Chem 352 - Lecture 3
Part II: Protein
3-Dimensional Structure

Question for the Day: Assuming proteins fold to produce a structure
with the lowest free energy; if you wished to predict the correct
folding of a polypeptide into a protein by sampling each possible
conformations, and selecting the one with the lowest free energy,
approximately how long would this take you?



Introduction to Protfein Structure

A polypeptide has a lot of flexibility.

+ This allows them fo adopt numerous shapes
or conformations.

+ To be functional, proteins usually need to
adopt a particular conformation, referred to
as the native conformation.

Polypeptide can have wide range of
lengths

+ <100 amino acids to >2000 amino acids
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Introduction to Protein Structure

‘Whereas genomics is the study of
the the complete genome of an
organism (The Human Genome
Project),

* Proteomics is the study of all the proteins
produced by an organism
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Introduction to Protftein Structure
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Introduction to Protein Structure

‘Proteins come also in different

shapes

* Globular proteins are spherically shaped.
* Fibrous proteins are rod-shaped
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Miniseries: lllustrating the Machinery of Life
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David S. Goodsellf

From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California

Diverse biological data may be used to create illustrations of molecules in their cellular context. |
describe the scientific results that support a recent textbook illustration of an Escherichia coli cell. The
image magnifies a portion of the bacterium at one million times, showing the location and form of indi-
vidual macromolecules. Results from biochemistry, electron microscopy, and X-ray crystallography were

used to create the image.

Keywords: Cellular biology, molecular biology, molecular visualization, textbook, diagrams.

“A clear picture of the interior of a living cell that
shows the average distribution of molecules at the
proper scale, the proper concentration and with no miss-
ing parts, seems to me to be central to the understand-
ing of the workings of life.” This is how | began my 1991
article that presented several illustrations of Escherichia
coli [1]. At the time, there was just enough information to

create a convincing picture of the environment inside liv-
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highly dependent on the environmental conditions of the
cell. | settled on a hybrid approach. | took the concentra-
tions of macromolecules from the same sources that |
used in the 1991 article. This includes the overall value of
70% water for the cell, as well as the number of proteins,
RNA, lipids, and other molecules. | also used the same
values for the concentrations for the major players in
protein synthesis, transport, and energy production. |
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Introduction to Protein Structure
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shapes

* Globular proteins are spherically shaped.
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Introduction to Protftein Structure

The four levels of protein structure
+ Primary (I°)
+ Secondary (II°)
+ Tertiary (III°)
+ Quaternary (IV°®)

We have discusses the primary

structure.

+ The other levels relate to the folding of linear
primary structure info a 3-dimensional
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Determining Protein Structures

Methods for determining the 3-

dimensional structures of proteins:
+ X-ray crystallography
+ NMR spectroscopy

Structures are deposited in the
Proteins Data Bank (PDB)
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Determining Protein Structures

4

—.,

Chem 352, Lecture 3 - Part II, Protein 3-D Structure 6


http://www.rcsb.org/pdb/home/home.do

Conformational Restrictions

‘Restrictions to conformations
+ Backbone
+ Peptide bond (w-bond) has partial double-

bond character.
+ Steric hinderance restricts rotation about

the N-C, (v) and C.-C (V) bonds
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‘Restrictions to conformations
+ Backbone

@ -
: R
RS AN

Trans

@® o-carbon (O Hydrogen @ Oxygen
@ carbonyl carbon @ Nitrogen @ Side chain

Chem 352, Lecture 3 - Part II, Protein 3-D Structure
7



Conformational Restrictions

‘Restrictions to conformations
+ Backbone
+ Peptide bond (w-bond) has partial double-

bond character.
+ Steric hinderance restricts rotation about

the N-C, (v) and C.-C (V) bonds

Chem 352, Lecture 3 - Part II, Protein 3-D Structure
7



Conformational Restrictions
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Conformational Restrictions

-The Ramachandran Plot

+ Plots the ¢ versus the ¢ backbone dihedral
angle for each residue in a polypeptide.
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Conformational Restrictions

-The Ramachandran Plot

+ Plots the ¢ versus the ¢ backbone
angle for each residue in a polype|
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G.N. Ramachandran

G.N. Ramachandran (8 October 1822-7 Aprii

Born

Died

Nationality
Fields
Institutions

Alma mater

Doctoral
advisor

Known for

2001)

