ As we will see, the nucleotide biosynthesis
pathways are very energy intensive.

+ The salvage pathways are used to recycle
nucleotides and conserve energy in rapidly
growing cells.
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Synthesis of Purines

‘Working out the details of purine
biosynthesis started with the
investigation the uric acid
biosynthesis pathway in birds.

Uric acid
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Synthesis of Purines

‘Radioactively labeled precursors
were fed to pigeons to see where
the labels ended up in uric acid.
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10-Formyltetrahydrofolate
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Synthesis of Purines
‘Radioactively labeled precursors
were fed to pigeons to see where
the labels ended up in uric acid.
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Synthesis of Purines

-Purines are synthesized on top of

the ribose phosphate.
+ Ribose 5-phosphate
+ This starts with the activation of ribose 5-
phosphate to 5-phospho-«-D-ribosyl 1-
pyrophosphate (PRPP)

‘The final product is inosine-5'-

monophosphate.
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Synthesis of Purines
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Synthesis of Purines
-Purines are synthesized on top of
the ribose phosphate.
+ Ribose 5-phosphate
+ This starts with the activation of ribose 5-
phosphate to 5-phospho-a-D-ribosyl 1-
pyrophosphate (PRPP)
‘The final product is inosine-5'-
monophosphate.
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Synthesis of Purines

-Purines are synthesized on top of

the ribose phosphate.
+ Ribose 5-phosphate
+ This starts with the activation of ribose 5-
phosphate to 5-phospho-«-D-ribosyl 1-
pyrophosphate (PRPP)

‘The final product is inosine-5'-
monophosphate.
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Synthesis of Purines

-Starting with PRPP, the complete
synthesis of IMP is done in 10 steps.
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Synthesis of Purines

+Step 1: Glutamine-PRPP

amidotransferase.

0,POCH; 0 1
0 o
w - ﬂ —o— ﬂ —0®
OH OH (L@ éa
|5-Phospho-a--ribosyl 1-pyrophosphate (PRPP)

Glutamine H,0
@ Glutamine-prer
amidotransferase
Glutamate PP — 2P,
H,0
3

®o,pocH, _o_  NH,

Hoon)P
H H

OH OH
5-Phospho-B-o-ribosylamine (PRA)

An amido nitrogen is transferred
form glutamine to the Cl1 position
of PRPP.

Note the inversion of the
chirality of the ribose from o to
8.
Reaction is driven by the
hydrolysis of the pyrophosphate
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Synthesis of Purines

-Step 2: Glycinamide ribonucleotide

synthetase.

5
®o,pocH, o NH;
(L
H H
OH OH
5-Phospho--p-ribosylamine (PRA)

S
Hic—NHs ATP
(\ N carsynthetase
o”? \09® ADP + P,

Glycine
—NH,
Hy (T 7
|
ca e
o? rlm
RS

P
Glycinamide ribonucleotide (GAR)

A peptide bond is formed
between the glycine and the
ribosylamine.

The reaction requires activation
of the glycine carboxylate with
ATP.
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Synthesis of Purines

-Step 3: Glycinamide ribonucleotide

transformylase.
Hae T e
oéu\ﬁu e A formyl group is transferred
J‘SVP from 10-formyl-

Glycinamide ribonucleotide (GAR) tetetrahydrofolate

10-Formyl-
tetrahydrofolate
(3] GARtransformylase

Tetrahydrofolate

H

N
(R e NP
IR
ca e H

0”7 \TH

RS-

Formylglycinamide ribonucleotide (FGAR)
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Synthesis of Purines ®

‘Step 4: Formylglycinamidine
ribonucleotide synthetase.

e The amide is converted fo an
amidine

® The nitrogen is donated by
glutamine.

® This reaction requires the
hydrolysis of ATP
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Synthesis of Purines

Step 5: Aminoimidazole ribonucleotide
synthetase.

