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1. Introduction

In this review my intention is to discuss the treatment of integrals with
explicit correlation factors using Slater-type functions as the basis. The focus is
on few-electron systems: covering one-center integrals with as many as six
factors of the inter-electronic separation distance, 7;.

The idea to incorporate explicit factors of 7; in the trial wave function,

goes back to Slater [1-3], and to Hylleraas [4-8], who was the first to exploit
the approach in practical calculations. The Hylleraas wave function for an S
state of a two-electron atomic system can be written as:

N
i dy ky —oa,n=B,r
p(r,r) = Zcurl’” rtnge #1 Pure exchange term, (L.1)
u=l
where ¢ u denotes the expansion coefficients, N represents the number of terms

in the expansion, r, designates the electron-nuclear separation distance for
electron n, &, and S, are the non-linear parameters and satisfy o, >0, g, >0,

and the integer indices {iﬂ’ jﬂ,k#} are each > 0. The electron-electron

separation distance satisfies I, = = |r1 - r2|. The specific inclusion of non-
zero values of kﬂ in the summation yields the Hylleraas expansion. The

terminology correlation factor is often used synonymously with the inclusion
of explicit r, factors in wave functions or in integrals. The inclusion of such

factors in the wave function has led to very impressive results for few-electron
systems. However, the complexities of the integration problems that emerge
has led to limited success for larger electronic systems.

The layout of this review is as follows. The one-center two-electron
integrals are covered in sections 2-8. Cases considered include those with

=71

linear terms like " and with exponential terms like e~ ", as well as the

situation when logarithmic terms are also incorporated. Sections 2-4 include
some material directed at the non-expert reader. Each of the common
coordinate systems that have been employed: (i) spherical polar, (ii) the
{r,r,,n,} coordinates, (ii1) the {s,t,u} coordinates, and (iv) perimetric
coordinates, are discussed. The use of Fourier transform techniques to deal
with these integrals is also illustrated. One-center three-electron correlated
integrals and the associated auxiliary functions, are discussed in sections 9-13.

The different expansions that have been employed for riJ!“ are also treated.

Sections 14-15 cover related ground for the one-center four-electron integrals.
Section 16 provides a concise introduction to the treatment of few-electron
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molecular systems. Finally, section 17 briefly outlines some of the challenges
that remain.

2. Two-electron integrals involving explicit r;, factors

In this section we examine the simplest of the one-center correlated
integrals, that is, integrals with explicit r; factors appearing. The problem is

treated first in spherical polar coordinates. The non-relativistic Hamiltonian for
a two-electron atomic S state in the infinite nuclear mass approximation can be
written in the form:

no A2 20) @ 20 i &

| 1

2,2 2 A2 2

l('&“’lz 0 j £+L’ (2.1)
2 Lh,  0non, S N2

where Z denotes the nuclear charge and atomic units have been employed.
This form has been discussed in a number of sources [5, 8-12]. It is a
straightforward calculation to show that using the choice of wave function

given in Eq. (1.1), then the expectation value <w(r,r,)|H |w(r,r)>
reduces to a sum of integrals of the form:

1, @, j,k,a, B) = ” ) nke @1 =A% dr dr, . (2.2)

where the indices {i, j,k} are integers. The constraints on the indices {i, j,k}
and the parameters « and [ for the integral to be convergent, are:
a>0, f >0, and

i > -2 j>-2, k>-2 withi+j+k > —5. (2.3)

If the dummy integration variables are relabeled, then the symmetry property
for this integral is

L3, 1L,K,a, ) = 1,(],1,k, B,a). (2.4)

The simplest special case for this integral occurs when k = 0, so that
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|2(i9 jaoaaﬂﬂ) = Il(laa) Il(jaﬂ)ﬂ (25)
where the one-electron integral |, is defined for & > 0 and i > -2 by
1, G,a) = jr‘e—‘”dr. (2.6)

The 1, integral can be evaluated in spherical polar coordinates on making
use of the result:

m!

© m.—ar
Ior ea drzw, (27)
so that

. 477(i+2)!
() = % (2.8)

We will examine two simple cases, which will illustrate the important
distinction between even and odd powers of the factor r,. First, consider the

case k =2 in Eq. (2.2). From the cosine rule, we can write

3 =12 + 17 —2nr,cos6,,, (2.9)
so that

5G, .2, ) = j j 0o (5 + 13 -2nrcosép)e 1A dr dr,
= (i +2,)(J. ) + 11 (L.a)y (j +2, )
—2” e cosf, e P dr dr, - (2.10)

To deal with the last integral consider the angular integration first, which we
denote by |,. Then

I, = H cosd), dQ, dQ, Q.11
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V4 2
where IdQ is shorthand for I sinddé j d¢. A simple way to carry out the
0 0

integration is to express cos#,, in terms of the polar angles {6,,¢,,6,,4,} as
cos@, = cosH, cosf, + sinf, sinb, cos(¢g, — @,). (2.12)

