Chem 352 - Lecture 4
Part II: Enzyme Catalysis

Enzymes are biological catalysts; nearly every reaction that takes place in a
living cell is catalyzed by an enzyme. Most enzymes are proteins, with some
requiring non-proft called in order to function. The

control of enzymatic activity plays a central roll in controlling the activities and
proper functioning of a living cell.

Introduction to Enzyme Catalysis

Enzymes can be amazingly proficient.

TABLES.2 Catalytic proficiencies of some enzymes
Nonenzymatic  Enzymatic
rateconstant  rate constant Catalytic
(kinsh (ko /K, M5 proficiency
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4x 10 4x 10
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Introduction to Enzyme Catalysis

Overview
+ Review of chemical reactions mechanisms
+ Discussion of catalysis in general terms

+ Examination of some major modes of
enzymatic catalysis

» acid/base catalysis
» covalent catalysis
» substrate binding

» transition state stabilization
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Chemical Reaction Mechanisms
A chemical mechanism lays out in
detail the steps in a chemical reaction.
+ With a focus on
» the making and breaking of covalent bonds.

» the movement of electrons at each step in a
reaction.

Chem 352, Lecture 4 - Part II, Enzyme Catalysls 4

Chemical Reaction Mechanisms

We will focus on three possible
aspects fo a reaction mechanism:
* Nucleophilic substitution
+ Covalent bond cleavage
+ Oxidation/Reduction

These are not necessarily independent
of one another.
+ e.g. Oxidation/Reduction can also involve
covalent bond cleavage.
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Chemical Reaction Mechanisms

Nucleophilic substitution

* nucleophiles vs electrophiles
+ Nucleophilic attack on a carbonyl group
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Chemical Reaction Mechanisms

Covalent bond cleavage reactions

+ Formation of carbanion and hydrogen ion

®
R;—/C—H —» Ry—C: *+ H Both of the
bonding
. 2 AT electrons
+ Formation of carbocation and hydride ion Sy ik

® ) one of the

R3—=G=—H > R;—C s (18 products

» This mechanism is used in dehydrogenation
oxidation/reduction reactions.
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Chemical Reaction Mechanisms

Covalent bond cleavage
» Formation of free radicals

One of the
two bonding
RO-OR; —» RO* + *OR; clectrons
stays with
each of the
products
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Chemical Reaction Mechanisms

Oxidation/Reduction Reactions

+ These reactions are used to extract energy
from the foods we eat.

+ Definitions of oxidation and reduction

Oxidation

Reduction

Gain oxygen

Lose oxygen

Lose electrons

Gain electrons

Lose hydrogen

Gain hydrogen
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Chemical Reaction Mechanisms
Oxidation/Reduction

+ Dehydrogenation reactions represent a large
fraction of the biological oxidation/reduction
reactions.

» Usually involves a cleavage reaction that
forms a carbocation.
» e.g. alcohol dehydrogenase
o

CHy—CH,—OH + NAD* —» CH,—C—H + NADH + K
ethanol acetaldehyde

+ In this reaction, NAD+ is the oxidizing
reagent
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Chemical Reaction Mechanisms

Oxidation/Reduction
+ By accepting the hydride ion, NAD+ is often
the oxidizing reagent in dehydrogenation

reactions.

* NAD stands for nicotinamide-adenosine-
dinucleotide.
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Chemical Reaction Mechanisms

Oxidation/Reduction
Oxidized form Reduced form
H o H HO
\,
N ONH, f g ) NH

Nicotinamide

.
mononucleotide T—cm o T
(NMN)
Go—p=0 H H ©o—p=0 H H
J; ) 4l ‘|, H N/ H
i OH OH i OH OH
BD_T=O n eo_,|,=o </u Sn
N 5 5
Adenosine o—3, o N - O——CHy o N W
monophosphate
(AMP) W OW H oW
H) A "y 4
on  oH(oro®) oH oH(0P0®)
NAD® (NADP®) NADH (NADPH)
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Chemical Reaction Mechanisms

Oxidation/Reduction
+ By accepting the hydride ion, NAD+ is often
the oxidizing reagent in dehydrogenation

reactions.

* NAD stands for nicotinamide-adenosine-
dinucleotide.
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Catalysts Speed Up Reactions

Catalysts speed up reactions by
lowering the free energy of the
transition state.

