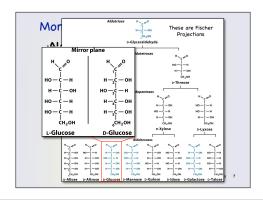
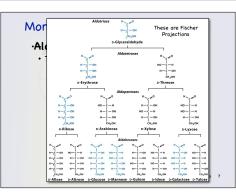

- * Carbohydrates provide a major source of energy for living organisms.
- They also play major structural, protective and communication roles.





3			

4 Introduction to Carbohydrates Carbohydrates are chemically simple, but structurally complex + (CH₂O)_n Like amino acid, simple sugars (monosaccharides) can combine to form polymers. * monosaccharides (monomer) * oligosaccharides (several monomers linked together) + polysaccharides (many monomers linked together Chem 352, Lecture 5 - Carbohydrates 4 5 Monosaccharides Monosaccharides are * either Aldoses · polyhydroxylaldehydes * or Ketoses · polyhydroxylketones Classes based on number of carbons + triose + tetrose + pentose + hexose Chem 352, Lecture 5 - Carbohydrates 5 6-1 Monosaccharides Trioses + L and D Glyceraldehyde · Contains a chiral carbon · Fischer projections + Dihydroxyacetone Chem 352, Lecture 5 - Carbohydrates 6 6-2 Monosaccharides Trioses + L and D Glyceraldehyde · Contains a chiral carbon . Fischer projections сн₂он сн₂он L-Glyceraldehyde D-Glyceraldehyde Chem 352, Lecture 5 - Carbohydrates 6-3 Monosaccharides Trioses + L and D Glyceraldehyde · Contains a chiral carbon . Fischer projections + Dihydroxyacetone

7-5

Monosaccharides ·Aldoses + Tretroses through hexoses 7-6

Monosaccharides

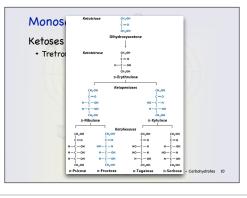
Tretroses through hexoses

- * This figure shows only the D-enantantiomers
- * The L-enantiomers are mirror images of the D-enantiomers.
- Members of an enantiomeric pair are are distinguished using the chirial carbon that is furthest from the carbonyl group.
- + Most of the monosaccharides that we will encounter are D-enantiomers.

Chem 352, Lecture 5 - Carbohydrates 8

Chem 352, Lecture 5 - Carbohydrates 7

8-1

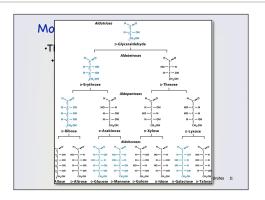

Monosaccharides Tretroses through hexoses + This f ntiomers s of the D-end HO-

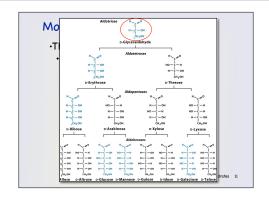
+ Memb e are disting HOон n that is furth HO-₆сн₂он re will + Most сн₂он L-Glucose Chem 352, Lecture 5 - Carbohydrates 8

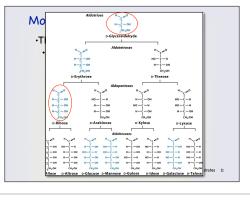
Tretroses through hexoses * This figure shows only the D-enantantiomers * The L-enantiomers are mirror images of the D-enantiomers. + Members of an enantiomeric pair are are distinguished using the chirial carbon that is furthest from the carbonyl group. + Most of the monosaccharides that we will encounter are D-enantiomers. Chem 352, Lecture 5 - Carbohydrates 8 8-4 Mor Tret 8-5 Monosaccharides Tretroses through hexoses * This figure shows only the D-enantantiomers + The L-enantiomers are mirror images of the D-enantiomers. + Members of an enantiomeric pair are are distinguished using the chirial carbon that is furthest from the carbonyl group. • Most of the monosaccharides that we will encounter are D-enantiomers. Chem 352, Lecture 5 - Carbohydrates 8 9 Monosaccharides ·Types of optical isomers * Enantiomers are stereoisomers that are mirror images of one another * Epimer are stereoisomers having more than one chiral carbon that differ from one another at just one chiral carbon. * Diastereomers are stereoisomers having more than one chiral carbon that differ from one another at multiple chiral carbons. Chem 352, Lecture 5 - Carbohydrates 9 10-1 Monosaccharides Ketoses + Tretroses through hexoses Chem 352, Lecture 5 - Carbohydrates 10