8 October 1822
Ernakulam, KeralalI2)[E4](5]

7 April 2001 {(aged 78)
Madras, Tamil Nadu, India

Indian
Biophysics

St. Joseph's College,
Tiruchirappalli

Madras University

Indian Institute of Science
Cavendish Laboratory

Madras University
University of Cambridge

C V Raman
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Conformational Restrictions

-The Ramachandran Plot

+ Plots the ¢ versus the ¢ backbone dihedral
angle for each residue in a polypeptide.
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Conformational Restrictions
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Protein Secondary Structures

The a-Helix

+ The backbone is wound into a right-handed
cork screw
+ 5.4 Angstroms/turn (the pitch)
+ 1.5 Angstroms/aa (the rise)

+ Peptide amide from one turn, hydrogen bonds
to the peptide amide from the next turn

*+ ¢ and ¢ angles are in a favorable region of

the Ramachandran plot
+ Side chains extend out from the helix axis
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Protein Secondary Structures

‘The B-strands and sheets

+ The polypeptide is nearly fully extended

+ Peptide bond amides form hydrogen bonds
with neighboring strands

+ The ¢ and ¢ angles are in a favorable region
of the the Ramachandran plot

+ Side chains extend from both sides of the
sheet

Chem 352, Lecture 3 - Part II, Protein 3-D Structure 11
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Protein Secondary Structures

‘The loops and -turns

+ Used to connect B-sheet strands and o-
helices
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Protein Secondary Structures

The loops and B-turns
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Protein Secondary Structures
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Protein Secondary Structure
-‘Motifs,

+ The a-helices and B-sheet strands can
produce recognizable supersecondary

patterns called motifs.
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Protein Secondary Structure
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Protein Secondary Structure
-‘Motifs,

+ The a-helices and B-sheet strands can
produce recognizable supersecondary

patterns called motifs.
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Protein Tertiary Structure

-The 3-dimensional fold of a protein

+ a-helices, 3-sheet, 3-turns, loops, et al.
associate to form a defined 3-dimensional
structure.

+ These structures are stabilized by non-
covalent interactions between the amino
acid sidechains
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Protein Tertiary Structure
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structure.
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Protein Tertiary Structure

Homologous proteins have similar
tertiary structures, which are
evolutionarily conserved.
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RADLIAYLKE ATA
RADLIAYLKE ATA
RNDLITFLEE ETK
RADLIAYLKE STA
RADLIAYLKK ATSS
RADLIAYLKT STA
RNDLITYLKK ACE
RNDLITYLVK ATK
RNDLVTYLKK  ATS
RNDLITYLKE STA
RADVIAYLKQ LSGK
LDNIWAYVSQ FDKD
LDNLIAYLIF  SASSK

RADITAYLET
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Protein Tertiary Structure

‘Homologous proteins have similar
tertiary structures, which are
evolutionarily conserved.
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Protein Tertiary Structure
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Protein Tertiary Structure

‘Homologous proteins have similar
tertiary structures, which are
evolutionarily conserved.
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Protein Tertiary Structure

-Domains

+ Domains are independent folding units
within a single polypeptide chain.
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Protein Tertiary Structure

(a) Parallel twisted sheet  (b) B barrel

-Domains

+ Some common
domain folds

0.
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Protein Tertiary Structure

-Domains

+ Domains offten have specific functions and
provide proteins with a modular design.

Protein Structure - Pyruvate Kinase (1PKM)
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Protein Tertiary Structure

Families
+ Many proteins in an organism share a common
fold and can be grouped info families.
+ Members of a family are believed to have
descended from a common ancestor.
+ Proteins that are descended from a common
ancestor are said to be homologous.
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Protein Tertiary Structure

Families

(b) on

Lactate Malate
Dehydrogenase Dehydrogenase
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Protein Tertiary Structure
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Protein Quaternary Structure

The assembly of multiple polypeptides

to form a single protein

+ Each polypeptide has its own tertiary
structure.

+ The individual polypeptides are called
subunits.

+ The subunits are held together by weak non-
covalent interactions, primarily between the
amino acid side chains.
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Protein Quaternary Structure

The assembly of multiple polypeptides
to form a single protein
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Protein Quaternary Structure
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to form a single protein
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structure.

+ The individual polypeptides are called
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Protein Quaternary Structure

‘Reasons for forming quaternary

structures.

+ Increased stability

+ Creation of active sites at subunit interfaces

+ Regulation of activity by way of subunit
Interactions

+ Different proteins can share the same
subunits
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Protein Quaternary Structure
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structures.
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Interactions
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Chem 352, Lecture 3 - Part II, Protein 3-D Structure 23



The Protein Data Bank

‘The Protein Data Bank is a
repository for the 3-dimensional

structures of proteins.