Ew>0
without catalyst

with catalyst

AG<0
spontaneous

Progress of reaction
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Catalysts Speed Up Reactions

Intermediates are represented by
valleys in the reaction profile.

Transition states

Intermediate

Free energy

Reaction coordinate
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Catalysts Speed Up Reactions
We will focus on two ways that
enzyme catalysts do this.

+ The enzyme provides chemical catalysts

* The binding of substrates and transition
state intermediates lowers the entropy for
the reaction and helps to stabilizes the
transition states.

14
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Catalysts Speed Up Reactions

We will focus on two ways that
enzyme catalysts do this.

Uncatalyzed reaction

Free energy

Transition state e provides chemical catalysts

Ing of substrates and transition
rmediates lowers the entropy for
on and helps to stabilizes the
states.

Reaction coordinate

14
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Catalysts Speed Up Reactions

We will focus on two ways that
enzyme catalysts do this.

Free energy

Tansiioniate . catalysts

transition
entropy for
izes the

Free energy

Reaction coordinate Reaction coordinate

14
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Catalysts Speed Up Reactions

We will focus on two ways that
enzyme catalysts do this.

Free energy

Transition state [being bound by enzyme.
< ul (

Free energy

Reaction coordinate Reaction coordinate

14
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Catalysts Speed Up Reactions
We will focus on two ways that
enzyme catalysts do this.

+ The enzyme provides chemical catalysts

* The binding of substrates and transition
state intermediates lowers the entropy for
the reaction and helps to stabilizes the
transition states.

14
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Chemical Modes of Enzymatic Catalysis

Functional groups present at the
active site of an enzyme can provide
alternative pathways from substrate to
product.
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Chemical Modes of Enzymatic Catalysis

The most common catalytic groups
come from the polar amino acid side
chains, which are embedded in a non-
polar environment of the active site

TABLE 6.1 Catalytic functions of reactive groups of ionizable amino acids

Amino Reactive Netcharge  Principal
7 functions

acid group atpH

o0 1
00 |
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Chemical Modes of Enzymatic Catalysis

The most common catalytic groups
come from the polar amino acid side
chains, wh msiess frequeney aisiowionot | in @ non-

catalytic residues in enzymes.

polar envi oot «a [tive site
catalytic all
residues residues

TABLEG C: mino acids

Amino His 18
acid

T
A
Ser s 5 s ofacy! sroups
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Chemical Modes of Enzymatic Catalysis

The most common catalytic groups
come from the polar amino acid side
chains, which are embedded in a non-
polar environment of the active site

TABLE 6.1 Catalytic functions of reactive groups of ionizable amino acids

Amino Reactive Netcharge  Principal
7 functions

acid group atpH

o0 1
00 |
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Chemical Modes of Enzymatic Catalysis

The most common catalytic groups
come from the polar amino acid side
chalns, w TABLE 6.2 Typical pKa values of .In a .non—
polar env .;r:‘z:i:r:gmupsolammo.mdsm ive site

TaBLE61 ( Group L ino acids
Amino 34
acid s

67

759

895

16 of acyl groups
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Chemical Modes of Enzymatic Catalysis

The most common catalytic groups
come from the polar amino acid side
chains, which are embedded in a non-
polar environment of the active site

TABLE 6.1 Catalytic functions of reactive groups of ionizable amino acids

Amino Reactive Netcharge  Principal
7 functions

acid group atpH

o0 1
00 |
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Chemical Modes of Enzymatic Catalysis

Acid/Base catalysis

+ Example: General base catalysis can assist in
the cleavage of a peptide bond.

o S0 o
< g, Sng Il
—C—N F—— —C— &= —C—OH + HN
N N
HO k
Osc N H. ®
W OH B Ca B
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Chemical Modes of Enzymatic Catalysis

Acid/Base catalysis

+ Example: General acid catalysis can assist in a
dehydration reaction.

+ OHz makes a better leaving group than OH-

H®
Slow N Fast
R® + OH® <~ R—OH ? R—OH,® 25, R® 4 o
H®
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Chemical Modes of Enzymatic Catalysis
Acid/Base catalysis

+ The pKa$ for acid/base groups at the active
site need to be near the local pH for this to
work.

