Chem 352 - Lecture 4
Part II: Enzyme Catalysis

Enzymes are biological catalysts; nearly every reaction that takes place in a
living cell is catalyzed by an enzyme. Most enzymes are proteins, with some
requiring non-protein components called coenzymes in order to function. The
control of enzymatic activity plays a central roll in controlling the activities and
proper functioning of a living cell.



Introduction to Enzyme Catalysis

Enzymes can be amazingly proficient.

TABLE 5.2 Catalytic proficiencies of some enzymes

Nonenzymatic Enzymatic

rate constant rate constant Catalytic

(£, ins™1) (£,/K_ inM~1s~1)  proficiency
Carbonic anhydrase 5™ 7 5% 10° 7% 107
Chymotrypsin 4 X 107° 9 X 107 2 % 10'e
Chorismate mutase 1077 2 X 108 2 % 101!
Triose phosphate isomerase 4 X 107° 4 x 10% 1o
Cytidine deaminase T 3 x 10° 3 % 10%°
Adenosine deaminase 2 % 1070 10 5% 10'
Mandelate racemase 3% 1071 100 3 % 10"
B-Amylase 7 % 1074 107 10
Fumarase 171 10” 10%!
Arginine decarboxylase g X q0 e 10° 10!
Alkaline phosphatase TR 3 X 107 3 % 107
Orotidine 5’-phosphate

decarboxylase 3 x 10716 6 X 107 2 % 107
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Introduction to Enzyme Catalysis

Overview
+ Review of chemical reactions mechanisms

+ Discussion of catalysis in general terms

+ Examination of some major modes of
enzymatic catalysis

» acid/base catalysis
» covalent catalysis
» substrate binding

» transition state stabilization
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Chemical Reaction Mechanisms
A chemical mechanism lays out in
detail the steps in a chemical reaction.

+ With a focus on
» the making and breaking of covalent bonds.

» the movement of electrons at each step in a
reaction.
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Chemical Reaction Mechanisms

We will focus on three possible
aspects to a reaction mechanism:

+ Nucleophilic substitution

+ Covalent bond cleavage
+ Oxidation/Reduction

These are not necessarily independent
of one another.

+ e.g. Oxidation/Reduction can also involve
covalent bond cleavage.
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Chemical Reaction Mechanisms

Nucleophilic substitution

* nucleophiles vs electrophiles
+ Nucleophilic attack on a carbonyl group

0 o® 0
< — || o
C — R—C—X C + X
Y Sy [\ o’ Ny
Y
+O

+ SN2 reaction with pentacoordinate transition
state

o R, R, Rz\ R, R, R,
X \}c — X---C---Y p—. \c\s + YO
/ \ | \j / \
Ry Y R, X R;
Transition state
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Chemical Reaction Mechanisms

Covalent bond cleavage reactions

+ Formation of carbanion and hydrogen ion

S ®
R, o H R,—C: *+ H Both of the
bonding
. . : : electrons
+ Formation of carbocation and hydride ion

@ @ one of the

R, GO H GRS~ + H 3 picaneis

» This mechanism is used in dehydrogenation
oxidation/reduction reactions.
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Chemical Reaction Mechanisms

Covalent bond cleavage

» Formation of free radicals

One of the
two bonding
R,O—OR, —» R;0* + *OR, electrons
stays with
each of the
products
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Chemical Reaction Mechanisms

Oxidation/Reduction Reactions

+ These reactions are used to extract energy
from the foods we eat.

+ Definitions of oxidation and reduction

Oxidation Reduction
Gain oxygen Lose oxygen
Lose electrons Gain electrons

Lose hydrogen | Gain hydrogen
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Chemical Reaction Mechanisms
Oxidation/Reduction

+ Dehydrogenation reactions represent a large
fraction of the biological oxidation/reduction

reactions.
» Usually involves a cleavage reaction that

forms a carbocation.

» e.g. alcohol dehydrogenase
O
|

CH-—CH.=OH £+ ANAD" —=> aaCHE-C——H + NADH + H*
ethanol acetaldehyde

+ In this reaction, NAD+ is the oxidizing
reagent
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Chemical Reaction Mechanisms
Oxidation/Reduction

+ By accepting the hydride ion, NAD+ is often
the oxidizing reagent in dehydrogenation
reactions.