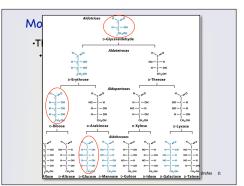
8-3

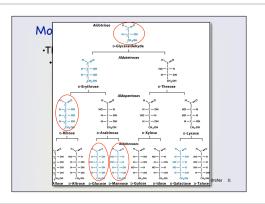
Monosaccharides



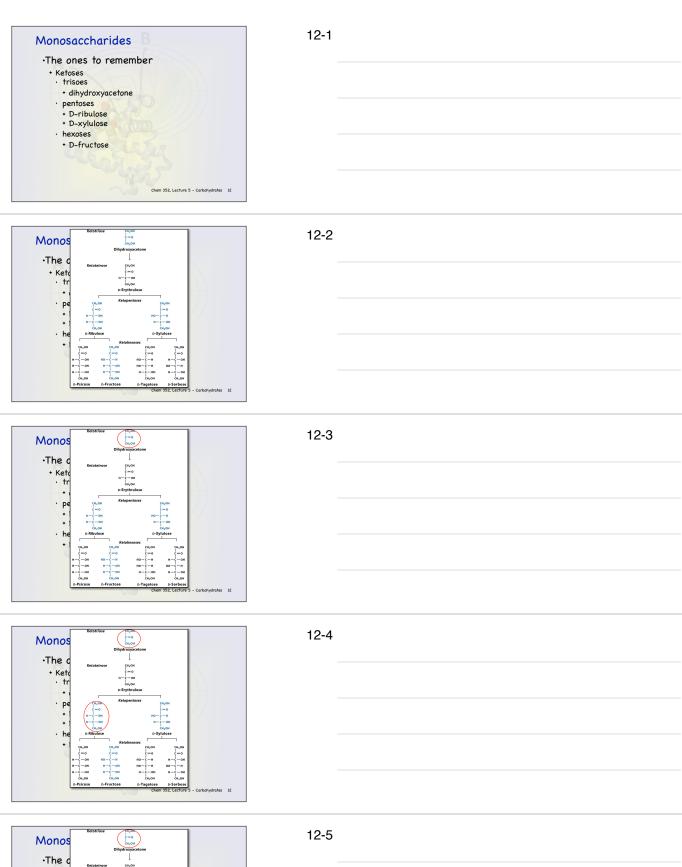

Monosa	ccharides
Ketoses	
+ Tretrose	s through hexoses

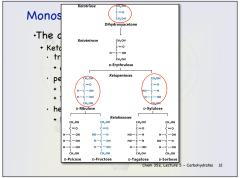

·The ones	to remember	
+ Aldoses		
trisoes		
+ D-gly	ceraldehyde	
· pentos	s	
+ D-rib	ose	
hexose		
+ D-glu	cose	
+ D-ma	nnose	
+ D-ga	actose	

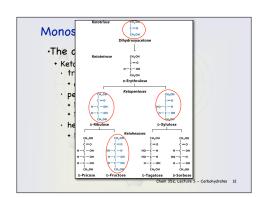

11-1


11-2

11-5




11-6


Мо		Aldotriose H	— он Н ₂ ОН		
•T		p-Glycera	ldehyde		
*11		Aldote	troses		
+	H _~	E and	H~c*	,o	
		с—он	но-с-	-н	
		с—он	н-¢-		
		с́н ₂ он throse	D-Three	20H	
	M ₂ all	Aldope H	ntoses '	H0	
	H-C-0H	но-с-н	H-C-0H	но-с-н	
	н-с-он	но-с-н	H-C-0H	но-с-н но-с-н	
	н-с-он	н-с-он	н-с-он	н-с-он	
	CH2ON	ОН₂ОН	сн₂он	CH ₂ OH	
	D-Ribose	D-Arabinose	D-Xylose	D-Lyxose	
		Aldoh	exoses		
	H	Keno Meno	H-COO H-COO	H_C=0 H_C=0	
	ус-он но-с-н	н-с-он жо-с-н	н-с-он но-с-н	н-с-он но-с-н	
	устон н-стон	но-с-н но-с-н	н-с-он н-с-он	но-с-н но-с-н	
	ус́-он н-с-он н-с-он	H-C-OH H-C-OH	HO-C-H HO-C-H	но-с-н но-с-н	
	сн _х он сн _х он	сн,ол сн,ол	снаан снаан	снубн снубн	drates 11
	Allose D-Altrose	p-Glucose p-Mannose	p-Gulose p-Idose	o-Galactose o-Talose	J

