

Introduction

- Newborns are tested for high levels in the amino acid phenylalanine in their blood.
 - High levels are an indication that the infant has a genetic disease called phenylketonuria (PKU).

Introduction

Offspring inherit the characteristics of their parents.

Chem 150, Unit 13: Nucleic Acids and Protein Synthesis

Introduction

Offspring inherit the characteristics of their parents.

em 150, Unit 13: Nucleic Acids and Protein Synthesis 3

Introduction

• Offspring inherit the characteristics of their parents.

Introduction

• Offspring inherit the characteristics of their parents.

Introduction

• Nucleic acid were discover in 1800's, but it was not until the 1940's that their significance was appreciated.

Introduction

• Less than 10 years later, in 1953, Francis Crick and James Watson determined a structure for DNA.

17.1 Nucleotides

- Nucleic acids: Ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) were discovered to carry genetic information in 1944.
- Nucleotides are the building blocks of nucleic acids.
 All nucleotides contain a phosphate group, a five carbon

Bases Form Complementary Pairs

- In double-stranded DNA, complementary base pairs form hydrogen bonds
- Guanine forms 3 hydrogen bonds with Cytosine.
- Adenine forms 2 hydrogen bonds with Thymine

Bases Form Complementary Pairs

- Complementary base pairs form hydrogen bonds, a very important feature in DNA and RNA.
- Missmatched nucleotides, such A with C, cannot hydrogen bond.

Chem 150, Unit 13: Nucleic Acids and Protein Synthesis 13

Double Stranded DNA

• DNA is arranged by two strands going in opposite directions and held together by base pairing.

Try It!

Question:

When Watson and Crick proposed their model for doublestranded DNA, it was immediately accepted because it could explain how the DNA could be duplicated during cell division? What is the explanation?

> It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.

> > Chem 150, Unit 12: Lipids

Double Helix

- The two strands of DNA coil to form a double helix, with the hydrophobic base pairs in the middle and the hydrophilic backbone exposed.
- For humans, all of our genetic information is contained in 46 strands of DNA (23 from your mother and 23 from your father), making DNA molecules very large.

Chromosomes

- In eukaryotes, DNA is primarily housed in the nucleus.
- To fit the large DNA molecules, the double helix of DNA wraps around proteins called histones, which also coil with other proteins, forming a compact mass known as a chromosome.

17.3 DNA Replication

- DNA contains instructions for building every cell in an organism.
- The sequence of bases of DNA is instructions for building proteins.
- Of the 46 chromosomes, 44 are autosomal, which occur in pairs containing the same collection of genes and 2 are sex chromosomes, X and Y. Men have one X and one Y, women have two X chromosomes.

Chem 150, Unit 13: Nucleic Acids and Protein Synthes

150, Unit 13: Nucleic Acids and Protein Synth

17.3 DNA Replication

- DNA contains instructions for building every cell in an organism.
- The sequence of bases of DNA is instructions for building proteins.
- Of the 46 chromosomes, 44 are autosomal, which occur in pairs containing the same collection of genes and 2 are sex chromosomes, X and Y. Men have one X and one Y, women have two X chromosomes.

<text>

Replication

- Cells copy DNA through replication. A cell needs a supply of nucleoside triphosphates (dATP, dGTP, dCTP, and dTTP: called activated nucleotides) to build new DNA copies.
- Removing two phosphate groups as a base is added to a DNA chain provides energy for the process.

Four Steps of Replication

- 1. Helicase (a protein) pulls the DNA strands apart.
- 2. Primase (an enzyme) builds short RNA strands (primers) on each DNA strand using activated RNA nucleotides (ATP, CTP, GTP and UTP)
- DNA Polymerase (an enzyme) starts making DNA by adding activated DNA nucleotides to the primers until a full copy is made of each side, forming two chains of DNA, each containing an original DNA strand and a new DNA strand.
- Because DNA replication starts in several areas at once, DNA ligase (an enzyme) converts RNA primers to DNA and seals the gaps.

Mistakes in Replication

- A proofreading enzyme in DNA polymerase (which is actually a cluster of proteins) recognizes and corrects any mismatched base pairs.
- Proofreading catches 99% of errors, leaving one mistake per 10 million bases.
- Any mistake that is not corrected becomes a permanent part of the genome.

