Chem 352 - Lecture 3 Part II: Protein 3-Dimensional Structure

Question for the Day: Assuming proteins fold to produce a structure with the lowest free energy; if you wished to predict the correct folding of a polypeptide into a protein by sampling each possible conformations, and selecting the one with the lowest free energy, approximately how long would this take you?

2

Introduction to Protein Structure

A polypeptide has a lot of flexibility.

- + This allows them to adopt numerous shapes or conformations.
- To be functional, proteins usually need to adopt a particular conformation, referred to as the native conformation.

Polypeptide can have wide range of lengths

+ <100 amino acids to >2000 amino acids

Chem 352, Lecture 3 - Part II, Protein 3-D Structure 2

Introduction to Protein Structure

- ·Whereas **genomics** is the study of the the complete genome of an organism (The Human Genome Project),
- Proteomics is the study of all the proteins produced by an organism

Chem 352, Lecture 3 - Part II, Protein 3-D Structure 3

3-1

3-2

Introduction to Protein Structure

220
2 Dimensional-Electrophoresis e study of e of an

20 of an of the structure of the study of e of an of the structure of the study of e of an of the structure of the study of e of an of the structure of the study of e of an of the structure of the study of e of an of the structure of the study of e of an of the structure of the study of e of an of the structure of the struc

Introduction to Protein Structure

Proteins come also in different shapes
Globular proteins are spherically shaped.
Fibrous proteins are rod-shaped

4-1

4-2

Technologies de la constitución de la constitución

Introduction to Protein Structure

·Proteins come also in different shapes

- + Globular proteins are spherically shaped.
- * Fibrous proteins are rod-shaped

Chem 352, Lecture 3 - Part II, Protein 3-D Structure 4

4-5

Introduction to Protein Structure

The four levels of protein structure

- Primary (I°)
 Secondary (II°)
- + Tertiary (III°)
- + Quaternary (IV°)

We have discusses the primary structure.

+ The other levels relate to the folding of linear primary structure into a 3-dimensional

Chem 352, Lecture 3 - Part II, Protein 3-D Structure 5

5

Determining Protein Structures

Methods for determining the 3dimensional structures of proteins:

- + X-ray crystallography
- * NMR spectroscopy

Structures are deposited in the Proteins Data Bank (PDB)

Chem 352, Lecture 3 - Part II, Protein 3-D Structure 6

6-1

Determining Protein Structures

Determining Protein Structures

Methods for determining the 3dimensional structures of proteins:

- + X-ray crystallography
 + NMR spectroscopy

Structures are deposited in the Proteins Data Bank (PDB)

Chem 352, Lecture 3 - Part II, Protein 3-D Structure 6

6-4

Determining Protein Structures

6-5

Conformational Restrictions •Restrictions to conformations

- + Backbone
 - + Peptide bond (ω-bond) has partial doublebond character.
 - + Steric hinderance restricts rotation about the N-Ca (φ) and Ca-C (ψ) bonds

Chem 352, Lecture 3 - Part II, Protein 3-D Structure

Part II, Protein 3-D Structure

7-1

Confor (a) ictions ·Restri ations + Backl partial doublerotation about

7-3 Conformational Restrictions ·Restrictions to conformations + Backbone + Peptide bond (ω -bond) has partial doublebond character. + Steric hinderance restricts rotation about the N-C_a (φ) and C_{α}-C (ψ) bonds Chem 352, Lecture 3 - Part II, Protein 3-D Structure 7-4 Conformational Restrictions ·Restrictions to conformations + Backbone + Peptide bond (ω -bond) has partial doubleн about Cα₂ R₁ H Chem 352, Lecture 3 - Part II, Protein 3-D Structure 7-5 Conformational Restrictions ·Restrictions to conformations + Backbone + Peptide bond (ω-bond) has partial doublebond character. + Steric hinderance restricts rotation about the N-Ca (φ) and Ca-C (ψ) bonds Chem 352, Lecture 3 - Part II, Protein 3-D Structure 7-6 Conformational Restrictions ·Restrictions to conformations + Backbone loubleabout Trans Oxygen Oxygen α-carbon Carbonyl carbon Nitrogen Side chain Chem 352, Lecture 3 - Part II, Protein 3-D Structure 7-7 Conformational Restrictions ·Restrictions to conformations + Backbone + Peptide bond (ω-bond) has partial doublebond character. + Steric hinderance restricts rotation about the N-C_a (φ) and C_{α}-C (ψ) bonds