+* NAD stands for nicotinamide-adenosine-
dinucleotide.
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Chemical Reaction Mechanisms
Oxidation/Reduction

Oxidized form Reduced form
H 0 H {.H (o)

NH,

Nicotinamide
mononucleotide
(NMN)

Adenosine
monophosphate

(AMP)

OH OH (0P03® )

NAD® (NADP®) NADH (NADPH)
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Chemical Reaction Mechanisms
Oxidation/Reduction

+ By accepting the hydride ion, NAD+ is often
the oxidizing reagent in dehydrogenation
reactions.

+* NAD stands for nicotinamide-adenosine-
dinucleotide.
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Catalysts Speed Up Reactions

Catalysts speed up reactions by
lowering the free energy of the
transition state.

Eact >0
without catalyst
Free -
Energy S with CatalySt
(G)
AG<O0
spontaneous

Progress of reaction
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Catalysts Speed Up Reactions

Intermediates are represented by
valleys in the reaction profile.

Transition states

Free energy

Reaction coordinate
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Catalysts Speed Up Reactions

We will focus on two ways that
enzyme catalysts do this.

* The enzyme provides chemical catalysts

* The binding of substrates and transition

state intermediates lowers the entropy for
the reaction and helps to stabilizes the
transition states.

14
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Catalysts Speed Up Reactions

We will focus on two ways that
enzyme catalysts do this.

Uncatalyzed reaction

rgy

Transition state

N\

A

lﬁe provides chemical catalysts

ng of substrates and transition

rmediates lowers the entropy for
lon and helps to stabilizes the
states.

14
Chem 352, Lecture 4 - Part II, Enzyme Catalysis



Catalysts Speed Up Reactions

We will focus on two ways that
enzyme catalysts do this.

Uncatalyzed reaction

Free energy

Transition state

N

Reaction coordinate

Effect of reactants being bound by enzyme

Free energy

catalysts

transition

entropy for
1zes the

Reaction coordinate

14
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Catalysts Speed Up Reactions

We will focus on two ways that
enzyme catalysts do this.

Effect of reactants and transition state
being bound by enzyme

Uncatalyzed reaction Effect of reactants being bound by enzyme

Transition state

N

¢

> > N
[®)] [@)] d o A
e - (@)
() (J] el
c c ()}
(7] 7] 5
2 : 2
s c o A—B
L (™
E__—A
[ o
( | ‘B

Reaction coordinate Reaction coordinate

Reaction coordinate

14
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Catalysts Speed Up Reactions

We will focus on two ways that
enzyme catalysts do this.

* The enzyme provides chemical catalysts

* The binding of substrates and transition

state intermediates lowers the entropy for
the reaction and helps to stabilizes the
transition states.

14
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Chemical Modes of Enzymatic Catalysis

Functional groups present at the
active site of an enzyme can provide
alternative pathways from substrate to
product.
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Chemical Modes of Enzymatic Catalysis

The most common catalytic groups
come from the polar amino acid side
chains, which are embedded in a non-
polar environment of the active site

TABLE 6.1 Catalytic functions of reactive groups of ionizable amino acids
Amino Reactive Net charge Principal

acid group atpH 7 functions

Aspartate —CO0® == Cation binding; proton transfer
Glutamate —C00° —1 Cation binding; proton transfer
Histidine Imidazole Near 0 Proton transfer

Cysteine — CH,SH Near 0 Covalent binding of acyl groups
Tyrosine Phenol 0 Hydrogen bonding to ligands
Lysine N H3® = Anion binding; proton transfer
Arginine Guanidinium +1 Anion binding

Serine — CH,0OH 0 Covalent binding of acyl groups
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Chemical Modes of Enzymatic Catalysis

The most common catalytic groups
come from the polar amino acid side

C h al ns, W TABLE 6.3 Frequency distribution of

catalytic residues in enzymes.

polar envi

TABLE 6.1 Ca

Amino
acid
Aspartate
Glutamate
Histidine
Cysteine
Tyrosine
Lysine
Arginine

Serine

S ———

His
Asp
Arg
Glu
Lys

Tyr
Asn
Ser
Gly

% of
catalytic
residues

18
15

% of

residues

IN @ non-
tive site

mino acids

|g; proton transfer
|g; proton transfer
r

ing of acyl groups
pding to ligands

B; proton transfer

B
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Chemical Modes of Enzymatic Catalysis

