Chem 150, Spring 2015

Unit 1 - Molecular Structures

\sim
٠,

- 3.1 Covalent Bonds and the Octet Rule
- Group 8A elements are called Noble Gases and do not normally form chemical compounds. All of these elements also have a full valence shell, which leads to stability
- Representative elements tend to form compounds such that they fill their valence shells (octet rule).
- Known as the octet rule because this normally results in compounds in which each atom had 8 electrons in its most outer shell.

Lewis Structures and Molecules

- Fluorine has 7 valence electrons, and is found as F₂. In this form, both elements have a share in 8 electrons.
- Lewis structures can be used to represent these molecules.

3

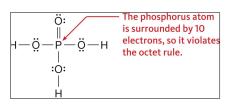
Bonds

- A chemical bond occurs when two atoms are attracted enough to each other to stay together.
- A covalent bond occurs when electrons are shared between two atoms.
- A pair of shared electrons is known as a bonding electron pair.
- Lone pairs or non-bonding pairs of electrons are the electrons not involved in the covalent bond.

4

Try It!	5	
Question: Draw the Lewis dot structure for a molecule that contains one chlorine atom (CI) and one fluorine (F) atom.	-	
	7 0	
 A group of two or more atoms (identical or different) is a molecule. A combination of two or more different elements is a compound. All compounds are molecules but not all molecules (like H₂, F₂, etc) are compounds. 	6	
Neon Fluorine Chlorine monofluoride	-	
Neon is an element, and is made up of Ne atoms. Ne atoms. Magaziana and is made up of F2 molecules. Magaziana and is made up of CIF molecules.	_	
Hydrogen	7	
Hydrogen atoms need only one electron to fill the valence shell to achieve the electron arrangement of Helium.	_	
H° + °H → H°H	-	
	-	
	-	
Try It!	8	
Question: Draw the Lewis dot structure for a molecule that contains one oxygen atom (O) and two hydrogen (H) atoms.	-	
	-	
	-	
	_	

valent Bonds fo	or All Re	epresen	ntative	Eleme	nts	9
TABLE 3.1 Covalent Bo						
Number of Valence	Group 4A	Group 5A	Group 6A	Group 7A	Group 8A	
Electrons Number of Empty Spaces	4	3	2	1	0	
in the Valence Shell Number of Covalent	4	3	2	1	0	
Bonds Formed Example of a Typical	н				These	
Molecule	H H:Ö:H H	H:Ñ:H Ĥ	H:Ö:H	H: Ë: Hydrogen	elements do	
O.C	Methane	Ammonia	Water	fluoride	molecules.	
© Cengage Learning Elements with 5 or n	more emp	oty space	s rarely	form cov	valent bonds	
to fill their empty val			,			
						10
y It!						
Question: Draw the Lew	ie dat et	ructure t	for a mo	olecule :	that	
contains two				,,coule		
•						
						11
2 Double and Tri	iple Boi	nds				''
One shared pair	of elec	ctrons (2 total	electro	ns) is	
a single bond.						
Double bonds fo of electrons (4 to				e two	pairs	
oi electroris (4 to	00 0	0	•			
	Ö					
Triple bonds forr of electrons (6 to	m wher	n atoms	share	three	pairs	
Any atom that ca				nde oo	n form	
a double bond a	and any	atom t	hat car	form		
least 3 bonds ca	an form	a triple	bond.			
101						12
y It!						12
Question:	mide is a	a doodle		hich ha	te	
Hydrogen cya cellular respira	ation. Dr	raw the I	gas, w Lewis d	nich ha ot struc	ture	
for hydrogen o	cyanide.					


Ronding	Datterne	for E	Electrically	Moutral	Atomo
Donaing	i alleins	IUI L	Liculically	Neutiai	ALUITIO

Group Number	Normal Number of Covalent Bonds	Possible Bonding Patterns	Examples
4A	4	$-\overset{ }{{}{}}-$	H-C-I
		=x- ≡x-	.ν≡c-н Ö=c-н
5A	3	-ÿ- =ÿ- ≡x:	H—Ñ—F
6A	2	−ÿ− =ÿ	н-ö-н ö=ö
7A	1	— <u>;</u> :	:Ë — Ë:

-4	•
- 1	
	•

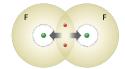
Bonding Patterns for Electrically Neutral Atoms

There are some exceptions, including non-metals in the third period and higher can violate the octet rule by sharing in more than 8 electrons.