T e N B Ring closure requires the
minoimidazole ribonucleotide (AIR) hydrolysis of ATP
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(®)] AR synthetase
n ATP
e 0
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Formylglycinamidine ribonucleotide (FGAM)
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Synthesis of Purines °

-Step 6: Aminoimidazole ribonucleotide
carboxylase.

[Xig T ® Surprisingly, this carboxylase
RS'P does not involve the use of

Carboxyaminoimidazole ioti
ribonucleotide (CAIR) biotin.

2H®. ADP + P, e The react'non does require the
AIR carboxylase hydrolysis of ATP
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Aminoimidazole ribonucleotide (AIR)
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Synthesis of Purines

Step 6: Aminoimidazole ribonucleotide
carboxylase.
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ﬂ
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Synthesis of Purines

:Step 6: Aminoimidazole ribonucleotide
carboxylase.

e Surprisingly, this carboxylase

RS'P does not involve the use of
Carboxyaminoimidazole ot
ribonucleotide (CAIR) biotin.

24O, ' ADP 4P, e The reaction does require the
Al

IR carboxylase hydrolysis of ATP
HCo,©

Aminoimidazole ribonucleotide (AIR)
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Synthesis of Purines

Step 7: Aminoimidazole
succinylcarboxamide ribonucleotide

00® |
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CH, ca s/
PR
@ oo |
L ind SAICAR Aminoi _;WI e The newly added carboxylate
© | otase  Aminoimidazole ; N }
= eI uccinylocarboxamide group is activated with ATP and
| ribonucleotide .
i (SAICAR) condensed with aspartate to
! )
Asperta become succinylated.
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Il
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Carboxyaminoimidazole
ribonucleotide (CAIR)
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Synthesis of Purines
-Step 8: Adenylosuccinate lyase.

c‘uo@
HC
I
c00® | C‘"
|
N TN c00® _
AH H g‘ D Fumarate e Coupled to the last reaction,
| ’e N~ N ‘Adenylo- these two reactions resemble
oo | ® | succinate ;
RSP lyase two that we saw in the urea
Aminoimidazole cycle.

succinylocarboxamide

ribonucleotide O
(SAICAR) !
HNT S e
I SCH
5 _Cas
HNT T
RS’

5'P
Aminoimidazole carboxamide
i i AR)
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Synthesis of Purines
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Synthesis of Purines

:Step 8: Adenylosuccinate lyase.

(<)
Fumarate .
‘Adenylo-

@® | succinate

lyase

ribonucleotide O
(SAICAR) I

RSP
Aminoimidazole carboxamide
i i AR)

Chem 352, L

Coupled to the last reaction,
these two reactions resemble
two that we saw in the urea
cycle.
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Synthesis of Purines

:Step 9: Aminoimidazole carboxamide
ribonucleotide transformylase.

RS'P .
Aminoimidazole carboxamide
ribonucleotide (AICAR)

10-Formyl-
lenahydmlolne@ AlCAR
transformylase

Tetrahydrofolate
o
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Formamidoimidazole carboxamide
ribonucleotide (FAICAR)
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Similar to Step 3, a formyl
group is transferred from 10-
formyl-tetrahydrofolate to an
amino group
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Synthesis of Purines
-Step 10: Inosine 5'-monophosphate

cyclohydrolase.

o

g
HNT S e
o Il scH
Sc2s _cae/

/SN TN
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R5'P

Formamidoimidazole carboxamide
ribonucleotide (FAICAR)

RS'P
Inosine 5-monophosphate (IMP)
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e Like Schiff base formation, this
is a condensation reaction
between an aldehyde and an
amine.