The most common catalytic groups
come from the polar amino acid side
chains, which are embedded in a non-
polar environment of the active site

TABLE 6.1 Catalytic functions of reactive groups of ionizable amino acids
Amino Reactive Net charge Principal

acid group atpH 7 functions

Aspartate —CO0® == Cation binding; proton transfer
Glutamate —C00° —1 Cation binding; proton transfer
Histidine Imidazole Near 0 Proton transfer

Cysteine — CH,SH Near 0 Covalent binding of acyl groups
Tyrosine Phenol 0 Hydrogen bonding to ligands
Lysine N H3® = Anion binding; proton transfer
Arginine Guanidinium +1 Anion binding

Serine — CH,0OH 0 Covalent binding of acyl groups
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Chemical Modes of Enzymatic Catalysis

The most common catalytic groups
come from the polar amino acid side
chains, w In a non-

TABLE 6.2 Typical pKa values of
Oldl" env' ionizable groups of amino acids in IV€ s|.|.e
P proteins

TABLE 6.1 ( Group PAa Ino acids
Amino Terminal a-carboxyl 34
acid : .

Side-chain carboxyl 4-5 3
Aspartate Imidazole 6—7 proton transfer
Glutamate Tl c-amiie 75_9 proton transfer
Histidine )

Thiol 8-9.5
Cysteine of acyl groups
Tvrosi Phenol 9.5-10 :

yrosine ng to ligands

Lysine g-Amino =10 roton transfer
Arginine Guanidine =]2
Serine Hydroxymethyl ~16 of acyl groups
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Chemical Modes of Enzymatic Catalysis

The most common catalytic groups
come from the polar amino acid side
chains, which are embedded in a non-
polar environment of the active site

TABLE 6.1 Catalytic functions of reactive groups of ionizable amino acids
Amino Reactive Net charge Principal

acid group atpH 7 functions

Aspartate —CO0® == Cation binding; proton transfer
Glutamate —C00° —1 Cation binding; proton transfer
Histidine Imidazole Near 0 Proton transfer

Cysteine — CH,SH Near 0 Covalent binding of acyl groups
Tyrosine Phenol 0 Hydrogen bonding to ligands
Lysine N H3® = Anion binding; proton transfer
Arginine Guanidinium +1 Anion binding

Serine — CH,0OH 0 Covalent binding of acyl groups

Chem 352, Lecture 4 - Part II, Enzyme Catalysis



Chemical Modes of Enzymatic Catalysis

Acid/Base catalysis

+ Example: General base catalysis can assist in
the cleavage of a peptide bond.

N —

N

- p
C
(.
(0)

7
WA H B
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Chemical Modes of Enzymatic Catalysis

Acid/Base catalysis

+ Example: General acid catalysis can assist in a
dehydration reaction.

+ OH2 makes a better leaving group than OH-

H®

Slow \> Fast
R® + OH© <— R—OH ——— R—OH,? =5 R® ; H,0

e
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Chemical Modes of Enzymatic Catalysis

Acid/Base catalysis

+ The pKas for acid/base groups at the active
site need to be near the local pH for this to
work.

+ pH can affect the activity of an enzyme if
there are general acid/base catalysts involved
In the reaction.
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Chemical Modes of Enzymatic Catalysis
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Chemical Modes of Enzymatic Catalysis
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Chemical Modes of Enzymatic Catalysis
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Chemical M¢
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Chemical Modes of Enzymatic Catalysis
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Chemical Modes of Enzymatic Catalysis

Acidﬁﬂammi&h@
+ T EJ Panain I;iye
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Chemical Modes of Enzymatic Catalysis
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Chemical Modes of Enzymatic Catalysis

Acid/Base catalysis

+ The pKas for acid/base groups at the active
site need to be near the local pH for this to
work.

+ pH can affect the activity of an enzyme if
there are general acid/base catalysts involved
In the reaction.
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Chemical Modes of Enzymatic Catalysis

Acid/Base catalysis

+ Triose phosphate isomerase illustrates both
general acid and base catalysis.

