Chem 352, Lecture 6, Part II - Membranes 5

The Fluid Mosaic Model

·The composition of a biological membrane is

- + 25% to 50% lipid
- + 50% to 75% protein
- ·The lipids comprise
- - + phospholipids + glycosphingolipids (animals)
 - + cholesterol (some eukaryotes)

·The fluid mosaic mode was proposed in 1972 by Singer and Nicolson.

Chem 352, Lecture 6, Part II - Membranes 6

6-1

The Fluid Mosaic Model

6-2

Membranes are Dynamic Structures

·Functional membranes must remain fluid.

- * Membrane lipids can diffuse laterally or transversely.
- Transverse diffusion is much slower than lateral diffusion.

·Membranes can modulate their fluidity with

- + Unsaturated fatty acids.
- + Dissolved cholesterol (mammals)
- + Dissolved ergosterol (fungi)

Chem 352, Lecture 6, Part II - Membranes 7

7-1

7-2

Membranes are Dynamic Structures

Functional membranes must remain Fast flı 000000000 Chem 352, Lecture 6, Part II - Membranes 7

Membranes are Dynamic Structures ·Functional membranes must remain * Membrane lipids can diffuse laterally or transversely. Transverse diffusion is much slower than lateral diffusion. ·Membranes can modulate their fluidity with Unsaturated fatty acids. + Dissolved cholesterol (mammals) + Dissolved ergosterol (fungi) Chem 352, Lecture 6, Part II - Membranes 7 7-4 Membranes are Dynamic Structures ·Functional membranes must remain Heat € Ordered gel phase crystalline phase + Dissolved cholesterol (mammals) + Dissolved ergosterol (fungi) Chem 352, Lecture 6, Part II - Membranes 7 7-5 Membranes are Dynamic Structures ·Functional membranes must remain Dissolved ergosterol (fungi) Chem 352, Lecture 6, Part II - Memb 7-6 Membranes are Dynamic Structures ·Functional membranes must remain fluid. * Membrane lipids can diffuse laterally or transversely. · Transverse diffusion is much slower than lateral diffusion. ·Membranes can modulate their fluidity with + Unsaturated fatty acids. + Dissolved cholesterol (mammals) + Dissolved ergosterol (fungi) Chem 352, Lecture 6, Part II - Membranes 7 8-1 Membrane Proteins ·There are three classes of membrane proteins. + Integral membrane proteins Peripheral membrane proteinsLipid-anchored membrane proteins Chem 352, Lecture 6, Part II - Membranes 8

Membrane Proteins

There are three classes of membrane proteins.

Integral membrane proteins

Peripheral membrane proteins

Lipid-anchored membrane proteins

8-3

8-4

Membrane Proteins

There are three classes of membrane proteins.

Integral membrane proteins
Peripheral membrane proteins
Lipid-anchored membrane proteins

8-5

8-7 Membrane Proteins ·There are three classes of membrane proteins. Integral membrane proteins Peripheral membrane proteins Lipid-anchored membrane proteins Chem 352, Lecture 6, Part II - Membranes 8 9-1 Membrane Transport ·There are a variety of ways to get materials across a membrane. + Considerations: · What is a polarity of the molecule being transported? + Is a carrier required? · Is the movement up or down a concentration gradient (is energy required)? Chem 352, Lecture 6, Part II - Membranes 9 9-2 Membrane Transport ·There are a variety of ways to get materials across a membrane. TABLE 9.3 Characteristics of different types of membrane transport Movement relative to concentration gradient Simple diffusion Active transport Primary Secondary Yes (ion gradient) Chem 352, Lecture 6, Part II - Memb 9-3 Membrane Transport ·There are a variety of ways to get materials across a membrane. + Considerations: · What is a polarity of the molecule being transported? + Is a carrier required? · Is the movement up or down a concentration gradient (is energy required)? Chem 352, Lecture 6, Part II - Membranes 9 10 Membrane Transport ·The Free energy of transport: $\Delta G_{transport} = RT ln \left(\frac{[A]_{in}}{[A]_{out}} \right)$, When A is uncharged Chem 352, Lecture 6, Part II - Membranes 10

12

13-1

·Pores	and	Channel	S	
		•		
TABLE 9.3 Cha	racteristics of	of different type	es of membrane tr	ansport
	Protein carrier	Saturable with substrate	Movement relative to concentration gradient	Energy input required
Simple diffusion	No	No	Down	No
Channels and pores	Yes	No	Down	No
Passive transport Active transport	Yes	Yes	Down	No
Primary	Yes	Yes	Up	Yes (direct source)
Secondary	Yes	Yes	Up	Yes (ion gradient)

13-2

14-3

14-4

15-3

16

	ive and Passive transport
+ Uniport	
+ Symport	
+ Antiport	

18-1

18-2

18-3

19

21

22

•Cel	lular response	to external signals;
the	transport of in	formation across a
men	nbrane	
+ 0	hemotaxis	
+ H	formones	
+ N	leurotran <mark>smitter</mark> s	
+ 6	rowth factors	
		Chem 352, Lecture 6, Part II - Membranes

23-4

24-1

24-5

24-6

24-11

25-3

25-4

25-8

25-9

imple - G-Proteins ositol-phospholipid signalling pathway al stimulus Transducer Ffector Effector MMMBANE MMMBANE
al stimulus
embrane Transducer Effector Plasma
000000 000000000000
. ↓
Second messenger
Cytoplasmic and nuclear effectors
Cellular response

)			

Next Up	26
·Lecture 7: Introduction to Metabolism (Chapter 10)	
Exam II on 3. April, 2018	
·Over Lectures 4-6	
T. C. Siaka	
TROPIES S	
NO.	
Chem 352, Lecture 6, Part II - Membranes 26	