19



Synthesis of Purines

*The synthesis of IMP requires a
considerable amount of energy in the
form of ATP, (11 ATPS in all)
+ 2 ATP equivalents for the activation of
PRPP
+ 2 for glutamine-PRPP amidotransferase
+1 each for steps 2, 4,5, 6 & 7 (=5
ATP)
+ 2 ATP for the two glutamine
synthetase reactions.
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Other Purines Synthesized from IMP
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Synthesis of Purines
The synthesis of IMP requires a
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Synthesis of Purines
‘The synthesis of IMP requires a
considerable amount of energy in the
form of ATP, (11 ATPS in all)
+ 2 ATP equivalents for the activation of
PRPP
+ 2 for glutamine-PRPP amidotransferase
+1 each for steps 2, 4, 5, 6 & 7 (=5
ATPS)
+ 2 ATP for the two glutamine
synthetase reactions.
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Regulation of Purine Synthesis

Purine synthesis
is regulated by a
web of feedback
inhibition of key
branch-point
reactions.

Ribose 5-phosphate

Y
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Synthesis of Pyrimidine Nucleotides

+ Unlike purine synthesis, pyrimidines are
synthesized first and then attached to the

phosphoribose.

+ Like purine synthesis, the atoms in the
pyrimidine ring come from a number of
different sources.

Glutamine

| «— Aspartate
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Synthesis of Pyrimidine Nucleotides

THE MAJOR PYRIMIDINES

* e
NH, 0 the
NZ HNSA 3
. A Ja, d
[} N o N
H H f
Cytosine Uracil
(2-Oxo-4-ami imidine)  (2,4-Dioxopyrimidine)
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CH
HN)j/ 3
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(2,4-Di 5 hylpyrimidine)
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Synthesis of Pyrimidine Nucleotides

+ Unlike purine synthesis, pyrimidines are
synthesized first and then attached to the
phosphoribose.

+ Like purine synthesis, the atoms in the
pyrimidine ring come from a number of
different sources.

Glutamin\ek

C
NT 4 c
| | «— Aspartate
[P

i

Chem 352, Lecture 10, Part II: Amino Acid Metabolism 23

23-3

Synthesis of Pyrimidine Nucleotides

‘Pyrimidine synthesis is a 6-step
process that leads to UMP

NH,

)
|s4\,N kaH
5 s 1 2|
HOCH, NAO HOCH, N/go
o o
Ku o w )" H H
H H H H
3" g°
OH OH OH OH

Cytidine Uridine
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Synthesis of Pyrimidine Nucleotides

Pyrimidine synthesis is a 6-step
process that leads to UMP
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Synthesit cleotides

-Pyrimid
process

step
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Synthesis of Pyrimidine Nucleotides

‘Pyrimidine synthesis is a 6-step
process that leads to UMP
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Synthesis of Pyrimidine Nucleotides

Step 1: Carbamoyl phosphate synthetase
II.

Tooe
H;N—C—H
|
i
cH,
¢
N So
Glutamine

HCoP. 2ATP + H,0
Carbamoyl
(D phosphate
synthetase
Glutamate 2ADP +P;

i
H,;N—C—o0P0®
Carbamoyl phosphate
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Synthesis of Pyrimidine Nucleotides

Step 1: Carbamoyl phosphate synthetase
II.

c00® ) - .
] ® This reaction is synthesized by
M= carbamoy! phosphate synthetase
clri, II in mammals.
CH, ® This enzyme is found in the
! cytosol instead of the
TN, . : ;.
HN o mitochondrial matrix
Glutamine e Unlike the reaction in the urea
(:‘rifmsil 2ATP+H,0 cycle, the sources of the
® phosphate nitrogen is glutamine instead of
synthetase -
Glutamate 2ADP +P; free ammonia
i
H,N—C—0pP0®
Carbamoyl phosphate
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Synthesis of Pyrimidine Nucleotides

-Step 1: Carbamoyl phosphate synthetase

II.
GIn-binding site
Site 1
ATP-binding site|
o WA site2
Lk -1 (s
5 v
RO
a’ .y
ATP-binding site 3,,{;}’/‘)
Site 3 N .,\5%\3‘[
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Synthesis of Pyrimidine Nucleotides