H O
1 Triose \ 7
CH,OH phosphate C
| isomerase |
2<|: =0 = > H— (IZ — OH
3CH20P03® CH20P03@
Dihydroxyacetone D-Glyceraldehyde
phosphate (DHAP) 3-phosphate
(G3P)
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Chemical Modes of Enzymatic Catalysis
Acid/Base catalysis

His-

erase illustrates both
catalysis.

D-Glyceraldehyde
3-phosphate
(G3P)
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Chemical Modes of Enzymatic Catalysis

Acid/Base catalysis

His-95
/\ o =
H CH,
©
0 H\Ié/on p=(
W PP e oo
2c|=o'
3CH,0PO,
Glu-165
His-95

3CH,0P0 2

Enediol intermediate

His-95
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Chemical Modes of Enzymatic Catalysis
TIM is Diffusion-Controlled

» Simple reactions, like that of triose
phosphate isomerase (TIM), are rate limited
by the binding of the substrate.

TABLE 6.4 Enzymes with second-order rate constants near the upper limit

Enzyme Substrate Keat/Ky(M™1s71)*
Catalase H>0, 4 X 10’
Acetylcholinesterase Acetylcholine 2% 10°

Triose phosphate isomerase D-Glyceraldehyde 3-phosphate 4 x 108

Fumarase Fumarate 10°

Superoxide dismutase . O? 2 X 10°

" The ratio keat/K m 18 the apparent second-order rate constant for the enzyme-catalyzed reaction E + S—E + P.
For these enzymes, the formation of the ES complex can be the slowest step.
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Chemical Modes of Enzymatic Catalysis

TIM is Diffusion-Controlled

» Simple reactions, like that of triose

phosphate isomerase (TIM), are rate limited

g
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E+DHAP E-DHAP

Reaction coordinate
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Chemical Modes of Enzymatic Catalysis
TIM is Diffusion-Controlled

» Simple reactions, like that of triose
phosphate isomerase (TIM), are rate limited
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Chemical Modes of Enzymatic Catalysis

TIM is Diffusion-Controlled

» Simple reactions, like that of triose

phosphate isomerase (TIM), are rate limited

g
Freejenergy

Catala
Acetyl
Triose
Fumar
Superq

“ The ratid
For these

Enediol E-G3P E+G3P
intermediate P,

E+DHAP E-DHAP

Reaction coordinate
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Chemical Modes of Enzymatic Catalysis
TIM is Diffusion-Controlled

» Simple reactions, like that of triose
phosphate isomerase (TIM), are rate limited
by the binding of the substrate.

TABLE 6.4 Enzymes with second-order rate constants near the upper limit

Enzyme Substrate Keat/Ky(M™1s71)*
Catalase H>0, 4 X 10’
Acetylcholinesterase Acetylcholine 2% 10°

Triose phosphate isomerase D-Glyceraldehyde 3-phosphate 4 x 108

Fumarase Fumarate 10°

Superoxide dismutase . O? 2 X 10°

" The ratio keat/K m 18 the apparent second-order rate constant for the enzyme-catalyzed reaction E + S—E + P.
For these enzymes, the formation of the ES complex can be the slowest step.
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Chemical Modes of Enzymatic Catalysis

Covalent bond catalysis

+ For some enzymes, the transition state
intermediate is covalently bonded to the

enzyme.
A—X + E X=xE + A

X—E St BaW s=—=FV B—X + E

A—X + B —/— B—X + A

» We will see an example of this when we
look at the details of the serine protease
catalyzed reactions
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Chemical Modes of Enzymatic Catalysis

Covalent bond catalysis

+ For some enzymes, the transition state
intermediate is covalently bonded to the
enzyme.

A — VY A E — AV AN, - 4 A

Ping-pong reaction

E (EA)(FP) F (FB)(EQ) E

catalyzed reactions
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Chemical Modes of Enzymatic Catalysis

Covalent bond catalysis

+ For Sequential reactions
inte

A B P Q
s I |
Ping-pq ¢ EA  (EAB) (EPQ)  EQ E
Ordered
p

Random
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Chemical Modes of Enzymatic Catalysis

Covalent bond catalysis

+ For some enzymes, the transition state
intermediate is covalently bonded to the
enzyme.