An alternative approach, and one that will prove to be useful for more
complicated situations, is to write cosé,, in terms of a Legendre polynomial,

and then take advantage of the addition theorem for spherical harmonics [p.
496, Vol. I, 13]:

|
Pi(©08012) = 5= " Yin(0,:6)Yin (0.8 (2.13)
m=-—I

where Y|,(8,¢) denotes a spherical harmonic and * indicates a complex
conjugate. The spherical harmonics form an orthonormal basis, so that

[Yim 0.0)Yi0, 0.0)2 = 61y, (2.14)

where the Kronecker delta &y, satisfies 6y =1, for j=Kk, and 6y =0, for

J # k. Noting that Y,,(6,¢) = , then from Eq. (2.11),

1
Jar

4 1 *
DN NCHAL S A OWAL
m=-—1

1672
3

1
> Ym0 Yao 61,492, [ Yoo 81,61 i (0, 62)02,
=1

= 0. (2.15)



44 Frederick W. King

LG 2. f) =7 ((i+4)!(j+2)!+(i+2)!(j+4)gj
a .

i+3ﬁj+3 a2 ﬁZ (2. 16)
This simple example illustrates a feature that is more general: positive even
powers of r; do not lead to any particular complexity for the integral

evaluation. For higher even powers of r;;, a finite sum of terms is obtained.

j o
We consider a second example which illustrates the increase in complexity,
when the power on r; is odd. The case k=-1 is treated. To handle this

situation, we introduce the first and best known of the expansions of rij_l that

will be dealt with in this review:

1 2 or)
— = D =5 Pi(costy), (2.17)
] 1=0 r.

where r_ = min{r,r;} and r, = max{r,r;}. A general expansion for rijn n

terms of Legendre polynomials has been discussed by Chapman [14]. The
derivation of the preceding result is straightforward on using the generating
function expansion for the Legendre polynomials. For our second example, we
have

o |
. Pir ar -
L3, j,~lLa,B) = E ” nr, rﬁﬂ(eoseij)e “i=A% dr, dr,
=0 >

= I
© —a © . _ r<

= Z Io r1|+2e ndrlj-0 er+2€ B _r'” erIJ P (cos@ij)dg1 dQ, - (2.18)
1=0 N

The angular integration can be carried out in a similar fashion to
Eq. (2.15), to yield:

I P (cosf;)dQ, dQ, = 16725, (2.19)
so that Eq. (2.18) becomes

. o0 .
i+2 —ar 2,01 -1
e ldrlj‘0 ry e P dr,

L, j~La, ) = 167z2j

00
0

nvo n

= 167z2I rf”e‘““drl{ij 'rJ*%e P dr, +I rjtle Fr drz}. (2.20)
0
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On making use of Eq. (2.7) and the result

X i -ar _ e i (ax)m
JX re = dr= Z , (2.21)

i+1 !
a — m!

leads to
1,3, j,-La,p) = 167[2I rli”e*‘“ndrl
0

LJ‘ 12680 g, __J‘ £} % dr, +I (e % dr,
rl 0 r1

[o o
- 167z2I r e ™*Ndr,
0

{(J+2)!_L(j+2)!e‘ﬁ“ ‘i(ﬂn ORI iw” }

rlﬂj+3 r ﬂj+3 ~ ﬁj+2 ~
(+DI(j+2)! (j+2)! Z (i+1+m) B "
,Bj+3 ai+2 (a+,B)'+2 m! ka+ﬂ

(j+D!p (|+1+m)' "
(a+ﬁ)'+3z — (mﬁJ L (2.22)

Particular cases are

1672 3272 (a2 +3af + 62)
— s I — =
ly(-1-1,-L,a, ) = Bt ) and 1,(0,0,-L,a, f) — 2(a+ )3

(2.23)

The preceding analysis needs to be modified slightly to deal with the case
k = —2, which arises in various applications. Discussion of this case can be
found in [15-16].

There is one special point we want to emphasize in the preceding
derivation. Since the goal of all the analytic developments is to eventually
finish with a numerical result, it is always necessary to check derived formulas
for the possibility of round-off errors becoming substantial, leading to a major
loss of computational precision. For the formulas given in Eq. (2.23), all the
terms are positive, so both these results would be stable for numerical
evaluation. However, Eq. (2.22) may not be. Let us examine the evaluation of
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Eq. (2.22) for the case i = ] =0 and consider the combination of the first two
terms in the {.}, as might occur in a computer code. Let £ = ga, then the first
two terms in brackets lead to:

2
first pair of terms = 2 {1 1 2¢ 3¢

- 1 . 2.24
a’ (1+8)2[+1+8+(1+<9)2]} (229

Now if ¢ turns out to be rather small, say, 102, then the above calculation
becomes:

first pair of terms = 2072 {1-0.998002996---[1.002000996---]}
= 207 {1-0.9999999960---} (2.25)

which represents a loss of eight digits of precision. While such a spread in the
exponents just indicated is unlikely in a typical practical calculation, it is far
better to produce algorithms that are robust towards changes in the parameters,
and anticipate numerical instabilities of this type. A way to circumvent this
particular numerical problem is to proceed as follows:

