Chem 352 - Lecture 3
Part II: Protein
3-Dimensional Structure

Question for the Day: Assuming proteins fold fo produce a structure
with the lowest free energy; if you wished to predict the correct
folding of a polypeptide into a protein by sampling each possible
conformations, and selecting the one with the lowest free energy,
approximately how long would this take you?

Introduction to Protein Structure
A polypeptide has a lot of flexibility.

+ This allows them to adopt numerous shapes
or conformations.

+ To be functional, proteins usually need fo
adopt a particular conformation, referred to
as the native conformation.

Polypeptide can have wide range of
lengths

+ <100 amino acids to >2000 amino acids
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Introduction to Protein Structure

‘Whereas genomics is the study of
the the complete genome of an
organism (The Human Genome
Project),

* Proteomics is the study of all the proteins
produced by an organism
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Introduction to Protein Structure
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Introduction to Protein Structure
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Introduction to Protein Structure

‘Whereas genomics is the study of
the the complete genome of an
organism (The Human Genome
Project),

* Proteomics is the study of all the proteins
produced by an organism
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Introduction to Protein Structure

‘Proteins come also in different

shapes
+ Globular proteins are spherically shaped.
* Fibrous proteins are rod-shaped
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Introduction to Protein Structure

‘Proteins come also in different

shapes
+ Globular proteins are spherically shaped.
* Fibrous proteins are rod-shaped
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Introduction to Protein Structure

The four levels of protein structure
+ Primary (I°)
+ Secondary (1I°)
+ Tertiary (III°)
+ Quaternary (IV°)

We have discusses the primary
structure.

+ The other levels relate to the folding of linear
primary structure into a 3-dimensional
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Determining Protein Structures

Methods for determining the 3-

dimensional structures of proteins:
+ X-ray crystallography
* NMR spectroscopy

Structures are deposited in the
Proteins Data Bank (PDB)
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Determining Protein Structures
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Determining Protein Structures
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Determining Protein Structures

Methods for determining the 3-

dimensional structures of proteins:
+ X-ray crystallography
* NMR spectroscopy

Structures are deposited in the
Proteins Data Bank (PDB)
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Determining Protein Structures
Me i V.
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Conformational Restrictions

‘Restrictions to conformations
+ Backbone
+ Peptide bond (w-bond) has partial double-
bond character.
+ Steric hinderance restricts rotation about
the N-Ca () and C.-C () bonds
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Conformational Restrictions
‘Restrictions to conformations
+ Backbone
+ Peptide bond (w-bond) has partial double-
bond character.

+ Steric hinderance restricts rotation about
the N-Ca () and C.-C () bonds

Chem 352, Lecture 3 - Part I, Protein 3-D Structure

Conformational Restrictions
Restrictions to conformations
+ Backbone

+ Peptide bond (w-bond) has partial double-
H
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Conformational Restrictions

Restrictions to conformations
+ Backbone

+ Peptide bond (w-bond) has partial double-
bond character.
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+ Steric hinderance restricts rotation about

the N-Ca () and C.-C () bonds
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Conformational Restrictions

Restrictions to conformations
+ Backbone
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Conformational Restrictions

Restrictions to conformations
+ Backbone

+ Peptide bond (w-bond) has partial double-
bond character.
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+ Steric hinderance restricts rotation about
the N-Ca () and C.-C () bonds
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Conformational Restrictions

Restrictions to conformations
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Conformational Restrictions

‘Restrictions to conformations
+ Backbone
+ Peptide bond (w-bond) has partial double-
bond character.
+ Steric hinderance restricts rotation about
the N-Ca () and C.-C () bonds
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Conformational Restrictions

‘The Ramachandran Plot
+ Plots the ¢ versus the ¢ backbone dihedral
angle for each residue in a polypeptide.
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Conformational Restrictions

‘The Ramachandran Plot —_—
+ Plots the ¢ versus the ¢ backbone
angle for each residue in a polype|
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Conformational Restrictions
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Conformational Restrictions 8-4
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‘The Ramachandran Plot
+ Plots the ¢ versus the ¢ backbone dihedral
angle for each residue in a polypeptide.
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Conformational Restrictions

Protein Structure - Ribonuclease A
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Protein Secondary Structures 10-1

The «-Helix

+ The backbone is wound into a right-handed
cork screw
+ 5.4 Angstroms/turn (the pitch)
+ 1.5 Angstroms/aa (the rise)