+ In addition to proteins, it also contains
structures for nucleic acids and large
assemblies, such as viruses and ribosomes.

+ Each entry has a four character code
+ Moran et al. gives you the codes in the

figure legends when is shows structures.

Chem 352, Lecture 3 - Part II, Protein 3-D Structure 24
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The Protein Data Bank

The Protein Data Bank is a repository
for the 3-dimensional structures of

proteins.

+ In addition to proteins, it also contains
structures for nucleic acids and large
assemblies, such as viruses and ribosomes.

+ Each entry has a four character code
+ Moran et al. gives you the codes in the

figure legends when is shows structures.
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The Protein Data Bank

The Protein Data Bank is a repository
for the 3-dimensional structures of

proteins.

+ In addition to proteins, it also contains
structures for nucleic acids and large
assemblies, such as viruses and ribosomes.

+ Each entry has a four character code
+ Moran et al. gives you the codes in the

figure legends when is shows structures.
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Large Protein Assemblies
‘The Molecular Machinery of Life
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Recap: Conformational Restrictions

Steric hinderances restrict the ¢ and
) to a limited number of
combinations.

Protein Structure - Ribonuclease A
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Recap: Infteractions with water

Globular proteins fold to remove as
many non-polar side chains from water
as possible.

Protein Structure - Ubiquitin

Single Polypeptide

Highlight Side Chains:
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Solvent Accessible Surface:

Color my polypeptides
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Recap: Interactions with water

-

|Question:

What is the driving force behind this process? T
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Recap: Infteractions with water

Globular proteins fold to remove as
many non-polar side chains from water
as possible.

Protein Structure - Ubiquitin
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Recap: Role of secondary structures

«-helices and (-sheets provide
hydrogen bond opportunities for

backbone amide groups in the absence
of water
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Protein Denaturation

-The native state of a protein is
stabilized by weak non-covalent

Interactions.
+ The process of disrupting these interactions

is called denaturation.
+ Denaturation can be accomplished with
+ Changes in tfemperature.
+ Changes in pH.
+ Added chemical agents.
+ Denaturation is a cooperative, often two-
state, event.
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Protein Denaturation

-The native state of a protein is
stabilized by weak non-covalent

Interactions.
+ The process of disrupting these interactions

is called denaturation.
+ Denaturation can be accomplished with
+ Changes in tfemperature.
+ Changes in pH.
+ Added chemical agents.
+ Denaturation is a cooperative, often two-
state, event.
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Protein Denaturation

-The native state of a protein is
stabilized by weak non-covalent

Interactions.

+ For some proteins, the native state is also
stabilized by covalent bonds.
+ e.g. cystine disulhde bonds
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Protein Denaturation

-The native state of a protein is

(a)

' ;\\/Cysq 1 /A

-‘;\ Cys-72 Cys-84%:
5 Cys-65
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Interactions.

+ For some proteins, the native state is also
stabilized by covalent bonds.
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Protein Renaturization

-Christain Anfinsen carried out a
landmark experiment in 1961, which
demonstrated that the primary
sequence of a protein contained
sufficient information to direct the
folding of a peptide to its native
state.
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Protein Renaturization

-Christain Anfinsen carried out a
landmark experiment in 1961, which

demonstrated that the prim
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folding of a peptide to its n
state.
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Nobel Prize in Chemistry
1972
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Protein Renaturization
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Protein Renaturization

-Christain Anfinsen carried out a
landmark experiment in 1961, which
demonstrated that the primary
sequence of a protein contained
sufficient information to direct the
folding of a peptide to its native
state.
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Protein Folding

-Protein folding is driven by search
for the lowest free energy
conformation.
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Protein Folding

-Protein folding is driven by search
for the lowest free energy
conformation.
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Protein Folding

-The “Levinthal Paradox”

+ So much to do and so little time to get it
done.

