Chem 352 - Lecture 5 Carbohydrates

Question for the Day: Unlike amino acids, which owe their diversity to a diverse array of functional groups, monosaccharides feature primarily two functional groups, hydroxyl groups and either a ketone or aldehyde group. What, then, do monosaccharides owe their diversity to?

Carbohydrates are included as one of the major classes of biological molecules:

- + Proteins
- + Nucleic acids
- + Carbohydrates
- + Lipids

- + Carbohydrates provide a major source of energy for living organisms.
- + They also play major structural, protective and communication roles.

- + Carbohydrates provide a major source of energy for living organisms.
- + They also play major structural, protective and communication roles.

- + Carbohydrates provide a major source of energy for living organisms.
- They also play major structural, protective and communication roles.

Carbohydrates are chemically simple, but structurally complex

+ (CH₂O)_n

Like amino acid, simple sugars (monosaccharides) can combine to form polymers.

- * monosaccharides (monomer)
- * oligosaccharides (several monomers linked together)
- polysaccharides (many monomers linked together

Monosaccharides are

- + either Aldoses
 - polyhydroxylaldehydes
- + or Ketoses
 - polyhydroxylketones

Classes based on number of carbons

- + triose
- + tetrose
- + pentose
- + hexose

- + L and D Glyceraldehyde
 - Contains a chiral carbon
 - Fischer projections
- + Dihydroxyacetone

- + L and D Glyceraldehyde
 - · Contains a chiral carbon
 - Fischer projections

- + L and D Glyceraldehyde
 - Contains a chiral carbon
 - Fischer projections
- + Dihydroxyacetone

- + L and D Glyceraldehyde
 - · Contains a chiral carbon
 - Fischer projections
- + Dihydroxyacetone

- + L and D Glyceraldehyde
 - Contains a chiral carbon
 - Fischer projections
- + Dihydroxyacetone

- ·Aldoses
 - + Tretroses through hexoses

Mor

·Al

Mor

·Al

Aldotriose These are Fischer **Projections** CH2OH D-Glyceraldehyde Mirror plane dotetroses H-C-OHCH₂OH HO-C-H**D-Threose** H-C-OHdopentoses HO-C-Hно-с-н HO-C-HHO-C-HH-C-OHH-C-OH₆CH₂OH CH₂OH CH₂OH CH₂OH D-Xylose D-Lyxose **L-Glucose D-Glucose** Aldohexoses HO-C-HH-C-OHHO-C-HHO-C-HH-C-OHHO-C-HH-C-OHH-C-OHH-C-OHHO-C-HH-C-OHH-C-OHH-C-OHH-C-OHH-C-OHH-C-OH H-C-OHH-C-OH

CH₂OH

D-Glucose D-Mannose D-Gulose

CH₂OH

CH2OH

D-Allose

CH₂OH

D-Altrose

CH₂OH

CH₂OH

CH₂OH

D-Idose D-Galactose D-Talose

CH₂OH

Mor

·Al

- ·Aldoses
 - + Tretroses through hexoses

- + This figure shows only the D-enantantiomers
- * The L-enantiomers are mirror images of the D-enantiomers.
- Members of an enantiomeric pair are are distinguished using the chirial carbon that is furthest from the carbonyl group.
- Most of the monosaccharides that we will encounter are D-enantiomers.

- + This figure shows only the D-enantantiomers
- * The L-enantiomers are mirror images of the D-enantiomers.
- Members of an enantiomeric pair are are distinguished using the chirial carbon that is furthest from the carbonyl group.
- Most of the monosaccharides that we will encounter are D-enantiomers.

Aldotriose Mor Treti CH2OH D-Glyceraldehyde **Aldotetroses** CH₂OH ACH2 OH **D-Erythrose D-Threose Aldopentoses** HO-C-HHO-C-HH-C-OHHO-C-Hdis H-C-OHH-C-OHH-C-OHCH₂OH CH₂OH CH₂OH 5CH2OH fu **D-Ribose D-Arabinose** D-Xylose **D-Lyxose Aldohexoses** HO-C-HH-C-OHHO-C-H**н**−с — он H-C-OHH-C-OHH-C-OHH-C-OHH-C-OHH-C-OHH-C-OHCH₂OH CH₂OH CH₂OH CH₂OH CH₂OH CH2OH CH₂OH CH₂OH **D-Allose** D-Idose D-Galactose D-Talose D-Altrose D-Glucose D-Mannose D-Gulose

- + This figure shows only the D-enantantiomers
- * The L-enantiomers are mirror images of the D-enantiomers.
- Members of an enantiomeric pair are are distinguished using the chirial carbon that is furthest from the carbonyl group.
- Most of the monosaccharides that we will encounter are D-enantiomers.