17.4 Transcription and RNA Processing

DNA contains all of the information for a cell to make proteins.DNA is transcribed into RNA

Chem 150, Unit 13: Nucleic Acids and Protein Synthe

150, Unit 13: Nucleic Acids and Protein Synth

- Transcription: Think of this as being in the same language, that of bases.
- RNA is translated into proteins
- Translation: Think of this as being in a new language, bases are translated to amino acids.

Types of RNA

- Messenger RNA (mRNA): a set of instructions for proteins
- Transfer RNA (tRNA): matches coded information of mRNA with the correct amino acid
- Ribosomal RNA (rRNA): a catalyst that utilizes mRNA and tRNA to allow amino acids to form a polypeptide chain.

Transcription

- Transcription is similar to replication, except that only a single strand of RNA is made and only short sequences of DNA are copied.
- 1. Helicase unwinds a portion of the DNA. The portion that is selected is a gene.
- 2. RNA polymerase builds a strand of RNA complementing one side of the DNA, known as the template strand. The side that is not copied is the coding strand.

Initial Transcript Modification

- 1. Ribosomal RNA contains extra bases that the cell must clipped out by enzymes.
- 2. Transfer RNA is also clipped out and modified by adding CCA to the 3' end and undergoes some base modification.
- 3. Messenger RNA:
 - capped at the 5' end to tag it as mRNA.
 - Some 3' bases are removed and a chain of adenine
 (Poly-A tail) is added to extend the life of the mRNA
 - Introns are clipped out, leaving only exons.

n 150, Unit 13: Nucleic Acids and Protein Synthesis

Chem 150, Unit 13: Nucleic Acids and Protein Synth

150, Unit 13: Nucleic Acids and Prot

17.5 Translation and the Genetic Code

- mRNA contains a copy of a gene (the code for a single protein)
- A sequence of three bases of mRNA corresponds to one amino acid. This sequence is known as a codon. In virtually all organisms, these codons translate in the same way.
- This genetic code contains 64 possible codons:
 - Some correspond to the same amino acid, one is a start codon (indicating where translation begins) and several are stop codons or nonsense codons (signaling where translation stops)

TABLE 17	.3 The Genetic C	ode		
FIRST POSITION (5' END)	SECOND POSITI	ON C	G	U
А	AAA = Lys	ACA = Thr	AGA = Arg	AUA = Ile
	AAC = Asn	ACC = Thr	AGC = Ser	AUC = Ile
	AAG = Lys	ACG = Thr	AGG = Arg	AUG = Met/star
	AAU = Asn	ACU = Thr	AGU = Ser	AUU = Ile
с	CAA = Gln	CCA = Pro	CGA = Arg	CUA = Leu
	CAC = His	CCC = Pro	CGC = Arg	CUC = Leu
	CAG = Gln	CCG = Pro	CGG = Arg	CUG = Leu
	CAU = His	CCU = Pro	CGU = Arg	CUU = Leu
G	GAA = Glu	GCA = Ala	GGA = Gly	GUA = Val
	GAC = Asp	GCC = Ala	GGC = Gly	GUC = Val
	GAG = Glu	GCG = Ala	GGG = Gly	GUG = Val
	GAU = Asp	GCU = Ala	GGU = Gly	GUU = Val
U	UAA = stop	UCA = Ser	UGA = stop	UUA = Leu
	UAC = Tyr	UCC = Ser	UGC = Cys	UUC = Phe
	UAG = stop	UCG = Ser	UGG = Trp	UUG = Leu
	UAU = Tyr	UCU = Ser	UGU = Cys	UUU = Phe

Building Proteins

• Cells build proteins from the N-terminus to the Cterminus using the information from codons. The coding strand and the mRNA are written 5' to 3'.

17.6 The Mechanism of Protein Synthesis

- mRNA is made in the nucleus and transported into the cytoplasm. Ribosomes, made up of rRNA and proteins, bind to the mRNA in the cytoplasm.
- The ribosome locates the start codon and forms a polypeptide as it moves toward the 3' end, releasing the mRNA and polypeptide at a stop codon.
- Several ribosomes bind at once forming several polypeptides simultaneously.

17.6 The Mechanism of Protein Synthesis

- mRNA is made in the nucleus and transported into the cytoplasm. Ribosomes, made up of rRNA and proteins, bind to the mRNA in the cytoplasm.
- The ribosome locates the start codon and forms a polypeptide as it moves toward the 3' end, releasing the mRNA and polypeptide at a stop codon.
- Several ribosomes bind at once forming several polypeptides simultaneously.

