The McGraw-Hill Companies

Unit II - Lecture 7

Chemistry

The Molecular Nature of Matter and Change Fifth Edition

Martin S. Silberberg

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Sample Problem 7.5
 Applying the Uncertainty Principle

PROBLEM: An electron moving near an atomic nucleus has a speed $6 \times 10^{6} \pm 1 \%$. What is the uncertainty in its position ($\Delta \boldsymbol{x})$?

PLAN: The uncertainty (Δx) is given as $\pm 1 \%(0.01)$ of $6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Once we calculate this, plug it into the uncertainty equation.

SOLUTION:

$$
\begin{aligned}
& \Delta u=(0.01)\left(6 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)=6 \times 10^{4} \mathrm{~m} / \mathrm{s} \\
& \Delta x * m \Delta u \geq^{h} \\
& \Delta x \geq \frac{6.626 \times 10^{-34} \mathrm{~kg}^{*} \mathrm{~m}^{2} / \mathrm{s}}{4 \pi\left(9.11 \times 10^{-34} \mathrm{~kg}\right)\left(6 \times 10^{4} \mathrm{~m} / \mathrm{s}\right)} \geq 1 \times 10^{-9} \mathrm{~m}
\end{aligned}
$$

Figure 7.16

Electron probability density in the ground-state H atom.

Quantum Numbers and Atomic Orbitals

An atomic orbital is specified by three quantum numbers.
n the principal quantum number - a positive integer
l the angular momentum quantum number - an integer from 0 to $\mathrm{n}-1$
\mathbf{m}_{l} the magnetic moment quantum number - an integer from $-l$ to $+l$

Table 7.2 The Hierarchy of Quantum Numbers for Atomic Orbitals
Name, Symbol

Sample Problem 7.6 Determining Quantum Numbers for an Energy Level
PROBLEM: What values of the angular momentum (l) and magnetic $\left(m_{l}\right)$ quantum numbers are allowed for a principal quantum number (n) of 3? How many orbitals are allowed for $n=3$?

PLAN: Follow the rules for allowable quantum numbers found in the text.
I values can be integers from 0 to $n-1 ; \mathrm{m}_{l}$, can be integers from -I through 0 to $+\boldsymbol{l}$.

SOLUTION: For $n=3, \boldsymbol{l}=0,1,2$

For $l=0 \mathrm{~m}_{l}=0$
For $l=1 \mathrm{~m}_{l}=-1,0$, or +1
For $l=2 \mathrm{~m}_{l}=-2,-1,0,+1$, or +2
There are $9 \mathrm{~m}_{l}$ values and therefore 9 orbitals with $n=3$.

Sample Problem 7.7 Determining Sublevel Names and Orbital Quantum Numbers

PROBLEM: Give the name, magnetic quantum numbers, and number of orbitals for each sublevel with the following quantum numbers:
(a) $n=3, l=2$
(b) $n=2, l=0$
(c) $n=5, l=1$
(d) $n=4, l=3$

PLAN: Combine the n value and l designation to name the sublevel. Knowing l, we can find m_{l} and the number of orbitals.

SOLUTION:

	n	l	sublevel name	possible m, values	\# of orbitals
(a)	3	2	$3 d$	$-2,-1,0,1,2$	5
(b)	2	0	$2 s$	0	1
(c)	5	1	$5 p$	$-1,0,1$	3
(d)	4	3	$4 f$	$-3,-2,-1,0,1,2,3$	7

Sample Problem 7.8
 Identifying Incorrect Quantum Numbers

PROBLEM:
What is wrong with each of the following quantum numbers designations and/or sublevel names?

	n	l	m	Name
(a)	1	1	0	$1 p$
(b)	4	3	+1	$4 d$
(c)	3	1	-2	$3 p$

SOLUTION:
(a) $n=1$ only $l=0$. Name $1 s$
(b) $\quad l=3$ is an f sublevel. Name $4 f$
(c) $l=1$ can only have m_{l} of $-1,0,+1$.