- ·Types of optical isomers
 - * Enantiomers are stereoisomers that are mirror images of one another
 - * **Epimer** are stereoisomers having more than one chiral carbon that differ from one another at just one chiral carbon.
 - * Diastereomers are stereoisomers having more than one chiral carbon that differ from one another at multiple chiral carbons.

Ketoses

Monos

Ketoses

+ Tretros

Ketoses

- ·The ones to remember
 - + Aldoses
 - trisoes
 - + D-glyceraldehyde
 - pentoses
 - + D-ribose
 - hexoses
 - + D-glucose
 - + D-mannose
 - + D-galactose

*i*drates

*i*drates

*i*drates

- ·The ones to remember
 - + Aldoses
 - trisoes
 - + D-glyceraldehyde
 - pentoses
 - + D-ribose
 - hexoses
 - + D-glucose
 - + D-mannose
 - + D-galactose

- ·The ones to remember
 - + Ketoses
 - trisoes
 - + dihydroxyacetone
 - pentoses
 - + D-ribulose
 - + D-xylulose
 - hexoses
 - + D-fructose

- ·The ones to remember
 - + Ketoses
 - trisoes
 - + dihydroxyacetone
 - pentoses
 - + D-ribulose
 - + D-xylulose
 - hexoses
 - + D-fructose

- ·Cyclization of aldoses and ketoses
 - + An aldehyde can react spontaneously with an alcohol to form a hemiacetal.
 - + A ketone can react spontaneously with an alcohol to form a hemiketal.
 - + Both of these reactions leads to the formation of a new chiral carbon

- ·Cyclization of aldoses and ketoses
 - + An aldehyde can react spontaneously with

- ·Cyclization of aldoses and ketoses
 - + An aldehyde can react spontaneously with an alcohol to form a hemiacetal.
 - + A ketone can react spontaneously with an alcohol to form a hemiketal.
 - + Both of these reactions leads to the formation of a new chiral carbon

- ·Cyclization of aldoses and ketoses
 - * The six-member rings are called **pyranose** rings
 - * The five-member rings are called **furanose** rings.

·Cyclization of aldoses and ketoses

+ The six. (a) rings

* The five rings.

ed pyranose

ed furanose

- ·Cyclization of aldoses and ketoses
 - * The six-member rings are called **pyranose** rings
 - * The five-member rings are called **furanose** rings.

·Cyclization of aldoses and ketoses

- + For aldoses and ketoses, this reaction occurs intramolecularly and leads to a cyclic molecule.
- + The chiral hemiacetal or hemiketal carbon is called the **anomeric carbon**.
 - The new stereoisomers are designated α (-OH down) and β anomers (-OH up).
- * Haworth projections are used to represent the cyclic form of monosaccharides.

in.

≈ 0%

ca

+ Ho

ČH₂OH

` → CH₂OH

OH

ОН

β-D-Glucopyranose (Haworth projection)

ses

occurs

rbon is

ed

up).

resent

Carbohydrates

·Cyclization of aldoses and ketoses

- + For aldoses and ketoses, this reaction occurs intramolecularly and leads to a cyclic molecule.
- + The chiral hemiacetal or hemiketal carbon is called the **anomeric carbon**.
 - The new stereoisomers are designated α (-OH down) and β anomers (-OH up).
- * Haworth projections are used to represent the cyclic form of monosaccharides.

·Cyclization of aldoses and ketoses

- + For aldoses and ketoses, this reaction occurs intramolecularly and leads to a cyclic molecule.
- + The chiral hemiacetal or hemiketal carbon is called the **anomeric carbon**.
 - The new stereoisomers are designated α (-OH down) and β anomers (-OH up).
- * Haworth projections are used to represent the cyclic form of monosaccharides.

- ·Cyclization of aldoses and ketoses
 - * pyranose rings
 - D-glucopyranose (aldohexose)
 - D-mannopyranose (aldohexose)
 - D-galactopyranose (aldohexose)
 - + furanose rings
 - D-fructofuranose (ketohexose)
 - D-ribofuranose (aldopentose)

- ·Cyclization of aldoses and ketoses
 - + An aldehyde can react spontaneously with an alcohol to form a hemiacetal.
 - + A ketone can react spontaneously with an alcohol to form a hemiketal.
 - + Both of these reactions leads to the formation of a new chiral carbon

- ·Cyclization of aldoses and ketoses
 - + An aldehyde can react spontaneously with

- ·Conformations of Monosaccharides
 - Monosaccharides can have different conformations.