11-7

Mo	onosaccharides
•т	he ones to remember
4	Aldoses
	· trisoes
	+ D-glyceraldehyde
	, pentoses
	+ D-ribose
	• hexoses
	+ D-glucose
	+ D-mannose
	+ D-galactose
	Chem 352, Lecture 5 - Carbohydrates

12-0				

Monosaccharides

·The ones to remember

- + Ketoses + trisoes
- + dihydroxyacetone
- · pentoses
- + D-ribulose + D-xylulose
- · hexoses
- + D-fructose

Chem 352, Lecture 5 - Carbohydrates 12

12-7

Monosaccharides

·Cyclization of aldoses and ketoses

- + An aldehyde can react spontaneously with an alcohol to form a hemiacetal.
- + A ketone can react spontaneously with an alcohol to form a hemiketal.
- + Both of these reactions leads to the formation of a new chiral carbon

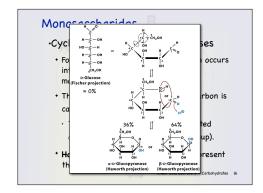
Chem 352, Lecture 5 - Carbohydrates 13

13-1

Monosaccharides

H^{✓Ö}, R1

Alcohol

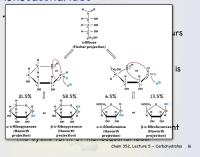

·Cyclization of aldoses and ketoses

13-2

O Aldehyde O_{R_1} н⊕ _H∽Ö_{R1} Hemiacetal (chiral) Alcohol

> Hemiketal (chiral)

14-2 Monosaccharides ·Cyclization of aldoses and ketoses + An aldehyde can react spontaneously with an alcohol to form a hemiacetal. * A ketone can react spontaneously with an alcohol to form a hemiketal. + Both of these reactions leads to the formation of a new chiral carbon Chem 352, Lecture 5 - Carbohydrates 14 15-1 Monosaccharides ·Cyclization of aldoses and ketoses * The six-member rings are called pyranose * The five-member rings are called furanose rings. Chem 352, Lecture 5 - Carbohydrates 15 15-2 Monosaccharides ·Cyclization of aldoses and ketoses + The six (a) d pyranose rings + The fiv ed furanose rings. Pvran (b) **Furan** em 352, Lecture 5 - Carbohydrates 15 15-3 Monosaccharides ·Cyclization of aldoses and ketoses * The six-member rings are called pyranose rings * The five-member rings are called furanose rings. Chem 352, Lecture 5 - Carbohydrates 15 16-1 Monosaccharides ·Cyclization of aldoses and ketoses + For aldoses and ketoses, this reaction occurs intramolecularly and leads to a cyclic molecule. + The chiral hemiacetal or hemiketal carbon is called the anomeric carbon. · The new stereoisomers are designated α (-OH down) and β anomers (-OH up). + Haworth projections are used to represent the cyclic form of monosaccharides. Chem 352, Lecture 5 - Carbohydrates


Monosaccharides

·Cyclization of aldoses and ketoses

- + For aldoses and ketoses, this reaction occurs intramolecularly and leads to a cyclic molecule.
- + The chiral hemiacetal or hemiketal carbon is called the anomeric carbon.
- · The new stereoisomers are designated α (-OH down) and β anomers (-OH up).
- * Haworth projections are used to represent the cyclic form of monosaccharides.

16-3

Monosaccharides

16-4

Monosaccharides

·Cyclization of aldoses and ketoses

- + For aldoses and ketoses, this reaction occurs intramolecularly and leads to a cyclic molecule.
- + The chiral hemiacetal or hemiketal carbon is called the anomeric carbon.
- · The new stereoisomers are designated α (-OH down) and β anomers (-OH up).
- * Haworth projections are used to represent the cyclic form of monosaccharides.