A — VY A E — AV AN, - 4 A

Ping-pong reaction

E (EA)(FP) F (FB)(EQ) E

catalyzed reactions

Chem 352, Lecture 4 - Part II, Enzyme Catalysis



Chemical Modes of Enzymatic Catalysis

Covalent bond catalysis

+ For some enzymes, the transition state
intermediate is covalently bonded to the

enzyme.
A—X + E X=xE + A

X—E St BaW s=—=FV B—X + E

A—X + B —/— B—X + A

» We will see an example of this when we
look at the details of the serine protease
catalyzed reactions
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Binding Modes of Enzymatic Catalysis

+ Acid/Base catalysis and covalent bond
catalysis can account for an approximately 10
to 100 fold increase in the reaction rates

+ However, 108 fold increases are observed
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Binding Modes of Enzymatic Catalysis

+ Enzymes also bind of substrates and orient
them relative to one another and to catalytic
groups on the enzyme.
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Binding Modes of Enzymatic
The Proximity Effect

+ The binding of substrates creates a high
effective local concentration of substrates.

+ It also decreases the entropy of the
substrates.
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Binding Modes of Enzymatic

TI Reaction Relative rate
constants

I r

H3C—C—/\0 Br H3C—C

11. +\ _— /o + %o Br 1

HsC—C—0® H3C—C
I \
0 0]
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Binding Modes of Enzymatic
The Proximity Effect

+ The binding of substrates creates a high
effective local concentration of substrates.

+ It also decreases the entropy of the
substrates.
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Binding Modes of Enzymatic Catalysis

+ The favorable binding of the transition state
helps to lower the activation barrier and,
therefore, speed up a reaction

+ However, if the binding of substrate is too
favorable, the overall reaction rate can be
negatively effected.
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Binding Modes of Enzymatic Catalysis

Nonenzymatic Enzymatic
reaction reaction
G#
A

Free energy

Reaction coordinates
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Binding Modes of Enzymatic Catalysis

+ The favorable binding of the transition state
helps to lower the activation barrier and,
therefore, speed up a reaction

+ However, if the binding of substrate is too
favorable, the overall reaction rate can be
negatively effected.

Chem 352, Lecture 4 - Part II, Enzyme Catalysis 26



Binding Modes of Enzymatic Catalysis
"Lock and Key” model

+ In the late 1880s Emil Fischer, with his “lock
and key” model, predicted what we know now
to be the contribution of substrate binding to
enzyme catalysis.

+ In the 19605, Daniel Koshland proposed an
alternative “induced fit” model
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Binding Modes of Enzymatic Catalysis
"Induced fit” model

+ In the “induced fit” model, substrate binding
induces conformational changes in the
enzyme.

+ Hexokinase provides a good example of
“induced fit”

HO—CH, @cl)
Hexokinase
OH H + ATR. == OH H + ADP
OH OH OH OH
H OH H OH
D-glucose D-glucose 6-phosphate
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http://www.chem.uwec.edu/Chem352_S10/pages/models/hexokinase.html

Binding Modes of Enzymatic Catalysis

Hexokinase, with (1BDG) and without (1HKG) bound substrate (glucose)

(*) without glucose
(O with glucose

) Spacefill On/Off

) Spin On/Off
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Binding Modes of Enzymatic Catalysis

Stabilizing the transition state

+ Some of the most potent enzyme inhibitors
are transition state analogues.

(a)

NH,
O\

N
e
\N I}I

Ribose

Adenosine
(substrate)

Adenosine deaminase

Ribose

Covalent hydrate

NH, o
_L) HN 6| N\>
N
o
Ribose
Inosine
(product)
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Binding Modes of Enzymatic Catalysis

Stabilizing the transition state

+ Some of the most potent enzyme inhibitors
are transition state analogues.

(a) — -
H,O 2N _OH NH
(\ . &2’ \\\ .

N/6 N \) HN 6 N\ ) HN N\
LA | LY LAy

Ribose Ribose Ribose
Adenosine Covalent hydrate Inosine
(substrate) (product)

(b) H (c)
H,O H OH H,/ H
Z N % N 6 N
NZ% , \s |, HN] HN: )
NS WA . N
{ N~ N
I H,0 I .
Ribose Ribose Ribose

Purine ribonucleoside Transition-state 1,6-Dihydropurine
(substrate analog) analog ribonucleoside
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Binding Modes of Enzymatic Catalysis

Stabilizing the transition state

+ Some of the most potent enzyme inhibitors
are transition state analogues.