·Conformations of Monosaccharides

+ Monosaccharides can have different conformations.

- ·Conformations of Monosaccharides
 - Monosaccharides can have different conformations.

·Conformations of Monosaccharides

+ Monosaccharides can have different conformations.

- ·Conformations of Monosaccharides
 - Monosaccharides can have different conformations.

- ·Derivatives of monosaccharides are produced by chemical modifications.
 - + Phosphate esters
 - + Deoxy sugars
 - One of the hydroxyl groups is replaced with a hydrogen
 - + Amino sugars
 - One of the hydroxyl groups is replaced with an amino group.

- ·Derivatives of monosaccharides are produced by chemical modifications.
 - + Phosphate esters
 - + Deoxy sugars
 - One of the hydroxyl groups is replaced with a hydrogen
 - + Amino sugars
 - One of the hydroxyl groups is replaced with an amino group.

·Derivatives of monosaccharides are produced by chemical modifications.

- ·Derivatives of monosaccharides are produced by chemical modifications.
 - + Phosphate esters
 - + Deoxy sugars
 - One of the hydroxyl groups is replaced with a hydrogen
 - + Amino sugars
 - One of the hydroxyl groups is replaced with an amino group.

·Derivatives of monosaccharides are

with an amino group.

- ·Derivatives of monosaccharides are produced by chemical modifications.
 - + Phosphate esters
 - + Deoxy sugars
 - One of the hydroxyl groups is replaced with a hydrogen
 - + Amino sugars
 - One of the hydroxyl groups is replaced with an amino group.

Glycosides

- * The hemiacetal or hemiketal carbon can go on to react with the hydroxyl group from another molecule to form an acetal or ketal.
 - The bond formed is called a glycosidic bond.
 - Glycosidic bonds are used to connect one monosaccharide to another.

Glycosides

Glycosides

- * The hemiacetal or hemiketal carbon can go on to react with the hydroxyl group from another molecule to form an acetal or ketal.
 - The bond formed is called a glycosidic bond.
 - Glycosidic bonds are used to connect one monosaccharide to another.

- + Unlike hemiacetals and hemiketals, acetals and ketals cannot open and close dynamically,
 - The glycosidic bond blocks a pyranose or furanose ring from reopening again.
- + In cells, glycosidic bond formation is enzyme catalyzed and requires a source of free energy.

- + Unlike hemiacetals and hemiketals, acetals and ketals cannot open and close dynamically,
 - The glycosidic bond blocks a pyranose or furanose ring from reopening again.
- + In cells, glycosidic bond formation is enzyme catalyzed and requires a source of free energy.

Monosaccharides

Cyclized aldoses and ketoses tend to get locked into the following ring configurations

- + pyranose rings
 - D-glucopyranose (aldohexose)
 - D-mannopyranose (aldohexose)
 - D-galactopyranose (aldohexose)
- + furanose rings
 - D-fructofuranose (ketohexose)
 - D-ribofuranose (aldopentose)

- + The glycosidic bond can be used to connect two monosacchrides together to form disaccharides.
- + Important disaccharides include:
 - Maltose (obtained from starch)

- + The glycosidic bond can be used to connect two monosacchrides together to form disaccharides.
- + Important disaccharides include:
 - Maltose (obtained from starch)

 $\alpha(1-4)$ glycosidic bond

- + The glycosidic bond can be used to connect two monosacchrides together to form disaccharides.
- + Important disaccharides include:
 - Maltose (obtained from starch)

- + The glycosidic bond can be used to connect two monosacchrides together to form a disaccharides.
- + Important disaccharides include:
 - Lactose

- + The glycosidic bond can be used to connect two monosacchrides together to form a disaccharides.
- + Important disaccharides include:
 - Lactose (milk sugar)

- + The glycosidic bond can be used to connect two monosacchrides together to form a disaccharides.
- + Important disaccharides include:
 - ' Cellobiose (obtained from cellulose)

- + The glycosidic bond can be used to connect two monosacchrides together to form a disaccharides.
- + Important disccharides include
 - Sucrose (table sugar)

- + The glycosidic bond can be used to connect two monosacchrides together to form a disaccharides.
- + Important disccharides include
 - Sucrose (table sugar)

 Because a hemiacetal or hemiketal can easily open to expose either an aldehyde or ketone, they can still serve as reducing agents.

$$R \longrightarrow C \longrightarrow H + Cu^{2+} \longrightarrow R \longrightarrow C \longrightarrow OH + Cu^{+}$$

$$CuSO_{4}(aq) \qquad \qquad Cu_{2}O(s)$$

$$clear blue \qquad red ppt.$$

This is used to distinguish the two monosaccharides in a disaccharide as the reducina and the nonreducina ends.

