Chem 103, Section F0F Unit I - An Overview of Chemistry Lecture 4

- Some observations that led to the nuclear model for the structure of the atom
- The modern view of the atomic structure and the elements
- Arranging the elements into a (periodic) table

Lecture 4 - Observations that Led to the Nuclear Model of the Atom

Dalton's theory proposed that atoms were indivisible particles.

- By the late 19th century, this aspect of Dalton's theory was being challenged.
- Work with electricity lead to the discovery of the electron, as a particle that carried a negative charge.

B Nucleus

Lecture 4 - The Atomic Theory Today

In the 19th century, investigators looked for ways to organize what was known about the various elements.

Dmitri Mendeleev (1836-1907) created one of the most useful arrangements, in which the elements were arranged by mass.

 In his arrangement, Mendeleev also grouped elements with similar physical and chemical properties.

Lecture 4 - Problem	Unit I - Up Next		
How can iodine ($Z = 53$) have a higher atomic number yet a lower atomic mass than tellurium ($Z = 52$)?	 Energy and matter Different forms of energy and their interconversions Heat energy and chemical change 		
Mendeleev also recognized that these two elements were out of order back in 1871, when he made <u>his periodic table</u> .			

	The E	nd	