The McGraw-Hill Companies

Unit II - Lecture 9

Chemistry

The Molecular Nature of Matter and Change

Fifth Edition

Martin S. Silberberg

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electron Configuration and Chemical Periodicity
8.4 Trends in Three Key Atomic Properties
8.5 Atomic Structure and Chemical Reactivity

Figure 8.14

Defining metallic and covalent radii.

Figure 8.15

Atomic radii of the maingroup and transition elements.

Sample Problem 8.3
Ranking Elements by Atomic Size

PROBLEM: Using only the periodic table (not Figure 8.15), rank each set of main-group elements in order of decreasing atomic size:
(a) $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Sr}$
(b) K, Ga, Ca
(c) $\mathrm{Br}, \mathrm{Rb}, \mathrm{Kr}$
(d) $\mathrm{Sr}, \mathrm{Ca}, \mathrm{Rb}$

PLAN: Elements in the same group increase in size and you go down a group; elements decrease in size as you go across a period. SOLUTION:
(a) $\mathrm{Sr}>\mathrm{Ca}>\mathrm{Mg}$

These elements are in Group 2A(2).
(b) $\mathrm{K}>\mathrm{Ca}>\mathrm{Ga}$

These elements are in Period 4.
(c) $\mathrm{Rb}>\mathrm{Br}>\mathrm{Kr}$

Rb has a higher energy level and is far to the left. Br is to the left of Kr .
(d) $\mathrm{Rb}>\mathrm{Sr}>\mathrm{Ca}$ Ca is one energy level smaller than Rb and Sr . Rb is to the left of Sr .

Figure 8.16 Periodicity of atomic radius.

Figure 8.20
Electron affinities of the main-group elements.

Figure 8.21
Trends in three atomic properties.

Figure 8.25 Main-group ions and the noble gas electron configurations.

Sample Problem 8.6 Writing Electron Configurations of Main-Group Ions

PROBLEM: Using condensed electron configurations, write reactions for the formation of the common ions of the following elements:
(a) lodine $(Z=53)$
(b) Potassium $(Z=19)$
(c) Indium ($Z=49$)

PLAN: Ions of elements in Groups $1 \mathrm{~A}(1), 2 \mathrm{~A}(2), 6 \mathrm{~A}(16)$, and $7 \mathrm{~A}(17)$ are usually isoelectronic with the nearest noble gas.
Metals in Groups $3 \mathrm{~A}(13)$ to $5 \mathrm{~A}(15)$ can lose their $n p$ or $n s$ and $n p$ electrons.
SOLUTION:
(a) Iodine $(Z=53)$ is in Group 7A(17) and will gain one electron to be isoelectronic with $\mathrm{Xe}: \mathrm{I}\left([\mathrm{Kr}] 5 s^{2} 405 p^{5}\right)+e^{-} \quad \mathrm{F}^{-}\left([\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{6}\right)$
(b) Potassium $(Z=19)$ is in Group $1 A(1)$ and will lose one electron to be isoelectronic with Ar: $\mathrm{K}\left([\operatorname{Ar}] 4 s^{1}\right) \quad \mathrm{K}^{+}([\operatorname{Ar}])+\mathrm{e}^{-}$
(c) Indium $(Z=49)$ is in Group $3 A(13)$ and can lose either one electron or three electrons: $\operatorname{In}\left(\left[K[] 5 s^{2} 4 d^{10} 5 p^{1}\right) \quad \ln ^{+}\left([K r] 5 s^{2} 4 d^{10}\right)+e^{+}\right.$ $\ln \left([K r] 5 s^{2} 4 d^{10} 5 p^{1}\right) \quad \ln ^{3+}\left([K r] 4 d^{10}\right)+3 e$

Figure 8.26
The Period 4 crossover in sublevel energies.

Figure 8.27 Apparatus for measuring the magnetic behavior of a sample.

Sample Problem 8.7 Writing Electron Configurations and Predicting Magnetic Behavior of Transition Metal Ions

PROBLEM: Use condensed electron configurations to write the reaction for the formation of each transition metal ion, and predict whether the ion is paramagnetic.
(a) $\mathrm{Mn}^{2+}(\mathrm{Z}=25)$
(b) $\mathrm{Cr}^{3+}(\mathrm{Z}=24)$
(c) $\mathrm{Hg}^{2+}(\mathrm{Z}=80)$

PLAN: Write the electron configuration and remove electrons starting with ns to match the charge on the ion. If the remaining configuration has unpaired electrons, it is paramagnetic.
SOLUTION:
(a) $\mathrm{Mn}^{2+}(Z=25) \mathrm{Mn}\left([\operatorname{Ar}] 4 s^{2} 3 d^{5}\right) \longrightarrow \mathrm{Mn}^{2+}\left([\operatorname{Ar}] 3 d^{5}\right)+2 \mathrm{e}^{-} \quad$ paramagnetic
(b) $\mathrm{Cr}^{3+}(Z=24) \operatorname{Cr}\left([\operatorname{Ar}] 4 s^{1} 3 d^{5}\right) \longrightarrow \quad \mathrm{Cr}^{3+}\left([\mathrm{Ar}] 3 d^{3}\right)+3 \mathrm{e}^{-} \quad$ paramagnetic
(c) $\mathrm{Hg}^{2+}(\mathrm{Z}=80) \mathrm{Hg}\left([\mathrm{Xe}] 6 s^{2} 4 f^{145} 40\right) \quad \mathrm{Hg}^{2+}\left([\mathrm{Xe}] 4 f^{14} 5 d^{10}\right)+2 \mathrm{e}^{-}$
not paramagnetic (is diamagnetic)

Sample Problem 8.8 Ranking lons by Size

PROBLEM: Rank each set of ions in order of decreasing size, and explain your ranking:
(a) $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Mg}^{2+}$
(b) $\mathrm{K}^{+}, \mathrm{S}^{2-}, \mathrm{Cl}^{-}$
(c) $\mathrm{Au}^{+}, \mathrm{Au}^{3+}$

PLAN: Compare positions in the periodic table, formation of positive and negative ions and changes in size due to gain or loss of electrons. SOLUTION:
(a) $\mathrm{Sr}^{2+}>\mathrm{Ca}^{2+}>\mathrm{Mg}^{2+} \quad$ These are members of the same Group 2A(2) and therefore decrease in size going up the group.
(b) $\mathrm{S}^{2-}>\mathrm{Cl}^{-}>\mathrm{K}^{+} \quad$ The ions are isoelectronic; S^{2-} has the smallest $\mathrm{Z}_{\text {eff }}$ and therefore is the largest while K^{+}is a cation with a large $\mathrm{Z}_{\text {eff }}$ and is the smallest
(c) $\mathrm{Au}^{+}>\mathrm{Au}^{3+} \quad$ The higher the + charge, the smaller the ion.