Not all disaccharides have a reducing end

+ For example, the disaccharide sucrose contains both and acetal and a ketal, but no hemiacetal or hemiketal.

Not all disaccharides have a reducing end

+ For example, the disaccharide sucrose contains both and acetal and a ketal, but no hemiacetal or hemiketal.

Monosaccharides also from glycosidic bonds to non-saccharides.

- + For example, nucleotides.
 - ATP
 - UDP-glucose
 - NAD and NADP
 - · FMN and FAD

Monosaccharides also from glycosidic

hands to non-saccharidas NH₂ Adenosine triphosphate (ATP) OH OH

Monosaccharides also from glycosidic bonds to non-saccharides.

- + For example, nucleotides.
 - ATP
 - UDP-glucose
 - NAD and NADP
 - · FMN and FAD

Glycos

Monoso

- + For e
 - · ATF
 - · UDI
 - · NAI
 - · FMI

α -D-Glucose 1-phosphate

sidic

Monosaccharides also from glycosidic bonds to non-saccharides.

- + For example, nucleotides.
 - ATP
 - UDP-glucose
 - NAD and NADP
 - · FMN and FAD

Monosaccharides also from glycosidic bonds to non-saccharides.

- + For example, nucleotides.
 - ATP
 - UDP-glucose
 - NAD and NADP
 - · FMN and FAD

Monosaccharides also from glycosidic

hands to non-saccharides

OH

OH

Monosaccharides also from glycosidic bonds to non-saccharides.

- + For example, nucleotides.
 - ATP
 - UDP-glucose
 - NAD and NADP
 - · FMN and FAD

Ribitol is an example of a sugar alcohol.

+ Where the aldehyde or ketone is reduced to an alcohol.

Expanding the formation of glycosidic bonds can be extended to form polymers of monosaccharides called glycans.

- + Homoglycans contain repeating units of the same monosaccharide.
- * Heteroglycans contain multiple units of different monosaccharides

TABLE 8.2 Structures of some common polysaccharides

Polysaccharide ^a	Component(s)b	Linkage(s)
Storage homoglycans		
Starch		
Amylose	Glc	α - $(1 \rightarrow 4)$
Amylopectin	Glc	α - $(1 \rightarrow 4)$, α - $(1 \rightarrow 6)$ (branches)
Glycogen	Glc	α - $(1 \rightarrow 4)$, α - $(1 \rightarrow 6)$ (branches)
Structural homoglycans		
Cellulose	Glc	$\beta(1\rightarrow 4)$
Chitin	GlcNAc	$\beta(1\rightarrow 4)$
Heteroglycans		
Glycosaminoglycans	Disaccharides (amino sugars, sugar acids)	Various
Hyaluronic acid	GlcUA and GlcNAc	$\beta(1 \rightarrow 3), \beta(1 \rightarrow 4)$

^aPolysaccharides are unbranched unless otherwise indicated.

^bGlc, Glucose; GlcNAc, *N*-acetylglucosamine; GlcUA, D-glucuronate.

Expanding the formation of glycosidic bonds can be extended to form polymers of monosaccharides called glycans.

- + Homoglycans contain repeating units of the same monosaccharide.
- * Heteroglycans contain multiple units of different monosaccharides

Storage forms of glucose

- + Starch (plants)
 - Amylose
 - Amylopectin
- + Glycogen (animals)

Structural polysaccharides

- + Cellulose (plant)
- + Chitin (animals)

Storage forms of glucose

- + Starch (plants)
 - Amylose
 - Amylopectin
- + Glycogen (animals)

Structural polysaccharides

- + Cellulose (plant)
- + Chitin (animals)

Storage forms of glucose

Storage forms of glucose

- + Starch (plants)
 - Amylose
 - Amylopectin
- + Glycogen (animals)

Structural polysaccharides

- + Cellulose (plant)
- + Chitin (animals)

Storage forms of glucose

- + Starch (plants)
 - Amylose
 - Amylopectin
- + Glycogen (animals)

Structural polysaccharides

- + Cellulose (plant)
- + Chitin (animals)