‘Step 1: Carbamoyl phosphate synthetase

1T
Tic
Gln-binding site
Glutamine + H,0 i
Sitel  ° Site 1
NI H + ADP + P; Site 2
H Vi phasphelading B Site 3
Site 2
%_0_
o
glutamine + HC oyl phosphate + glutampte +2 ADP + P;
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Synthesis of Pyrimidine Nucleotides

-Step 1: Carbamoyl phosphate synthetase
IL

Gln-binding site

Site 1
/) / 2 ATP-binding site|
AR ey R
e Y o 1% Site 2

ATP-binding site >R
Site 3
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Synthesis of Pyrimidine Nucleotides

-Step 2: Aspartate transcarboylase
(ATCase).

I
H,N—C—0P0®
Carbamoyl phosphate

<00

Aspartate I
@ transcarbamoylase P
(ATCase) H;N—CH
» <00
Aspartate
o
“0. VA

i
LN
. _C—H
7NN o
H  coo®

Carbamoyl aspartate

o
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Synthesis of Pyrimidine Nucleotides

-Step 2: Aspartate transcarboylase
(ATCase).

I
H,;N—C—0P0 2

Carbamoyl phosphate ® The activated carbamoyl

phosphate condenses with
aspartate.

€00

Aspartate o
@ transcarbomoylase /\
@idase) [ ui—ch
» oo
Aspartate
6. B
%_ f
s
W
C C—H
oZ NN o
H  coo®
Carbamoyl aspartate
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Synthesis of Pyrimidine Nucleotides

Step 3: Dihydroorotase.

H cod®
Carbamoyl aspartate

@ pihydroorotase
H,0

HN ot
c C—H
07 NN o

H  cod
L-Dihydroorotate
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Synthesis of Pyrimidine Nucleotides

Step 3: Dihydroorotase.

S
H,l\‘l CH
C C—H
0”7 N

coof
® The carboxylate and amide -NH:

condense to close the ring and

@ Dihydroorotase form a cyclic imide.
H,0

o
(\:\
HNT CH,

| |
c C—H
LN~
N7\
H  coo®
L-Dihydroorotate

Carbamoyl aspartate

(o)
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Synthesis of Pyrimidine Nucleotides
-Step 3: Dihydroorotate dehydrogenase

o o
I Q) I
i C
FRS Dihydroorotate N
H'l‘ CIH 2 dehydrogenase H'l‘ ﬁ”
C C—H C C
z / )
oZ SN\ 4 a 07 N7 Scoo®
H coo QH, H
L-Dihydroorotate Orotate
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Synthesis of Pyrimidine Nucleotides
-Step 3: Dihydroorotate dehydrogenase

o o
: °. !
FRS Dihydroorotate N
H'l‘ Cle dehydrogenase Hrl« t|:|H
C C—H C d
Z-NNT ZONNT N
) N7\ Q Z (S]
H COOO QH, o N coo
L-Dihydroorotate Orotate

® The ring is oxidized to form the aromatic
orotate ring

e In eukaryotes, this reaction occurs at the
inner mitochondrial membrane
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Synthesis of Pyrimidine Nucleotides

-Step 5: Orotate phosphoribosyl
transferase

OH OH
Orotidine 5'-monophosphate
(omP)

0
20, ——pp,
PRPP

o
[l

c
g \ﬁn

. _C
07 >N Scoo®

Orotate
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Synthesis of Pyrimidine Nucleotides
Step 5: Orotate phosphoribosyl

transferase
i
v Scn
il
N co00®
@o,pocH, oo i 0 e The orotate is condensed with
" M\‘ phosphoribosyl pyrophosphate
(PRPP)
on  oH

Orotidine 5'-monophosphate
(omP)

10
2P, < PP« Orotate ®
phosphoribosyl-
PRPP | tanserase
o
ﬂ
o e o
3 c
PR TN
H

o c00®

Orotate
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Synthesis of Pyrimidine Nucleotides

