I. Introduction

- A. Matter is the substance of everything
- B. Chemistry is the study of matter
 - Understanding chemistry is necessary for individuals who are studying a wide variety of areas
 - a. Health Sciences
 - b. Biology
 - c. Geology
 - d. Astronomy
 - e. Law enforcement
- C. This chapter

1.

- 1. Presents some fundamental ideas about matter
- 2. Quantitative measurements
- 3. Scientific measurement system

II. What is Matter?

- A. Definitions
 - 1. What is *chemistry*?
 - a. The study of matter
 - 2. What is *matter*?
 - a. Occupies volume and has mass
 - 3. What is *mass*?

b.

- a. Is the measure of the amount of something
 - In physics it is related to forces and inertia (resistances to forces)
 - i. Would you rather kick a balloon or a bowling ball?
 - ii. The gravitational pull on an object is proportional to its mass.
- 4. What is *weight*.
 - a. It is the amount of gravitational pull on an object.
 - i. A rock weighing 16 pounds on earth would way 2.7 pounds on the moon. (1/6).
 - ii. The rock has the same mass on both the earth and the moon.
 - b. We will often use the term *weight* when we mean *mass*
 - c. Scales are used to measure weight, whereas balances are used to measure mass.

Exercise 1.3: Prove that air is matter.

III. Properties and Changes

- A. Properties are those things that allow you to distinguish one object from another 1. Compare the rock, the water and the air-filled balloon.
- B. There are two basic categories of properties
 - 1. Physical Properties

- a. Those observed or measured without changing or trying to change the composition of the matter.
- 2. Chemical Properties
 - a. Burn the candle
- C. Physical *versus* Chemical change
 - 1. Physical change is where the physical properties of a substance changes without a change in its chemical composition.
 - For example
 - i. Ice melting
 - ii. Water evaporating

IV. A Model of Matter

A. Scientific Models

a.

- 1. Are created to help us "visualize" the natural world around us.
- 2. Models are developed to explain observed behaviors.
- 3. The can be used to predict new behaviors.
- B. Observed behaviors of gases include:
 - 1. Volume at constant temperature decreases with increasing pressure.
 - 2. Volume maintained at constant pressure increases with increasing temperature.
 - 3. Gases have mass.
 - 4. Gases mix readily with one another.
- C. From these observations a simple model of matter was created which works not only with gases, but also with liquids and solids:
 - 1. Matter is made up of tiny particles called **molecules**.
 - 2. Molecules are the smallest division of matter that displays the chemical and physical properties of a pure substance.
 - a. Any further subdivision requires a chemical changes, which changes the composition and hence the chemical and physical properties of the matter.
- D. Molecules are made of **atoms**.
 - 1. Atoms are the smallest division of an element.
 - 2. Different atoms are combined in different proportions to make different molecules
 - a. Each type of molecule contains a fixed composition of atoms in a fixed proportion.
 - i. For example:
 - 1. All water molecules (H_2O) contain 2 hydrogen atoms plus 1 oxygen atom.
 - 2. All carbon dioxide molecules (CO_2) contain 1 carbon atom plus 2 oxygen atoms.
 - 3. All oxygen molecules (O_2) contain 2 oxygen atoms.

V. Classification of Matter

1.

- A. All matter is either a **pure substance** or a **mixture of pure substances**.
 - Pure substances have a fixed composition and a defined set of chemical and physical properties
 - a. Example, water is a pure substance

- i. It freezes at 0° C ii.
 - It boils as 100°C
- Its composition is always two parts hydrogen to two parts iii. oxygen.
- Example, table sugar (sucrose) is a pure substances
 - It also has a defined set of physical properties and its i. composition is 12 parts carbon, to 22 parts hydrogen to 11 parts oxygen.
- The physical and chemical properties of a pures substance can be c. quite different than the chemical and physical properties of the elements that make up its molecules
 - For example i.

b.