+ Peptide amide from one turn, hydrogen bonds
to the peptide amide from the next turn

+ ¢ and ¢ angles are in a favorable region of
the Ramachandran plot

+ Side chains extend out from the helix axis
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Linus Pauling (1901-1994)

Nobel Prize in Chemistry, 1954
Nobel Prize in Peace, 1962
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Protein Secondary Structures

The a-Helix

+ The backbone is wound into a right-handed
cork screw
+ 5.4 Angstroms/turn (the pitch)
+ 1.5 Angstroms/aa (the rise)

+ Peptide amide from one turn, hydrogen bonds
to the peptide amide from the next turn

+ ¢ and ¢ angles are in a favorable region of
the Ramachandran plot

+ Side chains extend out from the helix axis
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Protein Secondary Structures
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Protein Secondary Structures
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Protein Secondary Structures
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Protein Secondary Structures
The a-Helix

+ The backbone is wound into a right-handed
cork screw
+ 5.4 Angstroms/turn (the pitch)
+ 1.5 Angstroms/aa (the rise)

+ Peptide amide from one turn, hydrogen bonds
to the peptide amide from the next turn

+ ¢ and ¢ angles are in a favorable region of
the Ramachandran plot

+ Side chains extend out from the helix axis
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Protein Secondary Structures
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Protein Secondary Structures
The a-Helix

+ The backbone is wound into a right-handed
cork screw
+ 5.4 Angstroms/turn (the pitch)
+ 1.5 Angstroms/aa (the rise)

+ Peptide amide from one turn, hydrogen bonds
to the peptide amide from the next turn

+ ¢ and ¢ angles are in a favorable region of
the Ramachandran plot

+ Side chains extend out from the helix axis
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Protein Secondary Structures
The a-Helix

+ The backbone is wound into a right-handed
cork screw
+ 5.4 Angstroms/turn (the pitch)
+ 1.5 Angstroms/aa (the rise)

+ Peptide amide from one turn, hydrogen bonds
to the peptide amide from the next turn

+ ¢ and ¢ angles are in a favorable region of
the Ramachandran plot

+ Side chains extend out from the helix axis
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Protein Secondary Structures

‘The B-strands and sheets

+ The polypeptide is nearly fully extended

* Peptide bond amides form hydrogen bonds
with neighboring strands

* The ¢ and ¢ angles are in a favorable region
of the the Ramachandran plot

+ Side chains extend from both sides of the
sheet
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Protein Secondary Structures

‘The B-strands and sheets

+ The polypeptide is nearly fully extended

* Peptide bond amides form hydrogen bonds
with neighboring strands

* The ¢ and ¢ angles are in a favorable region
of the the Ramachandran plot

+ Side chains extend from both sides of the
sheet
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Protein Secondary Structures 1-7
‘The B-strands and sheets
+ The polypeptide is nearly fully extended
* Peptide bond amides form hydrogen bonds
with neighboring strands
* The ¢ and ¢ angles are in a favorable region
of the the Ramachandran plot
+ Side chains extend from both sides of the
sheet
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Protein Secondary Structures
‘The B-strands and sheets
+ The polypeptide is nearly fully extended
* Peptide bond amides form hydrogen bonds
with neighboring strands
* The ¢ and ¢ angles are in a favorable region
of the the Ramachandran plot
+ Side chains extend from both sides of the
sheet
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Protein Secondary Structures

‘The loops and B-turns
+ Used to connect B-sheet strands and «-
helices
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Protein Secondary Structures

‘The loops and B-turns
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Protein Secondary Structures
‘The loops and B-turns

+ Used to connect B-sheet strands and «-
helices
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Protein Secondary Structure

‘Motifs,

+ The a-helices and B-sheet strands can
produce recognizable supersecondary

patterns called motifs.
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Protein Secondary Structure
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Protein Secondary Structure
‘Motifs,

+ The a-helices and B-sheet strands can
produce recognizable supersecondary

patterns called motifs.
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Protein Tertiary Structure

The 3-dimensional fold of a protein
+ a-helices, B-sheef, g-turns, loops, et al.
associate to form a defined 3-dimensional
structure.
+ These structures are stabilized by non-

covalent interactions between the amino
acid sidechains
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Protein Tertiary Structure 14-2
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Protein Tertiary Structure
The 3-dimensional fold of a protein
+ a-helices, B-sheef, g-turns, loops, et al.
associate to form a defined 3-dimensional
structure.
+ These structures are stabilized by non-
covalent interactions between the amino
acid sidechains
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Protein Tertiary Structure