-Step 6: Orotidine 5'-monophosphate
decarboxylase

®o,pocH, o
w e Decarboxylation of orotidine 5'-
"

monophosphate produces UMP

<
0 S c00®
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Synthesis of Pyrimidine Nucleotides
‘UMP is phosphorylated to UTP

ATP ADP ATP ADP
UMP A—L) UDP UTP
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Synthesis of Pyrimidine Nucleotides

-UTP is converted to CTP by CTP

synthetase

®o,ps0cH; o

H
H

OH

©o,p,0cH, o

H
H

OH

H,0 + ATP
CTP synthetase
P+ ADP

1 NH
N’go

H
H

OH

NH,
SN

I/go

H
H

OH

Glutamine

Glutamate

uTP e This reaction is analogous to
Step 4 in purine biosynthesis
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Synthesis of Pyrimidine Nucleotides

-UTP is converted to CTP by CTP

1%}
]

f
A
e 0
IR

RSP
Formylglycinamide ribonucleotide (FGAR)

RSP
Formylglycinamidine ribonucleotide (FGAM)

Chem 352, Lecture 10, Part I1: Amino Acid Metabolism 13

- Synthesis of Purines

Step 4: Formylglycinamidine ribonucleotide
q synthetase.

The amide is converted to an
amidine

The nitrogen is donated by
glutamine.

This reaction requires the
hydrolysis of ATP

sm 34
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Synthesis of Pyrimidine Nucleotides

-UTP is converted to CTP by CTP

synthetase
[
f‘\m«
wo
®o,p,0cH, _o
H H uTP e This reaction is analogous to
H H Step 4 in purine biosynthesis
OH OH

©o,p,0cH, o

H
H

OH

H,0 + ATP Glutamine
CTP synthetase
P+ ADP

Glutamate

NH,
SN

LA

N0

H
H

OH

CcTP
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Synthesis of Pyrimidine Nucleotides

‘Regulation of pyrimidine synthesis in
prokaryotes.

Aspartate

Carbamoyl phosphate

Carbamoyl aspartate

De novo pathway
(Steps 3-6)

ump
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Synthesis of Pyrimidine Nucleotides

‘Regulation ATCase in E.coli

® ACTase is one the most
thoroughly studied examples of
allosteric enzyme regulation.
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Synthesis of Pyrimidine Nucleotides

Zinc Regulatory
(A)  domain - i

S VN DWe VAR TR Ty - -

Catalytic
trimer

A | Regulatory
Reaulad dimer
egulatory .
dimer Side View
’ Regylatory

imer

Catalytic
trimer

36-2

Synthesis of Pyrimidine Nucleotides

‘Regulation ATCase in E.coli

® ACTase is one the most
thoroughly studied examples of
allosteric enzyme regulation.
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Synthesis of Pyrimidine Nucleotides

-In prokaryotes ATCase is branch point between
pyrimidine synthesis and arginine synthesis
+ Regulation of ATCase controls the flow of
material in these two pathways
» Both pathways share the same carbamoyl
phosphate synthetase.

-In eukaryotes this is not the case
+ carbamoyl phosphate synthetase 1
» mitochondria (arginine synthesis)
+ carbamoyl phosphate synthetase 11
» cytoplasm (pyrimidine synthesis)

Chem 352, Lecture 10, Part II: Amino Acid Metabolism 37

37-1



Synthesis of Pyrimidine Nucleotides
-In pn etween
pyrim 5is

+ Re oW OF

amoy!l

37-2

Synthesis of Pyrimidine Nucleotides

-In prokaryotes ATCase is branch point between
pyrimidine synthesis and arginine synthesis
+ Regulation of ATCase controls the flow of
material in these two pathways
» Both pathways share the same carbamoyl
phosphate synthetase.

-In eukaryotes this is not the case
+ carbamoyl phosphate synthetase 1
» mitochondria (arginine synthesis)
+ carbamoyl phosphate synthetase II
» cytoplasm (pyrimidine synthesis)
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Reduction of Ribonucleotides to
Deoxyribonucleotides.