Conformational Restrictions Restrictions to conformations Backbone Peptide bond (ω-bond) has partial double-bond character. Steric hinderance restricts rotation about the N-C_a (ψ) and C_a-C (ψ) bonds

7-9

8-1

8-2

Conformational Restrictions • The Ramachandran Plot • Plots the ψ versus the φ backbone dihedral angle for each residue in a polypeptide. Ohem 352, Lecture 3 - Part 11, Protein 3-0 Structure

8-5

9

Protein Secondary Structures The α-Helix • The backbone is wound into a right-handed cork screw • 5.4 Angstroms/turn (the pitch) • 1.5 Angstroms/aa (the rise) • Peptide amide from one turn, hydrogen bonds to the peptide amide from the next turn • φ and ψ angles are in a favorable region of the Ramachandran plot • Side chains extend out from the helix axis

10-1

10-3			

Protein Secondary Structures

The α-Helix

- + The backbone is wound into a right-handed

- cork screw

 5.4 Angstroms/turn (the pitch)

 1.5 Angstroms/aa (the rise)

 Peptide amide from one turn, hydrogen bonds to the peptide amide from the next turn
- + ϕ and ψ angles are in a favorable region of the Ramachandran plot
- + Side chains extend out from the helix axis

Chem 352, Lecture 3 - Part II, Protein 3-D Structure 10

Protein Secondary Structures ded bonds of xis Chem 352, Lecture 3 - Part II, Protein 3-D Structure 10

10-5

10-6

10-8 Protein Secondary Structures The α -Helix + The backbone is wound into a right-handed cork screw + 5.4 Angstroms/turn (the pitch) + 1.5 Angstroms/aa (the rise) + Peptide amide from one turn, hydrogen bonds to the peptide amide from the next turn + ϕ and ψ angles are in a favorable region of the Ramachandran plot + Side chains extend out from the helix axis Chem 352, Lecture 3 - Part II, Protein 3-D Structure 10 10-9 Protein Secondary Structures The α-H + The ba handed cork so + 1.5 A + Peptide to the gen bonds turn + φ and gion of the Ra + Side ch ix axis Chem 352, Lecture 3 - Part II, Protein 3-D Structure 10 10-10 Protein Secondary Structures The α -Helix + The backbone is wound into a right-handed cork screw + 5.4 Angstroms/turn (the pitch) + 1.5 Angstroms/aa (the rise) Peptide amide from one turn, hydrogen bonds to the peptide amide from the next turn + ϕ and ψ angles are in a favorable region of the Ramachandran plot + Side chains extend out from the helix axis Chem 352, Lecture 3 - Part II, Protein 3-D Structure 10 10-11 Protein Secondary Structures Chem 352, Lecture 3 - Part II, Protein 3-D Structure 10-12 Protein Secondary Structures The α -Helix + The backbone is wound into a right-handed cork screw + 5.4 Angstroms/turn (the pitch) + 1.5 Angstroms/aa (the rise) + Peptide amide from one turn, hydrogen bonds to the peptide amide from the next turn + φ and ψ angles are in a favorable region of the Ramachandran plot + Side chains extend out from the helix axis

11-1 Protein Secondary Structures \cdot The β -strands and sheets + The polypeptide is nearly fully extended * Peptide bond amides form hydrogen bonds with neighboring strands * The ϕ and ψ angles are in a favorable region of the the Ramachandran plot • Side chains extend from both sides of the Chem 352, Lecture 3 - Part II, Protein 3-D Structure 11 11-2 Protein Secondary Structures Chem 352, Lecture 3 - Part II, Protein 3-D Structure 11 11-3 Protain Sacandary Structures Antiparallel β sheet Chem 352, Lecture 3 - Part II, Protein 3-D Structure 11-4 Protein Secondary Structures Chem 352, Lecture 3 - Part II, Protein 3-D Structure 11-5 Protein Secondary Structures •The β -strands and sheets + The polypeptide is nearly fully extended * Peptide bond amides form hydrogen bonds with neighboring strands * The ϕ and ψ angles are in a favorable region of the the Ramachandran plot * Side chains extend from both sides of the

sheet

Protein Secondary Structures

- •The β -strands and sheets
- + The polypeptide is nearly fully extended
- * Peptide bond amides form hydrogen bonds with neighboring strands
- * The φ and ψ angles are in a favorable region of the the Ramachandran plot