 Chem 352, Lecture 5 - Carbol

16-5

Monosaccharides

·Cyclization of aldoses and ketoses

- * pyranose rings
- D-glucopyranose (aldohexose)
 D-mannopyranose (aldohexose)
 D-galactopyranose (aldohexose)

- + furanose rings
 . D-fructofuranose (ketohexose)
- · D-ribofuranose (aldopentose)

17

Cyclization of aldoses and ketoses An aldehyde can react spontaneously with an alcohol to form a hemiacetal. A ketone can react spontaneously with an alcohol to form a hemiketal. Both of these reactions leads to the formation of a new chiral carbon	18-1	
Monosaccharides Cyclization of aldoses and ketoses An aldehyde can react spontaneously with O Aldehyde R C H R C H H B R ₁ Hemiacetal (chiral)	18-2	
Monosaccharides -Conformations of Monosaccharides - Monosaccharides can have different conformations.	19-1	
Conformations of Monosaccharides • Monosaccharides can have different conformations. (a) HOCH2 ON HOCH2 ON HOH HOW HOW HOW HOW HOW HOW HOW HOW HOW	19-2	
Monosaccharides -Conformations of Monosaccharides - Monosaccharides can have different conformations.	19-3	

Monosaccharides ·Conformations of Monosaccharides + Monosaccharides can have different conformations. Chair conformation Chem 352, Lecture 5 - Carbohydrates 19

Monosaccharides

·Conformations of Monosaccharides

+ Monosaccharides can have different conformations.

Chem 352, Lecture 5 - Carbohydrates 19

19-5

Monosaccharides

·Derivatives of monosaccharides are produced by chemical modifications.

- + Phosphate esters
- * Deoxy sugars

 One of the hydroxyl groups is replaced with a hydrogen
- * Amino sugars

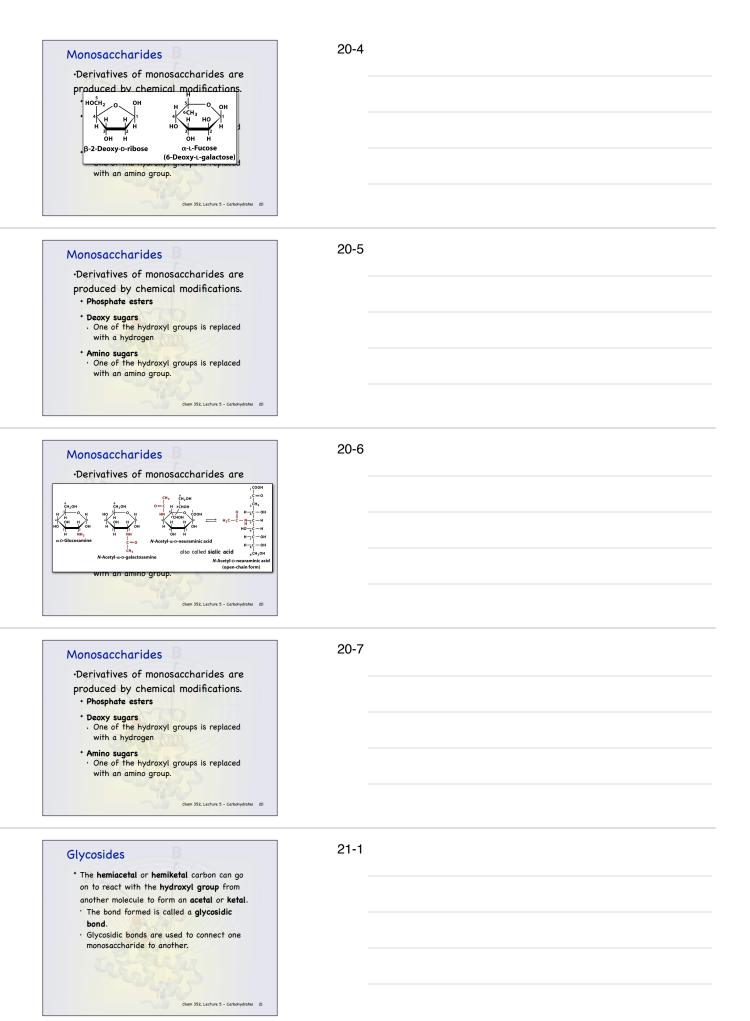
 One of the hydroxyl groups is replaced with an amino group.

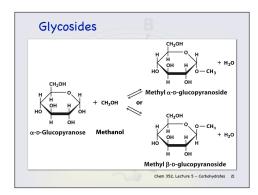
Chem 352, Lecture 5 - Carbohydrates 20

Chem 352, Lecture 5 - Carbohydrates

20-1

Monosaccharides


20-2


Monosaccharides

·Derivatives of monosaccharides are produced by chemical modifications.