+ How long would it take to fold a 100 amino
acid residue protein by searching all the
possible conformations to find the one with
the lowest free energy?
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Protein Folding

-The “Levinthal Paradox”
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done.
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acid residue protein by searching all the
possible conformations to find the one with
the lowest free energy?
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Protein Folding

*The

Free
energy

Conformation
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Protein Folding
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Protein Folding

-Protein folding is driven by search for

the lowest free energy conformation.
+ The interactions that lead to a lower free

energy include:

+ hydrophobic effect (drives the folding
process)

+ dipole/dipole interactions

+ hydrogen bonding

+ vander Waals (dispersion) interactions

+ Charge/charge interactions are usually found
at the surface, and therefore are strongly
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Protein Folding

TABLE 4.1 Examples of Hydrogen Bonds in Proteins r
Typical distance
between donor 1
Type of and acceptor
hydrogen bond atom (nm)
Hydroxyl-hydroxyl — O—H------ O— 0.28
/
H
A
Hydroxyl-carbonyl — (O —H === O= C\ 0.28
N “
Amide-carbonyl N —H ====== O0=C 0.29
7/ N
5
Amide-hydroxyl N —H s O — 0.30
/ /
H nd
o . N —
Amide-imidazole nitrogen /N —H =====- N\/NH 0.31
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Protein Folding

-Protein folding is driven by search for

the lowest free energy conformation.
+ The interactions that lead to a lower free

energy include:

+ hydrophobic effect (drives the folding
process)

+ dipole/dipole interactions

+ hydrogen bonding

+ vander Waals (dispersion) interactions

+ Charge/charge interactions are usually found
at the surface, and therefore are strongly
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Protein Folding

-Protein folding is driven by search
for the lowest free energy
conformation.
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Protein Folding

-Protein folding is driven by search
for the lowest free energy
conformation.
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Protein Folding

-‘Folding@Home
(http://folding.stanford.edu)
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Protein Folding
fold ..

Solve Puzzles PUZZLES » CATEGORIES GROUPS PLAYERS  RECIPES CONTESTS
. for Science BLOG » FEEDBACK FORUM WIKI FAQ ABOUT  CREDITS

GET STARTED: DOWNLOAD

.
Iy £y
Win Beta Mac Beta Linux Beta
y ~ g Windows OSX Linux
Click to learn how you (XP/Vista/7)  (Intel 10.5 or later) (64-bit)
contribute to science by
playing Foldit. \ Are you new to Foldit? Click here.

Are you an educator? Click here.

SEARCH

Google Search Only search fold.it

x‘:’: 7 N“Nn E R“FTEF Try our new scientific dlSCOVGr’y game! AECOMMEND FoLoIT

Be creative and build extraordinary tiny machines! =

What's New USER LOGIN )
= Username:

Community News, Fall Edition Sassword: -
The last fourth of the year has arrived, and with it, there's some community news to pr
share. Login
First, in October, we're having a Science Chat! This is your opportunity to chat with . Create new account
Foldit scientists about puzzles and general science. Mark down October 16 - you won't s Request new password

want to miss it. Details coming later this week!


http://fold.it/portal/

Protein Folding
Unboiling an egg

+ NPR report

*+ Yuan, T. Z. et al. (2015) Shear-Stress-Mediated Refolding of
Proteins from Aggregates and Inclusion Bodies. (2015)
Shear-Stress-Mediated Refolding of Proteins from

Aggregates and Inclusion Bodies. ChemBioChem 16, 393-
396.
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Protein Folding

-In the cell, chaperone assemblies
aid proteins in finding their globe
free energy minimum.
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Protein Folding

-In the cell, chaperone assemblies
aid proteins in finding their globe
free energy minimum.
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Protein Folding

In the cell, chaperone assemblies

¢, 2

Unfolded polypeptide Folded polypeptide

Chaperone

Chem 352, Lecture 3 - Part II, Protein 3-D Structure 41



Protein Folding

-In the cell, chaperone assemblies
aid proteins in finding their globe
free energy minimum.
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Fibrous Proteins

‘Fibrous proteins have primary,

secondary and quaternary structure.
+ The lack tertiary structure

a-Keratin is made of “coiled-coiled” a-helices
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Fibrous Proteins

‘Fibrous proteins have primary,

secondary and quaternary structure.
+ The lack tertiary structure
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Fibrous Proteins

-‘Fibrous$ proteins have primary,

secondary and quafernary structure.
+ The lack tertiary structure <. =%

collagen is made of
polyproline-type friple helices
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Fibrous Proteins

-‘Fibrous$ proteins have primary,

secondary and quafernary structure.
+ The lack tertiary structure <. =%

collagen is made of
polyproline-type friple helices

-Gly-Pro-Hydroxyproline-
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Fibrous Profems
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Fibrous Proteins
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Fibrous Proteins

-‘Fibrous$ proteins have primary,

secondarv and auafernary structure.
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Fibrous Proteins
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Up next

‘Exam I - Lecture 1-3

Lecture 4, Part I - Enzymes
+ Read Chapter 5 in Moran et al.
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