(a) .. — —
(\N%: s H ZN :\)H NH, (o)
NZe N \§ HN7 &N 2 HNT NN
L LY —= ] LD N y
N~ N N |?| N~ N The binding
Ribose Ribose Ribose aFﬁnHy for the
Adenosine Covalent hydrate Inosine transition state
(substrate) (product) analogue is 108
® 9 higher ’rhc%n
H,0 H JOH H H that for either
N7 N\> \, . HNT® | N\> HN S N\> the substrate or
KN N N KN N | product.
n H,O n |
Ribose Ribose Ribose
Purine ribonucleoside Transition-state 1,6-Dihydropurine
(substrate analog) analog ribonucleoside
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Binding Modes of Enzymatic Catalysis
Catalytic Antibodies (Abzymes)

+ Transition state analogues have been used to
create antibodies having catalytic activity.

(b) o
|

0
00C —(CHy);—C—N—<"  H—C—N—" )—NO,

KOH@
0 0
| |

©00¢C —(CH,);—C N //\:\>—c—o@ E: H2N—QN02

Carboxylate p-Nitroaniline
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Binding Modes of Enzymatic Catalysis
Catalytic Antibodies (Abzymes)

+ Transition state analogues have been used to
create antibodies having catalytic activity.

(b)

D

(0)
<
C N
( \
.O.
H A H

B

Carboxylate

p-Nitroaniline
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Binding Modes of Enzymatic Catalysis
Catalytic Antibodies (Abzymes)

+ Transition state analogues have been used to
create antibodies having catalytic activity.
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Binding Modes of Enzymatic Catalysis
Catalytic Antibodies (Abzymes)

+ Transition state analogues have been used to
create antibodies having catalytic activity.

(b)

0
s | 7\ II /_\/ I

(a)

R S T e

he LA
00C —(CH;);—C—N <_>—c—o(:J T H2N—<_>—N02

Carboxylate p-Nitroaniline
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Binding Modes of Enzymatic Catalysis
Catalytic Antibodies (Abzymes)

+ Transition state analogues have been used to
create antibodies having catalytic activity.

(b) ﬁ ﬁ
©00C —(CHy);—C—N— H—c—n C\>—No2
H \= H A= Abzyme
S speed up
v OH reaction
J 10> times
I i
©00¢C —(CH,);—C N //\:\>—c—o@ E: H2N—QN02
Carboxylate p-Nitroaniline
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Serine Proteases - A Case Study

Case studies of enzyme catalyzed
reactions:

* Lysozyme
» Cleaves the polysaccharide found in
bacterial cell walls.
+ Chymotrypsin
» A Serine protease that cleaves the
polypeptide backbone during protein
digestion.
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Serine Proteases - A Case Study

Serine proteases are a group of

enzymes that cleave peptide bonds.

+ There are many different serine proteases

+ All contain a serine side chain in their active
site, along with a histidine and an aspartic
acid sidechain.

His-57
|
CH,
=\ ~ Ser|195
ol NSk
O © _.=H N\
\\C/o"’ A~ o—Ch2
Asp- /
_CH2 . .
102 The catalytic triad

Chem 352, Lecture 4 - Part II, Enzyme Catalysis 34



Serine Proteases - A Case Study

Serine proteases nicely illustrate many
of the tricks that can be used to

speed up chemical reactions

+ Catalytic modes of enzymatic catalysis
» Acid/base catalysis
» Covalent catalysis
+ Binding modes of enzymatic catalysis
» Proximity effect
» Transition state stabilization
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Serine Proteases - A Case Study

They also illustrate

+ Importance of protein folding in creating a
functional protein

+ Substrate specificity

+ Activation through irreversible covalent
modifications
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Serine Proteases - A Case Study

They also illustrate

+ Importance of folding to creating a functional
protein

+ Substrate specificity

+ Activation through irreversible covalent
modifications
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Serine Proteases - A Case Study
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Serine Proteases - A Case Study
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Serine Proteases - A Case Study