Homologous proteins have similar
tertiary structures, which are
evolutionarily conserved.
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Protein Tertiary Structure

‘Homologous proteins have similar
tertiary structures, which are
evolutionarily conserved.
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Protein Tertiary Structure
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Protein Tertiary Structure

‘Homologous proteins have similar
tertiary structures, which are
evolutionarily conserved.
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Protein Tertiary Structure

-Domains

+ Domains are independent folding units
within a single polypeptide chain.
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Protein Tertiary Structure

(o) Parallel twisted sheet (b1 barrel

-Domains

+ Some common
domain folds

(/B barrel (@B helix
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Protein Tertiary Structure

-Domains

+ Domains often have specific functions and
provide proteins with a modular design.

Protein Siucture - Pyruvate Kinase (1PKM)

Go to
Wikipedia entry
on protein
domains

Chem 352, Lecture 3 - Part I, Protein 3-D Structure 20

20

Protein Tertiary Structure

Families
+ Many proteins in an organism share a common
fold and can be grouped into families.
+ Members of a family are believed to have
descended from a common ancestor.
+ Proteins that are descended from a common
ancestor are said to be homologous.
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Protein Tertiary Structure

Families

Lactate Malate
Dehydrogenase Dehydrogenase
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Protein Tertiary Structure

Families
+ Many proteins in an organism share a common
fold and can be grouped into families.
+ Members of a family are believed to have
descended from a common ancestor.
+ Proteins that are descended from a common
ancestor are said to be homologous.
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Protein Quaternary Structure

The assembly of multiple polypeptides

to form a single protein

+ Each polypeptide has its own tertiary
structure.

+ The individual polypeptides are called
subunits.

+ The subunits are held fogether by weak non-
covalent interactions, primarily between the
amino acid side chains.
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Protein Quaternary Structure

The assembly of multiple polypeptides
to form a single protein
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Protein Quaternary Structure

The assembly of multiple polypeptides

to form a single protein

+ Each polypeptide has its own tertiary
structure.

+ The individual polypeptides are called
subunits.

+ The subunits are held fogether by weak non-
covalent interactions, primarily between the
amino acid side chains.

Chem 352, Lecture 3 - Part I, Protein 3-D Structure 22
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Protein Quaternary Structure

‘Reasons for forming quaternary

structures.
+ Increased stability
* Creation of active sites at subunit interfaces
+ Regulation of activity by way of subunit
interactions
+ Different proteins can share the same
subunits
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Protein Quaternary Structure
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Protein Quaternary Structure

‘Reasons for forming quaternary

structures.
+ Increased stability
* Creation of active sites at subunit interfaces
+ Regulation of activity by way of subunit
interactions
+ Different proteins can share the same
subunits
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The Protein Data Bank

-The Protein Data Bank is a
repository for the 3-dimensional

structures of proteins.

+ In addition to proteins, it also contains
structures for nucleic acids and large
assemblies, such as viruses and ribosomes.

+ Each entry has a four character code
+ Moran et al. gives you the codes in the

figure legends when is shows structures.
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The Protein Data Bank wwwpdborg

Chem 352, Lecture 3 - Part I, Protein 3-D Structure 25

25

The Protein Data Bank

The Protein Data Bank is a repository
for the 3-dimensional structures of
proteins.

+ In addition to proteins, it also contains
structures for nucleic acids and large
assemblies, such as viruses and ribosomes.

+ Each entry has a four character code
+ Moran et al. gives you the codes in the

figure legends when is shows structures.
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The Protein Data Bank

The Pn sitory
for the 3 of
protein
+In ac H
struc
assen ymes.

+ Each
+ Mow‘
ﬁgg

the
ures.

Chem 352, Lecture 3 - Part I, Protein 3-D Structure 26

26-2



The Protein Data Bank

The Pn sitory
for the 3 of
protein
+In ac H
struc
asser imes.
+ Each
+ Mow‘ the
figt ures.

http://www.chem.uwec.edu/marvin
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The Protein Data Bank

The Protein Data Bank is a repository
for the 3-dimensional structures of
proteins.

+ In addition to proteins, it also contains
structures for nucleic acids and large
assemblies, such as viruses and ribosomes.

+ Each entry has a four character code
+ Moran et al. gives you the codes in the

figure legends when is shows structures.
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Large Protein Assemblies
‘The Molecular Machinery of Life
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Recap: Conformational Restrictions

Steric hinderances restrict the ¢ and
¢ to a limited number of
combinations.