- Water is a clear, colorless liquid that is not 1. flammable.
- 2. Hydrogen is a clear, colorless gas that is highly flammable.
- 3. Oxygen is a clear, colorless gas that is not flammable but reacts readily with many other substances.
- 2. Mixtures are mixtures of pure substances
 - Example, sugar water is a mixture a.
 - Its composition varies depending on how much sugar is i. dissolved in the water.
 - ii. Its physical properties varies with composition,
 - When making candy, the boiling point of sugar 1. water increases as the water is boiled off. a.
 - Correspondingly, its physical properties
 - change. "Soft ball", "Hard ball", etc.
 - b. The pure substances in a mixture can be separated by physical means.
 - For example, salt water is a mixture i.
 - The components of this mixture can be separated by 1. boiling off the water, leaving the salt behind
 - The physical and chemical properties of a mixture resemble a c. mixing of the physical and chemical properties of the pure substances of which it is made.

Mixtures can be **heterogenous** or **homogeneous**. d. i.

- Homogeneous mixtures are mixed at the molecular level.
 - The look the same every where. 1.
 - 2. For example: sugar water.
 - 3. The word **solution** is often used to refer to homogeneous mixtures.
- ii. Heterogeneous mixtures are lumpier.
 - For example, a mixture of sugar and sand. 1.
 - a. Close examination reveals the individual grains of sugar and sand.

Figures 1.5, 1.9 and 1.10: Elements, pure substances, compounds, mixtures, etc.			
3.	Elem	Elements	
	a.	Pure substances composed of <i>homoatomic</i> molecules are called elements .	

There are a little over 100 elements, which are displayed on the b. periodic table of the elements.

- c. The smallest division of some elements is an atom instead of molecules.
 - i. For example, the elements in the last column of the periodic table, which are called Noble or inert gases.
- 4. Compounds
 - a. Pure substances composed of *heteroatomic* molecules are called **compounds**.
 - i. There a millions of different kinds of compounds.
 - b. Elements cannot be chemically divided into simpler pure substances, but compounds can.
 - i. For example, the electrolysis (a chemical change) of water (a compound) produces hydrogen (an element) and oxygen (an element).
 - 1. Neither hydrogen, nor oxygen, can be reduced any further.

VI. Measurement Units

- A. Units give numbers meaning
 - 1. When doing measurements in the lab it is important to always include the units.
 - 2. When working problems it is also important to include the units
 - a. Analyzing the units can help you determine if you have worked the problem correctly.

B. For the most part we will be using the SI (Système International d'Unités)

- 1. This is based on the metric system
- 2. The basic units in the SI system are
 - a. Mass kilograms
 - b. Length meters
 - c. Time seconds

VII. The Metric System

- A. The metric system is a decimal system
- B. Most units are derived
 - 1. Area meters x meters (m^2)
 - 2. Volume meters x meters x meters (m³)
 - 3. Energy kilograms x meter x meter / (second x second) (kg \cdot m²/s²)
 - 4. Some derived units have their own name a. $1 Joule = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2$
- C. Prefixes are used to scale the units

Table 1.2 - Common prefixes of the metric system

D. Commonly used metric units and conversions

 Table 1.3 - Commonly used metirc units

Exercises 1.29

VIII. Large and Small Numbers

- A. Can use metric prefixes to move decimal place around
- Also use scientific notation B.
 - Review entering scientific notation in calculator 1.
 - 2. 3. Adding exponents in multiplication
 - Subtracting exponents in division

Significant Figures IX.

- A. Report all digits you a confident in plus the first digit that you are uncertain about.
- B. Addition and subtraction
- C. Multiplication and Division
- D. Exact numbers 1m = 100 cm1.

X. **Using Units in Calculations**

- A. Write down what you know and what you want to find out
- B. Include units in calculations
- С. Do calculations with the units first to see if you answer will have the correct units.
- D. Plug numbers into calculator

XI. **Percent Calculations**

- Part/Whole X 100% A.
- Density XII.
 - A. Density = mass/volume