+ Reduction occurs at the diphosphate
level

+ The same system is used for all four
ribonucleotides
» ADP, GDP, CDP & UDP

+ The system involves three enzymes
» ribonucleotide reductase
» thioredoxin
» thioredoxin reductase
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Reduction of Ribonucleotides to
Deoxyribonucleotides.
+ Ribonucleotide reductase

Ribonucleoside
diphosphate
®o,p,0CH, o

Hs_ sia

e
NADPH + H®. e 4 Toasen
@ Xn\nn
NADP it Toredorn |
AT
Thioredoxi reductass

OH OH

@opocn,

OH H
Deoxyribonucleoside|
diphosphate
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Reduction of Ribonucleotides to
Deoxyribonucleotides.
+ Ribonucleotide reductase

Jonucleoside
fiphosphate
H

2 o B

NADPH + HO H\l’
X OH OH
NADP® o g

— H

B

.,
OH H

iphosphate

View 3-D model
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Reduction of Ribonucleotides to
Deoxyribonucleotides.
+ Ribonucleotide reductase

Ribonucleoside
diphosphate
@ogp,0cH,
o 8
HS  S(eH RV Vs
\/ Thioyedoxin _ Ribonudieotide oo
(reduiced). s reductase H H
NADPH + HO. FAD forkltzach) reduced) .
X e OH oM
Ribonucleotide
NADP® FADH, - Thioredoxin padkictiss Dogp,0cH,
{ovidized) (reduced) L N
/N, /N
s='ste) HoH
s’ sH , i
Thioredoxin reductase H,0 4
OH H
Deoxyribonucleoside|
diphosphate
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Reduction of Ribonucleotides to
Deoxyribonucleotides.

+ Ribonucleotide reductase
» The enzyme mechanism involves free

©-o0—G-ot: , =« G-o—0om =&
W W W
" (O W (
on on o on
s SH v SH SH hos
s s O ays s O
h,a,w
G—o0—Q—om, R ©@-o0—Q-om . R
Wow
W (0 = IANEZ)
OH H ¢ o ° Ho sH
N T N g
Cys Cys. s Cys Cys o
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Reduction of Ribonucleotides to
Deoxyribonucleotides.

+ Ribonucleotide : =
TABLE 18.1 Allosteric regulation of
reductase has two eukaryotic ribonucleotide reductase
regulatory sites Ligind  Ligand
» An activity site boundto boundto  Activity of
» A specificity site | 37 Specficty - ctalytie

site site site

dATP Enzyme inactive

ATP ATP or Specific for

dATP CDP or UDP

ATP dTTP Specific for
GDP

ATP dGTP Specific for
ADP
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Methylation of dUMP to dTMP

-dUDP is first converted to dUMP in a way
the prevents the buildup of dUTP.

duDP + ATP —— dUTP7> dUMP + PP,

ADP H,0

+ This done to head off the incorporation
of dUTP into DNA in place of dTTP.
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Methylation of dUMP to dTMP

-dUMP is converted awe ﬁ o j\/l(’j::
to dTMP by oo, :‘*n comn, :AN
Thymidylate K >‘ K j
synthase. bl oou

e
+ The source of the methyl @

group is serine, by way of

oot ..,
5,10- PO G-I &
L T b
wh-Sia
7,8-Dil

methylenetetrahydrofolate

00®

Tetrahydrofolate
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Methylation of dUMP to dTMP

‘Both thymidylate synthase and
dihydrofolate reductase are prime
targets for anticancer drugs.

HaN NN
° ¢ T o 009
Ny P QII |
F N7 “CH,—N C—N—C—H
5 2
o” N
H Methotrexate CHy
5-Fluorouracil °
€00
"’(YN o c00©
) e —N—* g N—C—H
— —N—C—
Y AN
CHy CH,
Tomudex (ZD1694) CH,
€00®
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Next Up
‘Exam III (Lectures 7-10)
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