* pH can affect the activity of an enzyme if

there are general acid/base catalysts involved
in the reaction.
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Chemical Modes of Enzymatic Catalysis

Acid{Raca ratalucic
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Chemical Modes of Enzymatic Catalysis

Acid{Raca ratalucic
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Chemical Modes of Enzymatic Catalysis

Acid{Raca ratalucic

19-4
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Chemical Modes of Enzymatic Catalysis

Acid{Raca ratalucic
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Chemical Modes of Enzymatic Catalysis
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Chemical Modes of Enzymatic Catalysis

Aci IRncan ratalucic
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Chemical Modes of Enzymatic Catalysis
Acid/Base catalysis

+ The pKa$ for acid/base groups at the active
site need to be near the local pH for this to
work.

* pH can affect the activity of an enzyme if

there are general acid/base catalysts involved
in the reaction.
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Chemical Modes of Enzymatic Catalysis
Acid/Base catalysis
+ Triose phosphate isomerase illustrates both
general acid and base catalysis.

H o]
Triose N7
"CH,0H phosphate c
20— isomerase
c=o0 H—C—OH
scH,0p0 D cH,0p0PD
Dihy o-Glyceraldehyd
phosphate (DHAP) 3-phosphate
(G3P)
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Chemical Modes of Enzymatic Catalysis
Acid/Base catalysis

herase illustrates both
e catalysis.
H o]
jose N /
lphate C
lerase
— H—C—OH
CH Zopo;®
D-Glyceraldehyde
3-phosphate
(G3P)
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Chemical Modes of Enzymatic Catalysis

Acid/Base catalysis
P y [
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Chemical Modes of Enzymatic Catalysis
TIM is Diffusion-Controlled

» Simple reactions, like that of triose
phosphate isomerase (TIM), are rate limited
by the binding of the substrate.

TABLE 6.4 Enzymes with second-order rate constants near the upper limit
Keat K (M s7)%

4x 107

2% 10°

hyde 3-phosphate 4x 108
10°
2% 10°

VE 4 S—E 4P
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Chemical Modes of Enzymatic Catalysis
TIM is Diffusion-Controlled

» Simple reactions, like that of triose
phosphate isomerase (TIM), are rate limited

Free energy

Fumay

T
E+DHAP  E-DHAP  Enediol E-G3P E+G3P
T intermediate

Super

Reaction coordinate
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Chemical Modes of Enzymatic Catalysis
TIM is Diffusion-Controlled

» Simple reactions, like that of triose
phosphate isomerase (TIM), are rate limited
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Chemical Modes of Enzymatic Catalysis
TIM is Diffusion-Controlled

» Simple reactions, like that of triose
phosphate isomerase (TIM), are rate limited

Free energy

Fumay

E+DHAP  E-DHAP  Enediol E-G3P E+G3P
intermediate

Super

The rai
For these

Reaction coordinate
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Chemical Modes of Enzymatic Catalysis
TIM is Diffusion-Controlled

» Simple reactions, like that of triose
phosphate isomerase (TIM), are rate limited
by the binding of the substrate.

TABLE 6.4 Enzymes with second-order rate constants near the upper limit
Keat K (M s7)%

4x 107

2% 10°
hyde 3-phosphate 4x 108
10°

2% 10°

ction E + S—E + P.
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Chemical Modes of Enzymatic Catalysis

Covalent bond catalysis
+ For some enzymes, the transition state
intermediate is covalently bonded to the
enzyme.

—X + E.=—=!X—E + A

X—E + B === B—X + E

A—X + B === B—X + A

» We will see an example of this when we
look at the details of the serine protease
catalyzed reactions
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Chemical Modes of Enzymatic Catalysis

Covalent bond catalysis
+ For some enzymes, the transition state
intermediate is covalently bonded to the
enzyme.

Ping-pong reaction

A\/P B\/Q
E (EA)(FP) F (FB)(EQ) E
TUUR—OT TFE UETarS U THE SeTTie proTease

catalyzed reactions
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Chemical Modes of Enzymatic Catalysis
Covalent bond catalysis

+ Fol Sequential reactions
int A 8 »
i I [ ]
Ping-pqe EA  (EAB) (EPQ)  EQ E
Ordered
A A B P Q Q
E EA EQ E
W E (EAB)(EPQ) E fose
fe T B T l EP 1
B A Q P
Random
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Chemical Modes of Enzymatic Catalysis

Covalent bond catalysis
+ For some enzymes, the transition state
intermediate is covalently bonded to the
enzyme.