- + Phosphate esters
- * Deoxy sugars
 . One of the hydroxyl groups is replaced with a hydrogen
- Amino sugars
 One of the hydroxyl groups is replaced with an amino group.

20-3			

Glycosides

- The hemiacetal or hemiketal carbon can go on to react with the hydroxyl group from another molecule to form an acetal or ketal.
- * The bond formed is called a glycosidic bond.
- Glycosidic bonds are used to connect one monosaccharide to another.

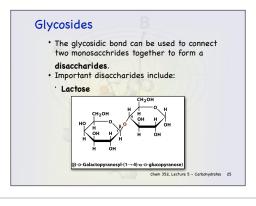
Chem 352, Lecture 5 - Carbohydrates 21

21-3

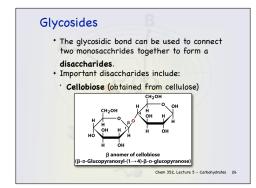
Glycosides

- Unlike hemiacetals and hemiketals, acetals and ketals cannot open and close dynamically,
- The glycosidic bond blocks a pyranose or furanose ring from reopening again.
- In cells, glycosidic bond formation is enzyme catalyzed and requires a source of free energy.

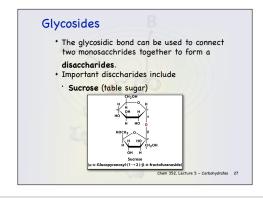
Chem 352, Lecture 5 - Carbohydrates 22


22-1

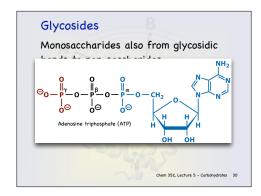
Glycosides	
CH ₂ OH H OH H OH H OH OH H OH OH	$\begin{array}{c} \text{CH}_2\text{OH} \\ \text{H} \\ \text{OH} \\ \text{H} \\ \text{OH} \\ \text{H} \\ \text{OH} \\ \text{OH} \\ \text{H} \\ \text{OH} \\ \text{Methyl} \beta\text{-D-glucopyranoside} \\ \end{array}$
	Chem 352, Lecture 5 - Carbohydrates 22


22-2

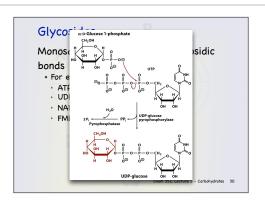
Glycosides	В
CH ₂ OH H OH H OH	Methyl α-D-glucopyranoside or CH ₂ OH H O O CH ₃ H H O O CH ₃ H H H O O CH ₃ H H H O O CH ₃ H H H H O O CH ₃
	Chem 352, Lecture 5 - Carbohydrates 22


Glycosides • Unlike hemiacetals and hemiketals, acetals and ketals cannot open and close dynamically, • The glycosidic bond blocks a pyranose or furanose ring from reopening again. • In cells, glycosidic bond formation is enzyme catalyzed and requires a source of free energy.	22-4	
Monosaccharides Cyclized aldoses and ketoses tend to get locked into the following ring configurations • pyranose rings • D-glucopyranose (aldohexose) • D-mannopyranose (aldohexose) • D-galactopyranose (aldohexose) • furanose rings • D-fructofuranose (ketohexose) • D-ribofuranose (aldopentose)	23	
Figure 3. Chair 32, Lecture 5 - Carbohydrates • The glycosidic bond can be used to connect two monosacchrides together to form disaccharides. • Important disaccharides include: • Maltose (obtained from starch) • Maltose (obtained from starch) • CH2OH	24-1	
Figure 2 - Carbohydrates 24	24-2	
Form 352, Lecture 5 - Carbohydrates • The glycosidic bond can be used to connect two monosacchrides together to form disaccharides. • Important disaccharides include: • Maltose (obtained from starch) • (1-4) glycosidic bond B-anonomer Grand 352, Lecture 5 - Carbohydrates 24	24-3	

	glycosidic bond can be used to connect monosacchrides together to form a
	ccharides. ortant disaccharides include:
, Fe	ctose (milk sugar)
	CH ₂ OH H H H H H H H H H H H H H H H H H H