14

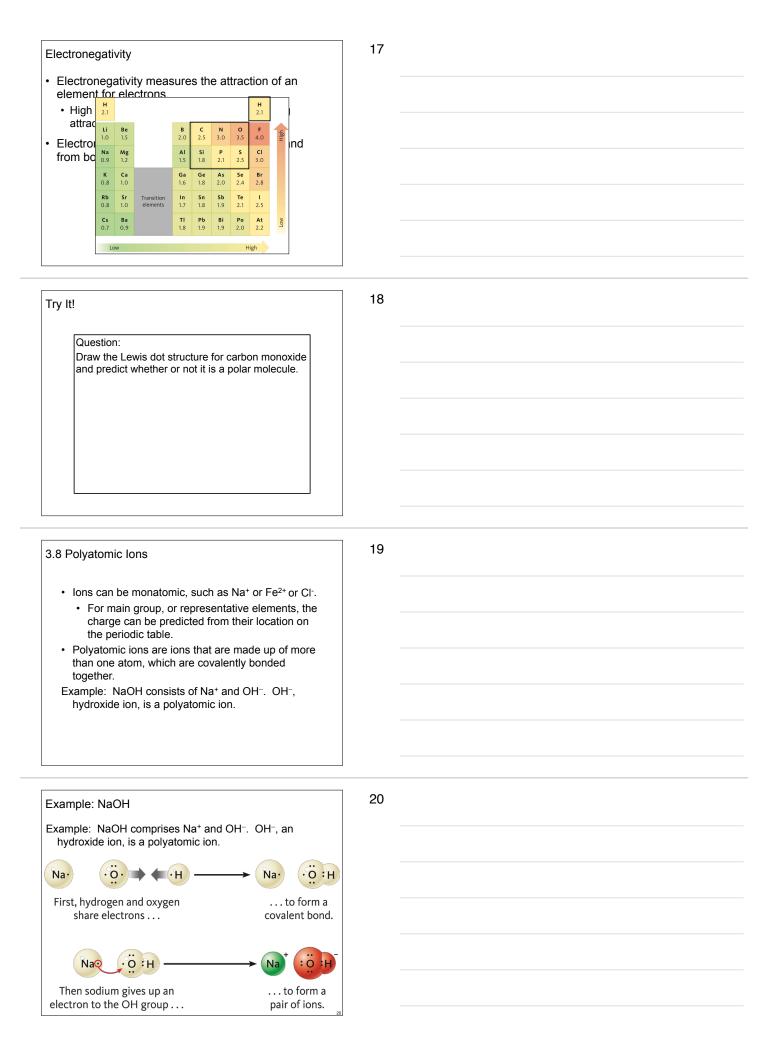
3.3 Electronegativity and Polar Bonds

- Atoms of different elements can form polar covalent bonds.
 - Atoms of some elements are able to attract electrons in a bond stronger than others.
 - Polar bonds occur when electrons are shared unevenly.



Fluorine attracts the electrons more than hydrogen in HF, so fluorine is partially negative and hydrogen is partially positive.

15


Nonpolar Covalent Bonds

- Two identical atoms have equal attraction to electrons in a bond, and therefore share them equally.
- This results in the formation of a nonpolar covalent bond in which atoms are not charged.

In F₂, each atom attracts the electrons equally, so neither atom is charged. F₂ has a **nonpolar covalent bond**.

16

Ionic and Molecular Compounds	25	
TABLE 3.11 A Comparison of Ionic Compounds Containing Monatomic and Polyatomic Ions COMPOUNDS FORMED WITH -1 IONS		
Mg^{2+} $MgCl_2$ (magnesium chloride) $Mg(NO_3)_2$ (magnesium nitrate) MgS (magnesium sulfide) $MgCO_3$ (magnesium carbonate) Al^{1+} $AlCl_3$ (aluminum chloride) $Al(NO_3)_2$ (aluminum nitrate) Al_2S_3 (aluminum sulfide) $Al_3(CO_3)_3$ (aluminum carbonate) C Compape Learning		
Chapter 3—Key Health Science Notes	26	
In many of the health sciences, you will <i>continually</i> learn about the naming of medications, both the generic and brand names		
In some medications that contain ions, the positive ion is named after the negative ion, for example: The chemical name of the cholesterol-lowering		
medication Lipitor® is generally written atorvastatin calcium, although the calcium is a +2 ion		
Next Up	27	
 Unit 2 - Molecular Interactions Readings Chapter 4-1,2,5 & 6 and Chapter 5-3,5 & 6 Homework Assignment due on 5. Feb. 		
- Homework Assignment due on 3. 1 eb.		