 + Side chains extend from both sides of the
- sheet

Chem 352, Lecture 3 - Part II, Protein 3-D Structure 11

11-7		

Proteir	Cacandany Ctructures	
∙The β	A C	
+ The	ended ended	
* Pept with	n bonds	
* The of tl	ple region	
+ Side	of the	
shee	No. 14	
Ļ	Chem 352, Lecture 3 - Part II, Protein 3-D Structure 1	1

11-8		

Protein Secondary Structures

- •The β -strands and sheets
- + The polypeptide is nearly fully extended
- * Peptide bond amides form hydrogen bonds with neighboring strands
- * The ϕ and ψ angles are in a favorable region
- of the the Ramachandran plot

 + Side chains extend from both sides of the sheet

Chem 352, Lecture 3 - Part II, Protein 3-D Structure 11

11-9			

Protein Secondary Structures

- •The loops and β -turns
 - + Used to connect $\beta\text{--sheet}$ strands and $\alpha\text{--}$ helices

12-1			

Protein Secondary Structures • The loops and β-turns • Used to connect β-sheet strands and α-helices Onem 352, Letture 3 - Pert II, Protein 3-D Structure 12

12-3

Protein Secondary Structure •Motifs, • The α-helices and β-sheet strands can produce recognizable supersecondary patterns called motifs. Onen 352, Lecture 3 - Pert II, Protein 3-D Structure 13

13-1

13-2

Protein Secondary Structure ·Motifs, · The α-helices and β-sheet strands can produce recognizable supersecondary patterns called motifs. Chem 352, Lecture 3 - Part II, Protein 3-D Structure 13

14-1 Protein Tertiary Structure ·The 3-dimensional fold of a protein + $\alpha\text{-helices},\ \beta\text{-sheet},\ \beta\text{-turns},\ loops,\ et\ al.$ associate to form a defined 3-dimensional structure. + These structures are stabilized by noncovalent interactions between the amino acid sidechains Chem 352, Lecture 3 - Part II, Protein 3-D Structure 14 14-2 Protein Tertiary Structure otein al. + α-h sional ass str + The cov nino Chem 352, Lecture 3 - Part II, Protein 3-D Structure 14 14-3 Protein Tertiary Structure •The 3-dimensional fold of a protein + α -helices, β -sheet, β -turns, loops, et al. associate to form a defined 3-dimensional structure. + These structures are stabilized by noncovalent interactions between the amino acid sidechains Chem 352, Lecture 3 - Part II, Protein 3-D Structure 14 15 Protein Tertiary Structure Homologous proteins have similar tertiary structures, which are evolutionarily conserved. Chem 352, Lecture 3 - Part II, Protein 3-D Structure 15 16-1 Chem 352, Lecture 3 - Amino Acids and Protein Primary Structure

16-2				

Protein Tertiary Structure -Homologous proteins have similar tertiary structures, which are evolutionarily conserved.

17-1			

17-2

17-3

•Domains			
 Domains are within a sing 			ts
		080	7
	2 m		
	**************************************	A TO	
	No.	788	

18

19

20

Protein Tertiary Structure Families • Many proteins in an organism share a common fold and can be grouped into families. • Members of a family are believed to have descended from a common ancestor. • Proteins that are descended from a common ancestor are said to be homologous.

21-1

21-2

Protein Tertiary Structure Families • Many proteins in an organism share a common fold and can be grouped into families. • Members of a family are believed to have descended from a common ancestor. • Proteins that are descended from a common ancestor are said to be homologous.