Ping-pong reaction

A\/P B\/Q
E (EA)(FP) F (FB)(EQ) E
TUUR—OT T7E UETarS UT THE SeTTie proTease

catalyzed reactions
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Chemical Modes of Enzymatic Catalysis

Covalent bond catalysis
+ For some enzymes, the transition state
intermediate is covalently bonded to the
enzyme.

—X + E. === X—E + A

X—E + B === B—X + E

A—X + B == B—X + A

» We will see an example of this when we
look at the details of the serine protease
catalyzed reactions
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Binding Modes of Enzymatic Catalysis
*+ Acid/Base catalysis and covalent bond
catalysis can account for an approximately 10
to 100 fold increase in the reaction rates

+ However, 108 fold increases are observed
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Binding Modes of Enzymatic Catalysis

* Enzymes also bind of substrates and orient
them relative to one another and to catalytic

groups on the enzyme.
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Binding Modes of Enzymatic
The Proximity Effect

+ The binding of substrates creates a high
effective local concentration of substrates.

+ It also decreases the entropy of the
substrates.
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Binding Modes of Enzymatic
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Binding Modes of Enzymatic
The Proximity Effect

+ The binding of substrates creates a high
effective local concentration of substrates.

+ It also decreases the entropy of the
substrates.
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Binding Modes of Enzymatic Catalysis

* The favorable binding of the transition state
helps to lower the activation barrier and,
therefore, speed up a reaction

+ However, if the binding of substrate is too
favorable, the overall reaction rate can be
negatively effected.
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Binding Modes of Enzymatic Catalysis

Nonenzymatic Enzymatic
reaction reaction

s*

ES*

Free energy

Reaction coordinates
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Binding Modes of Enzymatic Catalysis

* The favorable binding of the transition state
helps to lower the activation barrier and,

therefore, speed up a reaction

+ However, if the binding of substrate is too
favorable, the overall reaction rate can be
negatively effected.
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Binding Modes of Enzymatic Catalysis
“Lock and Key” model

+ In the late 1880% Emil Fischer, with his “lock
and key” model, predicted what we know now
to be the contribution of substrate binding to

enzyme catalysis.

+ In the 19605, Daniel Koshland proposed an
alternative “induced fit” model
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Binding Modes of Enzymatic Catalysis

“Induced fit” model
+ In the “induced fit” model, substrate binding
induces conformational changes in the
enzyme.
+ Hexokinase provides a good example of
“induced fit”

D-glucose 6-phasphate

D-glucose
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Binding Modes of Enzymatic Catalysis

Hexokinase, with (IBDG) and without (IHKG) bound substrate (glucose)

@vithout glucose
Ovith glucose

CISpacefl OnONt

£ 8pin OwON

Jmol
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Binding Modes of Enzymatic Catalysis

Stabilizing the transition state

+ Some of the most potent enzyme inhibitors
are transition state analogues.

@y, 3 X o

"‘\‘4"/’%: :,f::juu NH, ko

Ly — | LIy . >
N NN

[\
N N "1
Ribose Ribose Ribose
Adenosine Covalent hydrate Inosine
(substrate) (product)

Adenosine deaminase
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Binding Modes of Enzymatic Catalysis

Stabilizing the transition state

+ Some of the most potent enzyme inhibitors
are transition state analogues.

(a)
NHy H,0 HN JOH NH. o
N ; \
WY S| Y | L e
€ g q
L) L) Ny
e e
rémmotne oty i
(substrate) (product)
O o W on @
NANN [T NS
2 D D
. T‘> ==, '? [ '?
Ribose H0 Ribose Ribose
, .
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Binding Modes of Enzymatic Catalysis

Stabilizing the transition state

+ Some of the most potent enzyme inhibitors
are transition state analogues.
(a)

NH. 5 °
o %*?0 % NH;
e G I 2 J . ange
)I'I} — | "] '? )