Chem 150, Unit 13: Nucleic Acids and Protein Synthesis 37

Ribosomes

- Molecular weight of 3,200,000 g/mole
- · 60% rRNA and 40% protein

Ribosomes

- Molecular weight of 3,200,000 g/mole
- · 60% rRNA and 40% protein

m 150, Unit 13: Nucleic Acids and Protein Synthesis

17.6 The Mechanism of Protein Synthesis

- mRNA is made in the nucleus and transported into the cytoplasm. Ribosomes, made up of rRNA and proteins, bind to the mRNA in the cytoplasm.
- The ribosome locates the start codon and forms a polypeptide as it moves toward the 3' end, releasing the mRNA and polypeptide at a stop codon.
- Several ribosomes bind at once forming several polypeptides simultaneously.

The Role of tRNA

- tRNA is an L-shaped molecules with two critical regions:
 - The anticodon, a three base sequence which complements the mRNA codon
 - + The acceptor stem, the end of the tRNA that is bonded to the corresponding amino acid of the codon.
- The third base of the anticodon does not have to be an exact match. For instance, the AAU anticodon matches both UUA and UUG, both of which code for leucine. Therefore, there are fewer tRNA types than you might suspect.

Chem 150, Unit 13: Nucleic Acids and Protein Synthesis 40

tRNA

 Enzymes called aminoacyl-tRNA synthetases match tRNA to the corresponding amino acid in an endothermic reaction (requires ATP).

Translation

- During translation, two tRNA molecules bind to the mRNA based on the codons.
- A peptide bond forms between the amino acids of the tRNA molecules.
- The ribosome moves down the mRNA, allowing one tRNA to exit and a new tRNA to bind.
- This continues and the polypeptide grows larger until a stop codon signals the end of the chain.

Chem 150, Unit 13: Nucleic Acids and Protein Synthesis 4

Chem 150, Unit 13: Nucleic Acids and Protein Synthesis

Mechanism of Translation

The Energetic Costs

- It is estimated that more than half of the ATP that is produced by our bodies goes into building proteins.
 - Each amino acid added to a polypeptide costs the equivalent of 4 ATP molecules (due to the costs of activating each amino acid and on the cost of positioning tRNA on the ribosome)
 - Addition of each nucleotide in mRNA costs the equivalent of 2 molecules of ATP, though each mRNA is translated many times.

17.7 Mutations and Genetic Disorders

- Permanent changes of DNA that are passed from parent to offspring are known as mutations.
- Substitution mutations replace one base pair of DNA with another. There are 3 types:
 - 1. Silent Mutation: the mutated codon and the original codon code for the same amino acid. This has no effect on the protein formed or the cell.
 - 2. Nonsense Mutation: the original codon is converted to a stop codon. This causes the formation of short and typically inactive proteins. Nonsense mutations can be lethal to the cell.

Chem 150, Unit 13: Nucleic Acids and Protein Synthesis

Chem 150, Unit 13: Nucleic Acids and Protein Synth

Chem 150, Unit 13: Nucleic Acids and Protein Synthesi

Substitution Mutations Continues

- · Substitution mutations:
 - 3. Missense Mutation: the mutated codon and the original codon code for different amino acids. This may or may not effect the function of the protein. If the different amino acids are similar to each other (like replacing leucine with isoleucine) the protein structure and function may not be changed.

Missense mutations may also turn a stop codon into a meaningful codon, resulting in the formation of a longer protein that will typically be inactive.

Substitutio	TABLE 17	2 The Constic (ada			
3. Missens original (FIRST POSITION (5' END)	SECOND POSITI	ON C	G	U	5
may or r different	A	AAA = Lys AAC = Asn AAG = Lys AAU = Asn	ACA = Thr ACC = Thr ACG = Thr ACU = Thr	AGA = Arg AGC = Ser AGG = Arg AGU = Ser	AUA = Ile AUC = Ile AUG = Met/start AUU = Ile	lf t Ə
replacin(and func	с	CAA = Gln CAC = His CAG = Gln CAU = His	CCA = Pro CCC = Pro CCG = Pro CCU = Pro	CGA = Arg CGC = Arg CGG = Arg CGU = Arg	CUA = Leu CUC = Leu CUG = Leu CUU = Leu	tu
Missen a meani	G	GAA = Glu GAC = Asp GAG = Glu GAU = Asp	GCA = Ala GCC = Ala GCG = Ala GCU = Ala	GGA = Gly GGC = Gly GGG = Gly GGU = Gly	GUA = Val GUC = Val GUG = Val GUU = Val	int 1
longer p	U	UAA = stop UAC = Tyr UAG = stop UAU = Tyr	UCA = Ser UCC = Ser UCG = Ser UCU = Ser	UGA = stop UGC = Cys UGG = Trp UGU = Cys	UUA = Leu UUC = Phe UUG = Leu UUU = Phe	