21-3	

22-1 Protein Quaternary Structure The assembly of multiple polypeptides to form a single protein + Each polypeptide has its own tertiary structure. + The individual polypeptides are called subunits. + The subunits are held together by weak noncovalent interactions, primarily between the amino acid side chains. Chem 352, Lecture 3 - Part II, Protein 3-D Structure 22 22-2 Protein Quaternary Structure The assembly of multiple polypeptides to form a single protein Chem 352, Lecture 3 - Part II, Protein 3-D Structure 22 22-3 Protein Quaternary Structure The assembly of multiple polypeptides to form a single protein + Each polypeptide has its own tertiary structure. + The individual polypeptides are called subunits. + The subunits are held together by weak noncovalent interactions, primarily between the amino acid side chains. Chem 352, Lecture 3 - Part II, Protein 3-D Structure 22 23-1 Protein Quaternary Structure ·Reasons for forming quaternary structures. + Increased stability * Creation of active sites at subunit interfaces + Regulation of activity by way of subunit interactions + Different proteins can share the same subunits Chem 352, Lecture 3 - Part II, Protein 3-D Structure 23 23-2 Protein Quaternary Structure

The enzyme aspartate transcarbamoylase

23-3 Protein Quaternary Structure ·Reasons for forming quaternary structures. · Increased stability Creation of active sites at subunit interfaces Regulation of activity by way of subunit interactions + Different proteins can share the same Chem 352, Lecture 3 - Part II, Protein 3-D Structure 23 24 The Protein Data Bank ·The Protein Data Bank is a repository for the 3-dimensional structures of proteins. + In addition to proteins, it also contains structures for nucleic acids and large assemblies, such as viruses and ribosomes. + Each entry has a four character code + Moran et al. gives you the codes in the figure legends when is shows structures. Chem 352, Lecture 3 - Part II, Protein 3-D Structure 24 25 The Protein Data Bank www.pdb.org PDB - 1708-101 Chem 352, Lecture 3 - Part II, Protein 3-D Structure 25 26-1 The Protein Data Bank The Protein Data Bank is a repository for the 3-dimensional structures of proteins. + In addition to proteins, it also contains structures for nucleic acids and large assemblies, such as viruses and ribosomes. + Each entry has a four character code + Moran et al. gives you the codes in the figure legends when is shows structures. Chem 352, Lecture 3 - Part II, Protein 3-D Structure 26 26-2 The Protein Data Bank The Pr itory for the of protein + In ac struc asser + Each + Mo

figu

ires.

26-3			

The Protein Data Bank

The Protein Data Bank is a repository for the 3-dimensional structures of proteins.

- In addition to proteins, it also contains structures for nucleic acids and large assemblies, such as viruses and ribosomes.
- + Each entry has a four character code
- Moran et al. gives you the codes in the figure legends when is shows structures.

Chem 352, Lecture 3 - Part II, Protein 3-D Structure 26

26-4

Large Protein Assemblies

·The Molecular Machinery of Life

27

Recap: Conformational Restrictions

Steric hinderances restrict the ϕ and ψ to a limited number of combinations.

28

Recap: Interactions with water

Globular proteins fold to remove as many non-polar side chains from water as possible.

·The native state of a protein is stabilized by weak non-covalent interactions. + The process of disrupting these interactions is called denaturation. + Denaturation can be accomplished with Changes in temperature. Changes in pH. Added chemical agents. Denaturation is a cooperative, often twostate, event. Chem 352, Lecture 3 - Part II, Protein 3-D Structure 31 32-1 Protein Denaturation ·The native state of a protein is stabilized by weak non-covalent interactions. + For some proteins, the native state is also stabilized by covalent bonds. + e.g. cystine disulfide bonds Chem 352, Lecture 3 - Part II, Protein 3-D Structure 32 32-2 Protein Denaturation ·The native state of a protein is Chem 352, Lecture 3 - Part II, Protein 3-D Structure 32 32-3 Protein Denaturation ·The **native** state of a protein is stabilized by weak non-covalent interactions. + For some proteins, the native state is also stabilized by covalent bonds. + e.g. cystine disulfide bonds Chem 352, Lecture 3 - Part II, Protein 3-D Structure 32 33-1 Protein Renaturization ·Christain Anfinsen carried out a landmark experiment in 1961, which demonstrated that the primary sequence of a protein contained sufficient information to direct the folding of a peptide to its native state. Chem 352, Lecture 3 - Part II, Protein 3-D Structure 33