Ky~ | The binding

Ribhse fibbse fibbse | aFfinity for the
Adenosine Covalent hydrate Inosine transition state
(substrate) roduct) | analogue is 108

higher than

o

)y wo KoM 9 that for either

NN, S oS S | the substrate or
7 3 8
Ly == LY G | product

Ribose H0 Ribose

Ribose
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Binding Modes of Enzymatic Catalysis
Catalytic Antibodies (Abzymes)

+ Transition state analogues have been used to
create antibodies having catalytic activity.
(b)

0 Q
©00c —(CH,): ﬂ N—@—ﬂ u—@—uo
)y ] ] 2

Jfoue

i i
eooc—(cn,);—c—n—@—c—oe + H,N—O—NOZ

Carboxylate

p-Nitroaniline
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Binding Modes of Enzymatic Catalysis
Catalytic Antibodies (Abzymes)

+ Transition state analogues have been used to
create antibodies having catalytic activity.

‘lbl I

o o
Cﬂ N o= Lé N = —c—on + v/
—c— —c— —C—OH +

N A N
wo (

NN H. ®

WO Cg B
Carboxylate p-Nitroaniline
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Binding Modes of Enzymatic Catalysis
Catalytic Antibodies (Abzymes)

+ Transition state analogues have been used to
create antibodies having catalytic activity.

(b) °
I

o
o I I
00C —(CHy)—C—N <N NO,

‘foue

i i
eooc—(cu,],—c—ﬁ—@—c—oe + le—<;>—uoZ

Carboxylate p-Nitroaniline
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Binding Modes of Enzymatic Catalysis
Catalytic Antibodies (Abzymes)

+ Transition state analogues have been used to
create antibodies having catalytic activity.

(b) ° °
I I
@)

o [
o, Il Il
00C —(CHy);—C—N CH,—P—N NO,

| H
S0
'00C—(CH,);—C—N CT—0Y + HN< NO
Carboxylate p-Nitroaniline
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Binding Modes of Enzymatic Catalysis
Catalytic Antibodies (Abzymes)

+ Transition state analogues have been used to
create antibodies having catalytic activity.

(b)

o
I
Abzyme

0
©00c —(CH,) ﬂ N—@—Cl N—@—NO
)y ] N 2
speed up

‘/ oH® reaction

105 times
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Carboxylate p-Nitroaniline
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Serine Proteases - A Case Study

Case studies of enzyme catalyzed
reactions:
+ Lysozyme
» Cleaves the polysaccharide found in
bacterial cell walls.
* Chymotrypsin
» A Serine protease that cleaves the

polypeptide backbone during protein
digestion.
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Serine Proteases - A Case Study

Serine proteases are a group of

enzymes that cleave peptide bonds.
+ There are many different serine proteases
* All contain a serine side chain in their active
site, along with a histidine and an aspartic
acid sidechain.

His-57
|
CH,
— Ser-195
° NN
Q e HT N "™ H....CHy
N\ _o 0
4 v
AsF_—c{i
1027 ™2 The catalytic triad
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Serine Proteases - A Case Study

Serine proteases nicely illustrate many
of the tricks that can be used to
speed up chemical reactions
+ Catalytic modes of enzymatic catalysis
» Acid/base catalysis
» Covalent catalysis
+ Binding modes of enzymatic catalysis
» Proximity effect
» Transition state stabilization
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Serine Proteases - A Case Study

They also illustrate

+ Importance of protein folding in creating a
functional protein

+ Substrate specificity

+ Activation through irreversible covalent
modifications
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Serine Proteases - A Case Study

They also illustrate

+ Importance of folding to creating a functional
protfein

+ Substrate specificity

+ Activation through irreversible covalent
modifications
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Serine Proteases - A Case Study

They q
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Serine Proteases - A Case Study
They d o I

+ In
pr
+ Sy

+ A
m

nal

Ser-195

Asp-102
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Serine Proteases - A Case Study

They also illustrate

+ Importance of folding to creating a functional
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Step-by-Step through the catalytic
cycle
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Step-by-Step through the catalytic
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Protein Structure - Chymotrypsin
47

Next Up

+ At this time we will skip over Chapter 7
(Cofactors and Vitamins)
» We will discuss cofactors and vitamins as we
encounter them throughout the rest of the
semester.

+ Carbohydrates (Chapter 8)
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