Substitution Mutations Continues

- · Substitution mutations:
 - 3. Missense Mutation: the mutated codon and the original codon code for different amino acids. This may or may not effect the function of the protein. If the different amino acids are similar to each other (like replacing leucine with isoleucine) the protein structure and function may not be changed.

Missense mutations may also turn a stop codon into a meaningful codon, resulting in the formation of a longer protein that will typically be inactive.

Chem 150, Unit 13: Nucleic Acids and Protein Synthesis 46

150, Unit 13: Nucleic Acids and Protein Synth

TABLE 17.4 The Three Types of Substitution Mutations						
Original DNA (Coding Strand)	Mutation	Type of Mutation	Mutated DNA (Coding Strand)*	mRNA	Amino Acid	Result of Mutation
TTA (codes for leucine)	Change base 3 from A to G	Silent	TTG	UUG	Leucine	The amino acid sequence is unchanged.
	Change base 1 from T to A	Missense	ATA	AUA	Isoleucine	Isoleucine is substituted for leucine.
	Change base 2 from T to A	Nonsense	TAA	UAA	None (stop codon)	The protein lacks some amino acids.

Addition and Deletion Mutations

- Addition Mutations: one or more base pairs is inserted into the DNA.
- Deletion Mutations: one or more base pairs is removed from the DNA.
- Both of these normally cause a frameshift, in which all codons following the mutation are translated incorrectly.
- This normally results in an inactive protein.

nplications			
Original coding strar	nd: ACG ATC ATT ACG		
mRNA is:	ACG AUC AUU ACG		
corresponding to:	Thr lle lle Thr		
	Chem 150, Unit 13: Nucleic Acids and Protein Synthesis 4		
		1	
plications			

Original coding strand: ACG ATC ATT ACG						
mRNA is:	ACG AUC AUU ACG					
corresponding to:	Thr lle lle Thr					
An addition mutation:	ATC GAT CAT TAC G					
mRNA is:	AUC GAU CAU UAC G					
Corresponding to:	lle Asp His Tyr					

Recombination Mutations

- In recombination mutations, a large section of DNA moves from one DNA molecule to another.
- If the recombination disrupts a gene, there may be devastating effects on the cell.
- Cells can use recombination to replace damaged DNA, a process common in bacteria.
- When recombination moves an entire gene to another chromosome, this creates genetic diversity by creating a new combination of genetic traits.

150, Unit 13: Nucleic Acids and Protein Synthesis

Chem 150, Unit 13: Nucleic Acids and Protein Synthe

Devastating Mutations

- Most single mutations within a single cell may be devastating to that cell, but typically don't effect the health of an organism overall.
- There are three instances of mutation that have enormous impact on an organism:
 - The mutation damages the DNA that controls cell division. If cell division spirals out of control (which is caused by several mutations in key areas), the result is cancer.
 - The mutation occurs in early stages of embryonic development. Each embryonic cell is the precursor to many adult cells, and a mutation at this stage often causes embryo death.

Devastating Mutations

- 3. The mutation occurs in an egg or sperm cell before fertilization. Any mutation in either of these will be passed onto the embryo, and into every cell of the person who develops from the fertilized egg.
- A mutation in an autosomal chromosome may have no ill effects on an individual, as everyone inherits two of each of the autosomal chromosomes.
- Autosomal and sex-linked genetic disorders result when one or both parents carry a mutated autosomal or sex-linked chromosome.

Chem 150, Unit 13: Nucleic Acids and Protein Synthesis

Next Up

- Final Exam
 - + Tuesday, 19. May, 8:00am in Phillips 007.

Chem 150, Unit 13: Nucleic Acids and Protein Synthesis