31-3

Protein Denaturation

33-2 Protein Renaturization ·Christain Anfinsen carried out a landmark experiment in 1961, which demonstrated that the prim sequence of a protein conta sufficient information to dir folding of a peptide to its n state. Chem 352, Lecture 3 - Part II, Protein 3-D Structure 33 33-3 Protein Renaturization out a 1, which Protein 3-D Structure 33 33-4 Protein Renaturization ·Christain Anfinsen carried out a landmark experiment in 1961, which demonstrated that the primary sequence of a protein contained sufficient information to direct the folding of a peptide to its native state. Chem 352, Lecture 3 - Part II, Protein 3-D Structure 33 34-1 Protein Folding Protein folding is driven by search for the lowest free energy conformation. Chem 352, Lecture 3 - Part II, Protein 3-D Structure 34 34-2 **Protein Folding** f Free energy

Conformation

34-3 Protein Folding ·Protein folding is driven by search for the lowest free energy conformation. 35-1 **Protein Folding** ·The "Levinthal Paradox" + So much to do and so little time to get it done. How long would it take to fold a 100 amino acid residue protein by searching all the possible conformations to find the one with the lowest free energy? Chem 352, Lecture 3 - Part II, Protein 3-D Structure 35 35-2 Protein Folding t it with 35-3 Protein Folding ·The "Levinthal Paradox" + So much to do and so little time to get it + How long would it take to fold a 100 amino acid residue protein by searching all the possible conformations to find the one with the lowest free energy? Chem 352, Lecture 3 - Part II, Protein 3-D Structure 35 35-4 **Protein Folding** ·The t it amino Free energy with Conformation

35-5 Protein Folding ·The "Levinthal Paradox" + So much to do and so little time to get it done. How long would it take to fold a 100 amino acid residue protein by searching all the possible conformations to find the one with the lowest free energy? Chem 352, Lecture 3 - Part II, Protein 3-D Structure 35 36-1 Protein Folding ·Protein folding is driven by search for the lowest free energy conformation. • The interactions that lead to a lower free energy include: + hydrophobic effect (drives the folding process) + dipole/dipole interactions + hydrogen bonding + vander Waals (dispersion) interactions + Charge/charge interactions are usually found at the surface, and therefore are strongly Chem 352, Lecture 3 - Part II, Protein 3-D Structure 36 36-2 Protein Folding TABLE 4.1 Examples of Hydrogen Bonds in Proteins Hydroxyl-carbonyl 0.29 Amide-hydroxyl 0.30 und Chem 352, Lecture 3 - Part II, Protein 3-D Structure 36-3 Protein Folding Protein folding is driven by search for the lowest free energy conformation. + The interactions that lead to a lower free energy include: + hydrophobic effect (drives the folding process) dipole/dipole interactions hydrogen bonding + vander Waals (dispersion) interactions + Charge/charge interactions are usually found at the surface, and therefore are strongly Chem 352, Lecture 3 - Part II, Protein 3-D Structure 36 37-1 **Protein Folding** ·Protein folding is driven by search for the lowest free energy conformation.

37-3

Protein Folding
Protein folding is driven by search for the lowest free energy conformation.

Chem 352 Lecture 3 - Pert II, Protein 3-D Structure 37

37-4

Protein Folding
Folding@Home
(http://folding.stanford.edu)

38

39

Chem 352, Lecture 3 - Part II, Protein 3-D Structure 42

·Fibrous protein	s have primary	
		4
secondary and	quaternary struc	iure.
+ The lack tertiar	Structure	
collagen is made		
polyproline-type tripl	e nelices	٤
	-3	2
-Gly-Pro-Hydroxypro	ine-	72.E
		1
	3	200

43-4

Fibrous Proteins	
·Fibrous proteins hav	e primary,
secondary and quate	rnary structure.
~~ c ~ v ~	N N N N N N N N N N N N N N N N N N N
H Ö	
о Н 1 с	7
MAC N CH2 H	
H ₂ C CH ₂	Lecture 3 - Part II, Protein 3-D Structure 43

43-5

•Fibrous•	proteins hav	e primary,	
	y and quate tertiary struc	rnary struct	ure
	n is <mark>made of</mark> type triple helice	25	
-Gly-Pro	-Hydroxyproline-		The same of the sa
		3	

Up next	
•Exam I – Lecture 1–3	
·Lecture 4, Part I - Enzymes • Read Chapter 5 in Moran et al.	
Chem 352, Lecture 3 - Part II, Protein 3-D Structure	44

44	