Storage forms of glucose

- + Starch (plants)
 - Amylose
 - Amylopectin
- + Glycogen (animals)

Structural polysaccharides

- + Cellulose (plant)
- + Chitin (animals)

Storage forms of glucose

Storage forms of glucose

Storage forms of glucose

- + Starch (plants)
 - Amylose
 - Amylopectin
- + Glycogen (animals)

Structural polysaccharides

- + Cellulose (plant)
- + Chitin (animals)

- ·Oligo saccharides are often attached to biological molecules
 - + To proteins and peptides
 - Proteoglycans (connective tissue)
 - Peptidoglycans (bacterial cell walls)
 - ' Glycoproteins
 - + To lipids
 - ' Glycolipids

Monosaccarides

* Sugar acids are sugars in which either the aldehyde or primary alcohol is oxidized to a carboxylic acid.

Monosaccarides

* Sugar acids are sugars in which either the aldehyde or primary alcohol is oxidized to a carboxylic acid.

- ·Oligo saccharides are often attached to biological molecules
 - + To proteins and peptides
 - Proteoglycans (connective tissue)
 - Peptidoglycans (bacterial cell walls)
 - ' Glycoproteins
 - + To lipids
 - ' Glycolipids

- ·Oligo saccharides are often attached to biological molecules
 - + To proteins and peptides
 - Proteoglycans (connective tissue)
 - Peptidoglycans (bacterial cell walls)
 - ' Glycoproteins
 - + To lipids
 - ' Glycolipids

·Oligo saccharides are often attached

·Oligo saccharides are often attached

- ·Oligo saccharides are often attached to biological molecules
 - + To proteins and peptides
 - Proteoglycans (connective tissue)
 - Peptidoglycans (bacterial cell walls)
 - ' Glycoproteins
 - + To lipids
 - ' Glycolipids

- ·Oligo saccharides are often attached to biological molecules
 - + To proteins and peptides

Olian carcharidae are often attached (a) Man α -(1 \rightarrow 2) Man α -(1 \rightarrow 2) Man α -(1 \rightarrow 3) Man β-(1 \rightarrow 4) GlcNAc β-(1 \rightarrow 4) GlcNAc — Asn Man α -(1 \rightarrow 2) Man α -(1 \rightarrow 3) Man α -(1 \rightarrow 2) Man α -(1 \rightarrow 6) (b) SA α -(2 \rightarrow 3,6) Gal β -(1 \rightarrow 4) GlcNAc β -(1 \rightarrow 2) Man α -(1 \rightarrow 3) Man β-(1 \rightarrow 4) GlcNAc β-(1 \rightarrow 4) GlcNAc — Asn SA α -(2 \rightarrow 3,6) Gal β -(1 \rightarrow 4) GlcNAc β -(1 \rightarrow 2) Man α -(1 \rightarrow 6) (c) Gal β -(1 \rightarrow 4) GlcNAc β -(1 \rightarrow 2) Man α -(1 \rightarrow 3) Man β -(1 \rightarrow 4) GlcNAc β -(1 \rightarrow 4) GlcNAc — Asn Man α -(1 \rightarrow 3 Man α -(1 \rightarrow 6 Man α -(1 \rightarrow 6)

- ·Oligo saccharides are often attached to biological molecules
 - + To proteins and peptides

- ·Oligo saccharides are often attached to biological molecules
 - + To proteins and peptides
 - Proteoglycans (connective tissue)
 - Peptidoglycans (bacterial cell walls)
 - ' Glycoproteins
 - + To lipids
 - ' Glycolipids

- ·Oligo saccharides are often attached to biological molecules
 - + To proteins and peptides
 - Proteoglycans (connective tissue)
 - Peptidoglycans (bacterial cell walls)
 - ' Glycoproteins
 - + To lipids
 - ' Glycolipids

Which Structures Do I Need to Know?

·Monosaccharide

- + D-glucose
- + D-galactose
- + D-mannose
- + D-fructose
- + D-ribose

·Disaccharides

- + D-lactose
- + D-maltose
- + D-cellobiose
- + D-sucrose

Which Structures Do I Need to Know?

·Monosaccharide Derivatives

- + D-glucosamine
- + N-acetyl-D-glucosamine
- + D-gluconic acid
- + D-glucuronic acid
- + D-ribitol

- + amylose
- + amylopectin
- + glycogen
- + cellulose
- + chitin

Next Up

·Lecture 6 - Lipids and Membranes (Chapter 9)