2
T~

s
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Recap: Interactions with water

Globular proteins fold to remove as
many non-polar side chains from water
as possible.

Protein Steture - Ubiqiin

Chem 352, Lecture 3 - Part I, Protein 3-D Structure
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Recap: Interactions with water

Question:

IWhat is the driving force behind this process? r

Chem 352, Lecture 3 - Part I, Profein 3-D Structure
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Recap: Interactions with water 29-3
Globular proteins fold to remove as
many non-polar side chains from water
as possible.
e
R
Chem 352, Lecture 3 - Part 11, Protein 3-D Structure
. 30
Recap: Role of secondary structures
a-helices and B-sheets provide
hydrogen bond opportunities for
backbone amide groups in the absence
of water
(:@j
R
Chem 352, Lecture 3 - Part TI, Protein 3-D Structure
Protein Denaturation 31-1
‘The native state of a protein is
stabilized by weak non-covalent
interactions.
+ The process of disrupting these interactions
is called denaturation.
+ Denaturation can be accomplished with
+ Changes in temperature.
+ Changes in pH.
+ Added chemical agents.
+ Denaturation is a cooperative, often two-
state, event.
Chem 352, Lecture 3 - Part 11, Protein 3-D Structure 31
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Protein Denaturation 31-3

The native state of a protein is
stabilized by weak non-covalent
interactions.
+ The process of disrupting these interactions
is called denaturation.
+ Denaturation can be accomplished with
+ Changes in temperature.
+ Changes in pH.
+ Added chemical agents.

+ Denaturation is a cooperative, often two-
state, event.
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Protein Denaturation 32-1

The native state of a protein is
stabilized by weak non-covalent
interactions.

+ For some proteins, the native state is also

stabilized by covalent bonds.
+ e.g. cystine disulfide bonds
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Protein Denaturation 32-2
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Protein Denaturation 32-3

‘The native state of a protein is
stabilized by weak non-covalent
interactions.

+ For some proteins, the native state is also

stabilized by covalent bonds.
+ e.g. cystine disulfide bonds

Chem 352, Lecture 3 - Part I, Protein 3-D Structure 32

Protein Renaturization 33-1

-Christain Anfinsen carried out a
landmark experiment in 1961, which
demonstrated that the primary
sequence of a protein contained
sufficient information to direct the
folding of a peptide to its native
state.
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Protein Renaturization

-Christain Anfinsen carried out a

landmark experiment in 1961, which
demonstrated that the prim
sequence of a protein contd|
sufficient information to din
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Protein Renaturization

out a
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Native ribonuclease A

+2ME|[-2ME
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0 Inactive ribonuclease A with
randomly formed disulfide bonds

Christian Anfinsin
-2ME Nobel Prize in Chemistry
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Reve: lenatured ribonuclease A;
disulfide bonds have been reduced 11, Profein 3-D Structure 33
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Protein Renaturization
-Christain Anfinsen carried out a
landmark experiment in 1961, which
demonstrated that the primary
sequence of a protein contained
sufficient information to direct the
folding of a peptide to its native
state.
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Protein Folding

‘Protein folding is driven by search
for the lowest free energy
conformation.
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Protein Folding
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Protein Folding

‘Protein folding is driven by search

for the lowest free energy
conformation.
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Protein Folding 35-1
-The “Levinthal Paradox”
+ So much to do and so little time to get it
done.
+ How long would it take to fold a 100 amino
acid residue protein by searching all the
possible conformations to find the one with
the lowest free energy?
Chem 352, Lecture 3 - Part II, Protein 3-D Structure 35
Protein Folding 35-2
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Protein Folding 35-3
-The “Levinthal Paradox”
+ So much to do and so little time to get it
done.
+ How long would it take to fold a 100 amino
acid residue protein by searching all the
possible conformations to find the one with
the lowest free energy?
Chem 352, Lecture 3 - Part II, Protein 3-D Structure 35
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Protein Folding
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Protein Folding

-The “Levinthal Paradox”

+ So much to do and so little time to get it
done.

+ How long would it take to fold a 100 amino
acid residue protein by searching all the
possible conformations to find the one with
the lowest free energy?

Chem 352, Lecture 3 - Part I, Profein 3-D Structure 35
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Protein Folding 36-1
‘Protein folding is driven by search for
the lowest free energy conformation.