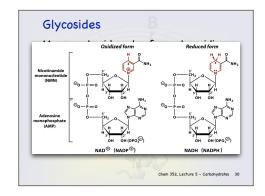


26


27-1

 The glycosidic bond can be used to connect two monosacchrides together to form a
disaccharides. • Important disccharides include
' Sucrose (table sugar)
CH5ON M 21-52 glycosidic be
HOCH ₂ -O B C C C C C C C C C
Sucrose (α-p-Glucopyranosyl-(12)-β-p-fructofuranoside)

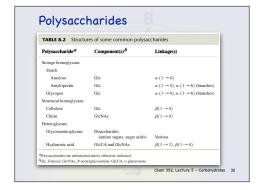
Glycosides Monosaccharides also from glycosidic bonds to non-saccharides. • For example, nucleotides. • ATP • UDP-glucose • NAD and NADP • FMN and FAD


30-3

30-4

Glycosides Monosaccharides also from glycosidic bonds to non-saccharides. • For example, nucleotides. • ATP • UDP-glucose • NAD and NADP • FMN and FAD

30-5


30-7 Glycosides Monosaccharides also from glycosidic bonds to non-saccharides. + For example, nucleotides. · ATP · UDP-glucose · NAD and NADP · FMN and FAD 30-8 Glycosides Monosaccharides also from glycosidic nucleotide (FMN) 30-9 Glycosides Monosaccharides also from glycosidic bonds to non-saccharides. + For example, nucleotides. · ATP · UDP-glucose · NAD and NADP · FMN and FAD Chem 352, Lecture 5 - Carbohydrates 30 31 Glycosides Ribitol is an example of a sugar alcohol. · Where the aldehyde or ketone is reduced to an alcohol. сн₂он с॑ — он с — он сн₂он ċ-н _ он но CH₂OH сн₂он Glycerol myo-Inositol D-Ribitol Chem 352, Lecture 5 - Carbohydrat 32-1 Polysaccharides Expanding the formation of glycosidic bonds can be extended to form polymers of monosaccharides called glycans.

* Homoglycans contain repeating units of the

Chem 352, Lecture 5 - Carbohydrates 32

* Heteroglycans contain multiple units of different monosaccharides

same monosaccharide.

Polysaccharides

Expanding the formation of glycosidic bonds can be extended to form polymers of monosaccharides called glycans.

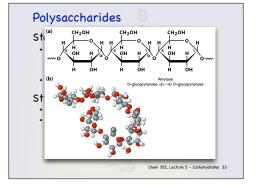
- + Homoglycans contain repeating units of the same monosaccharide.
- * Heteroglycans contain multiple units of different monosaccharides

Chem 352, Lecture 5 - Carbohydrates 32

Chem 352, Lecture 5 - Carbohydrates 33

Polysaccharides

Storage forms of glucose


- + Starch (plants) Amylose
- · Amylopectin
- + Glycogen (animals)

Structural polysaccharides

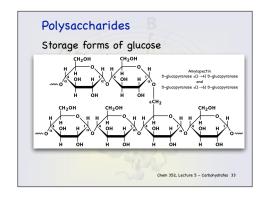
* Cellulose (plant) * Chitin (animals)

33-1

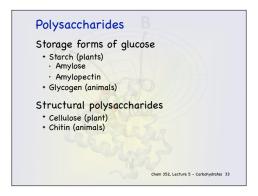
32-3

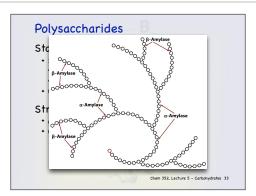
33-2

Polysaccharides

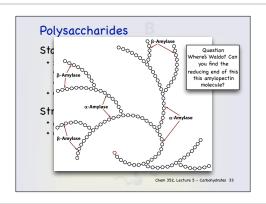

Storage forms of glucose

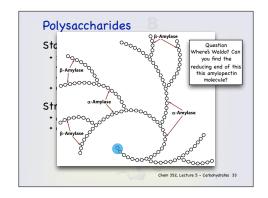
- + Starch (plants)
- · Amylose
- · Amylopectin
- + Glycogen (animals)

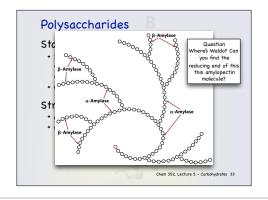

Structural polysaccharides


- * Cellulose (plant) * Chitin (animals)