They also illustrate

+ Importance of folding to creating a functional
protein

+ Substrate specificity

+ Activation through irreversible covalent
modifications
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Serine Proteases - A Case Study

They also illustrate

(@) chymotrypsin (5CHA) (b)A h:ypsin (1ITLD) (¢) elastase (3EST)
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Serine Proteases - A Case Study

They also illustrate

(a) Chymotrypsin (b) Trypsin (c) Elastase
(@) chymotr
@® cCarbon
Asp @ Nitrogen
@ Oxygen
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Serine Proteases - A Case Study

They also illustrate

+ Importance of folding to creating a functional
protein

+ Substrate specificity

+ Activation through irreversible covalent
modifications
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Serine Proteases - A Case Study
Thev also illustrate

Zymogen (inactive precursor)
synthesized in the pancreas

| _Chy_motrypsinogen

T
W-@& o e R S

S

Active Enzyme
activated in the small intestine
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Serine Proteases - A Case Study
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Serine Proteases - A Case Study

They also illustrate

+ Importance of folding to creating a functional
protein

+ Substrate specificity

+ Activation through irreversible covalent
modifications
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Serine Proteases - A Case Study

Step-by-Step through the catalytic
cycle
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Serine Proteases - A Case Study

Step-by-Step through the catalytic
cycle

0 ©o 0
< Sy, [ /
C—N - — C—N — C—OH + HN
\ N
( i
0L H_®
WA H B (\/B B
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Serine Proteases - A Case Study

Step-by-Step through the catalytic
cycle
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Serine Proteases - A Case Study

Step-by-Step through the catalytic
cycle
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Serine Proteases - A Case Study

Step-by-Step through the catalytic
cycle

_ Proximity
Effect
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Serine Proteases - A Case Study

Step-by-Step through the catalytic
cycle

Ser-195

E+S

E-S
_ Proximity
Effect
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Serine Proteases - A Case Study

Step-by-Step through the catalytic
cycle

E-S

H .
+ oXyanion

i hole |, Gly-
(3@-___“/” 193
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Serine Proteases - A Case Study

Step-by-Step through the catalytic
cycle

Covalent
Bond
Catalysis
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Serine Proteases - A Case Study

Step-by-Step through the catalytic
cycle

Covalent
Bond
Catalysis

E-S

His-57 c” N\\
H
Gly-
Y— N on
¢

Transition
State
Stabilization

E-TI,
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Serine Proteases - A Case Study

Step-by-Step

cycle

through the catalytic

E-TI,

|Eloxyanion
. hole  Gly-
.y’ | 193

Amine product (P,)
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Serine Proteases - A Case Study

Step-by-Step through the catalytic

cycle

Asp- CH
102

N
(
H
CH Gly-
e H 193
7
H N
\ R,
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Ser-195
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o 8 Thole | Gly-
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Serine Proteases - A Case Study

Step-by-Step through the catalytic
cycle
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Serine Proteases - A Case Study

Step-by-Step through the catalytic
cycle

E_Pz

E+P,

Carboxylate product (P;)
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Serine Proteases - A Case Study

Step-by-Step through the catalytic
cycle
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Serine Proteases - A Case Study

Step-by-Step through the catalytic
cycle
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Serine Proteases - A Case Study

Protein Structure - Chymotrypsin

Select model:
(+) cartoon
() ball & stick

O spacefill

Select Secondary Structures:
¥ a-helix

V B-sheet

 other

Highlight the Catalytic Triad:
(Zoom in on Triad)

v Asp 102

W His 57

V Ser 195

Highlight the N-terminal Half of Peptide Product
Covalently Bound to the Enzyme:
(1 On/Off

Solvent Accessible Surface:
[ On/Off
[ Translucent

Highlight thePeptide-Enzyme Backbone
Interactions:
1 On/Off

Highlight the Activating Interaction:
(' Zoom in on Interaction )

VI Asp 194

¥ lle 16 and Leu 10
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http://www.chem.uwec.edu/Chem452_F10/pages/models/chymotrypsin.html

Next Up

+ At this time we will skip over Chapter 7
(Cofactors and Vitamins)
» We will discuss cofactors and vitamins as we
encounter them throughout the rest of the
semester.

+ Carbohydrates (Chapter 8)
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