+ The interactions that lead to a lower free

energy include:

+ hydrophobic effect (drives the folding
process)

+ dipole/dipole interactions

+ hydrogen bonding

+ vander Waals (dispersion) interactions

+ Charge/charge interactions are usually found
at the surface, and therefore are strongly

Ghem 352, Lecture 3 - Part 11, Profein 3-D Structure 36

Protein Folding 36-2

TABLE 4.1 Examples of Hydrogen Bonds in Proteins oT
Typical distance
between donor

Type of and acceptor

hydrogen bond atom (nm)

Hydroxy-hydrony! — O—HeweO— 02

[
H
v
Hydroxy-carbony! —0—te0=c{
\, 7
Amide-carbonyl /\ —H: 0=C( N 029
\
Amide hydroxy] ON—HO— 030
H und
R =
Amide-imidazole nitrogen N—Hee NG NH 031 y
Ghem 352, Lecture 3 - Part 11, Profein 3-D Structure 36

Protein Folding 36-3
‘Protein folding is driven by search for
the lowest free energy conformation.

+ The interactions that lead to a lower free

energy include:
+ hydrophobic effect (drives the folding

process)
+ dipole/dipole interactions
+ hydrogen bonding
+ vander Waals (dispersion) interactions
+ Charge/charge interactions are usually found

at the surface, and therefore are strongly

Ghem 352, Lecture 3 - Part 11, Profein 3-D Structure 36
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Protein Folding

‘Protein folding is driven by search
for the lowest free energy
conformation.
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Protein Folding 37-4
‘Protein folding is driven by search
for the lowest free energy
conformation.
Protein Folding 38
-Folding@Home
(http://folding.stanford.edu)
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Protein Folding

What's New,

Col
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Protein Folding
Unboiling an egg

+ NPR report

*+ Yuan, T. Z. et al. (2015) Shear-Stress-Mediated Refolding of
Proteins from Aggregates and Inclusion Bodies. (2015)
Shear-Stress-Mediated Refolding of Proteins from
Aggregates and Inclusion Bodies. ChemBioChem 16, 393—
396.
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Protein Folding

-In the cell, chaperone assemblies
aid proteins in finding their globe
free energy minimum.
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Protein Folding

7

ofein 3-D Structure 41

Protein Folding

-In the cell, chaperone assemblies
aid proteins in finding their globe
free energy minimum.
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Protein Folding

-In the cell, chaperone assemblies

Unfolded polypeptide Folded polypeptide
+ +
nATP nADP +nP, Y
|
Chaperone
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Protein Folding 41-6
-In the cell, chaperone assemblies
aid proteins in finding their globe
free energy minimum.
Chem 352, Lecture 3 - Part 11, Protein 3-D Structure 41
Fibrous Proteins 42-1
-Fibrous proteins have primary,
secondary and quaternary structure.
+ The lack tfertiary structure
&
«-keratin is made of “coiled-coiled” a-helices
Chem 352, Lecture 3 - Part 11, Protein 3-D Structure 42
Fibrous Proteins 42-2
-Fibrous proteins have primary,
secondary and quaternary structure.
+ The lack tfertiary structure
Chem 352, Lecture 3 - Part 11, Protein 3-D Structure 42
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Fibrous Proteins

-Fibroug®proteins have primary,

secondary and quaternary structure.
+ The lack tertiary structure|.;

collagen is made of
polyproline-type triple helices
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Fibrous Proteins

-Fibroug®proteins have primary,

secondary and quaternary structure.
+ The lack fertiary structure |’

collagen is made of
polyproline-type triple helices

~Gly-Pro-Hydroxyproline-
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Fibrous Proteins
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Fibrous Proteins

-Fibrous®proteins have primary,

secondary and quaternary structure.
+ The lack tertiary structure

collagen is made of
polyproline-type triple helices

~Gly-Pro-Hydroxyproline-

Chem 352, Lecture 3 - Part I, Protein 3-D Structure 43
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Fibrous Proteins

-Fibroug®proteins have primary,

'ornnrinzv and mm;l"ar ary structure.
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Fibrous Proteins

-Fibroug®proteins have primary,

secondary and quaternary structure.
+ The lack tertiary structure

collagen is made of
polyproline-type triple helices

~Gly-Pro-Hydroxyproline-

Chem 352, Lecture 3 - Part I, Protein 3-D Structure 43

43-6



Up next
«Exam I - Lecture 1-3

Lecture 4, Part I - Enzymes
+ Read Chapter 5 in Moran et al.
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