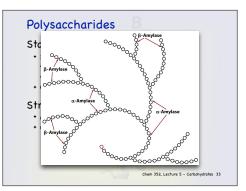
33-3

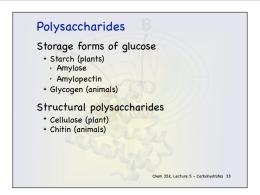


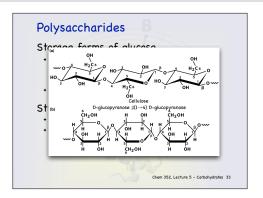


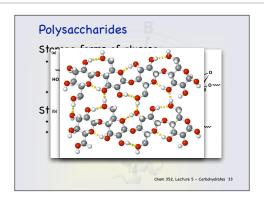


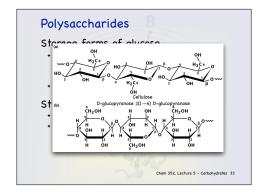
33-6




33-7

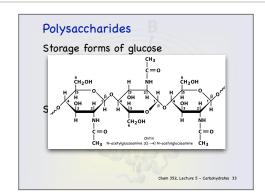


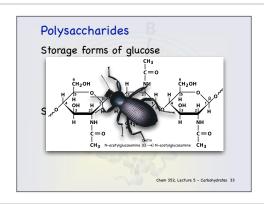




33-11

33-12

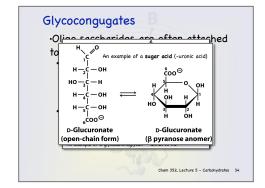



Polysaccharides Storage forms of glucose • Starch (plants) • Amylose • Amylopectin • Glycogen (animals) Structural polysaccharides • Cellulose (plant) • Chitin (animals)

Chem 352, Lecture 5 - Carbohydrates 33

33-15

33-16


Storage forms	of glucose
+ Starch (plants)	
Amylose	
 Amylopectin Glycogen (animal 	als)
Structural poly	vsaccharides
* Cellulose (plant	
+ Chitin (animals)	
	Chem 352, Lecture 5 - Carbohydrates 3:

33-18	3			

Glycocongugates Oligo saccharides are often attached to biological molecules To proteins and peptides Proteoglycans (connective tissue) Peptidoglycans (bacterial cell walls) Glycoproteins To lipids Orlented State

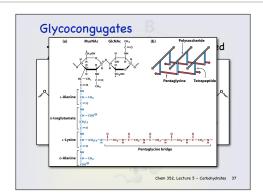
·Ol	ing saccharides are often attached	
to	Hyaluronic acid ČH ₂ OH	
	6 B H 5 O O ²⁵	
+	coo⊖ H H Nβ	
\	н <u>15 О но 3 21 н</u>	
	γ oh h γ h Nh	
	_{of} O 3 21 H	
	r C=0	
	ĊHa	
	GICUA An example of a glycosaminoglycan GICNAC	
Į.	All example of a grycosaninogrycan	

34-2

34-3

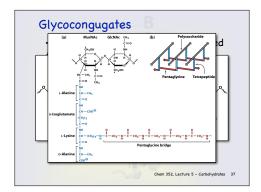
H, 0	
] 'c"	
н-₂с — он	င့်၀၀⊖
но-₃с-н	н 🔭 О ОН
н–₄с−он	² 4 он н 1 н
H—coo⊝	H OH
D-Glucuronate (open-chain form)	D-Glucuronate (β pyranose anomer)

Monosaccarides

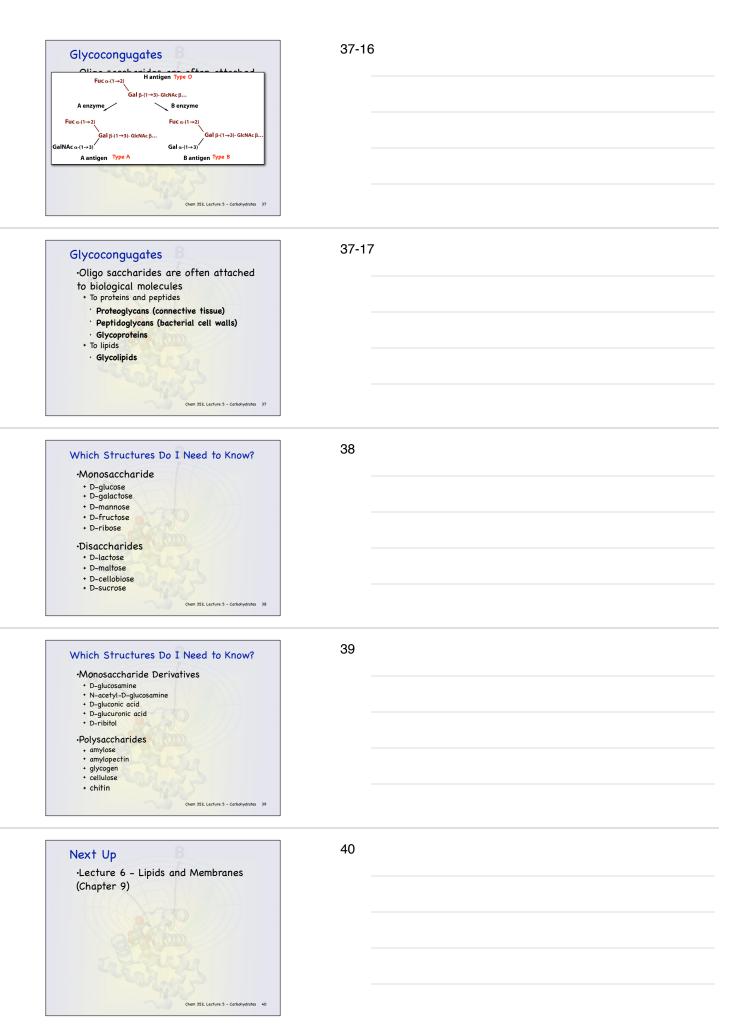

35

Monosaccarides * Sugar acids are sugars in which either the aldehyde or primary alcohol is oxidized to a carboxylic acid. **Option of the content of the carboxylic acid.** **Option of the carboxylic acid.**

36


37-1 Glycocongugates ·Oligo saccharides are often attached to biological molecules To proteins and peptides Proteoglycans (connective tissue) ' Peptidoglycans (bacterial cell walls) • Glycoproteins • To lipids Glycolipids Chem 352, Lecture 5 - Carbohydrates 37 37-2 Glycocongugates Proteoglycans (core proteins with glycosaminoglycan chains attached) Central strand of hyaluronic acid Chem 352, Lecture 5 - Carbohydrates 37-3 Glycoco Proteoglyc onic acid 37-4 Glycocongugates Proteoglycans (core proteins with glycosaminoglycan chains attached) Central strand of Chem 352, Lecture 5 - Carbohydrates 37-5 Glycocongugates ·Oligo saccharides are often attached to biological molecules + To proteins and peptides Proteoglycans (connective tissue) Peptidoglycans (bacterial cell walls) · Glycoproteins + To lipids · Glycolipids

G	lycocongugates 📙	
o de	(a) Murthac GloRAc (vs. (b) Polyan (c) Control (c) Con	Charide d d d d d d d d d d d d d d d d d d
_	L-Lysine CH - (CH ₃) ₆ - N - C - CH ₂ - N - C - CH ₃ - N -	-č-cu ₂ -N-
	o-Alanine ch-Ots coo 9	: 5 - Carbohydrates 37


37-8

37-9

La la la CH3	-ill	CH ₃	n attached
C=0 H NH	с̂н₂он	t=0	с́н₂он
OH H	H NH	H H H	NH NH
ç.12011	HC — CH ₃ C = 0	6112011	HC — CH ₃ C = 0 COO
GlcNAc	MurNAc	GlcNAc	MurNAc

37-11 Glycocongugates ·Oligo saccharides are often attached to biological molecules To proteins and peptides Proteoglycans (connective tissue) Peptidoglycans (bacterial cell walls) • Glycoproteins • To lipids Glycolipids Chem 352, Lecture 5 - Carbohydrates 37 37-12 Glycocongugates ·Oligo saccharides are often attached to biological molecules • To proteins and peptides S-linked glycoprotein N-linked glycoprotein Chem 352, Lecture 5 - Carbohydrates 37 37-13 Glycocongugates 37-14 Glycocongugates ·Oligo saccharides are often attached to biological molecules To proteins and peptides Chem 352, Lecture 5 - Carbohydrates 37-15 Glycocongugates ·Oligo saccharides are often attached to biological molecules To proteins and peptides Proteoglycans (connective tissue) Peptidoglycans (bacterial cell walls) · Glycoproteins + To lipids · Glycolipids