© . ; 1 i 1a—Bn 12 m
162 r1.+2ean{mz)._ng).e § ) }dn

i3 i3
0 ng'™ oo s o m

: | poo . j+2 m
=167Z'2 (J +2)I rl|+le—oer,—[f’rI eﬂn _Z (:B rl) dl’l
ﬂj+3 0 pourd m!

j+2)! < mpeeo ar—
=l67T2 (IJBJ+3) Z IB' rl|+1+me an ﬂrldrl
- m! Jo
m=j+3

167%(j +2)! i (i+2|+1>![ B j . (2.26)

= ﬁj+3(a+,3)i+2 el 05+,B

This form is numerically stable when the value of £ is small with respect to
the value of «.

3. Two-electron integrals evaluated using r, r,, and
N2 variables

A straightforward approach to the evaluation of 1, (i, J,k,ea, f) is to work

directly in terms of the coordinates I;, r,, and r,. The transformation from
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spherical polar coordinates for an atomic system, to the coordinates 1, I, , and
I, , can be done as follows [17-19]. The triangle formed from the sides 1, I,,
and I, can rotate about the r; direction over the angle y, which is [0,27].
The direction 1; is allowed to rotate over the polar angles 6,, ¢,. If we let the
I, direction lie along the polar axis, and differentiate the cosine rule for r,,
with respect to 6@;, keeping the sides I, and r, fixed, so that
dr, =r22dr2(£dr12)d;(, and combine this with dr; expressed in polar form,

1h
then

dz =dr,dr, =r,r, 1, dr,dr,dr,sind, d6, dg, dy . (3.1)

From Eq. (3.1) it follows for S states that

de = j_.‘dr1 dr, = I: rldrlj wrz dr, J e rlzdrnj:sinél1 dé, J‘()Z”dgﬁl JOZEdg

0 1|

2 0 n n+r, o) n+r,
= 87 J.O rdr J.O rzdrzj rlzdr12+'[ r drzj o hpdrp e (32)

n-n n L=

The 1,(i, j,k,a, f) integral can then be written for k > —1 as

oL o . _ rl . _ rl+r2
L@, j,k,a B) = 822 rte™@idr{| r)"ePhdr rStdr
2 1 1 P 2 12 0n;
0 0 nL-r,
o . r+r
j+1 B 2 k+1
+I e Zdrzj s dr,
f n-t,
87> * il —at I jl B k+2 k+2
= 12J0 e ndr, Io e Phdry [(r +1,)" = (= 1,) ]
+Ir e Prdr, [(r +1,) " —(ry, — 1) 2 ]}- (3.3)
1

For the case of even k the preceding result simplifies to

2 [o0] . [o0] .
1,3, j,k,a, B) = fzz J.o r1l+le_0”ldr1_’.0 r)* e PR (n + 1) = (1, -1y dr, .

(3.4)
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A binomial expansion can be carried out for the factor in square brackets in the
preceding formula. However, to preserve invariance under the simultaneous
interchange i <> | and a <> £ by visual inspection, a symmetric form for the

binomial expansion is carried out, with the result that:

2 k+2
b ke ) = ——2 {EHJ[H(—I)"”]G+2+§)!(j+2+§)!(aﬂ)m
2

<
+2i k+2 {(i+k+2=-2m!(j+2+2n)la?"*g2"
~ (2n+1 ' '

+(+2+42n)!(j+k+2-2n) 2Ky 2" }}, (3.5)

where \_XJ denotes the floor function, the greatest integer less than or equal to

X. A related formula can be developed for the case k is odd, though attention

needs to be paid to possible precision loss in the formula, as indicated in the
discussion for Egs. (2.24) — (2.26).

4. Two-electron integrals evaluated in the stu
variables

In this section we consider the evaluation of the two-electron integral in
the stu variables. The Stu variables were introduced by Hylleraas [5, 8] and
take the form:

S=n+n, t=nrn-nr, UuU=rI;. (4.1)

In the stu variables the Hylleraas wave function for S states of atomic two-
electron systems can be written in the form

N
p(r.n) = ey ¢sht? ™M, (4.2)
i=l1

where the set {l;,m;,n;} are non-negative integers and the exponent ¢ is > 0.

The non-relativistic Hamiltonian for a two-electron atomic S state in the
infinite nuclear mass approximation in atomic units is given by [20]:
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H o _(52 . 0* .\ o° . 2su’-t>) 9  2t(s°-u®) &’
os>  ou?  at? u(s?—t?) dsdu  u(s? —t?) oudt

4s o 20 4t 0 8s

1
+ o= 4 4.3
(s> —t?)0s udu (s*-t*)ot (s*-t?) u *)

The factor (S2 - t2) that occurs in the denominator of several of the terms

in the Hamiltonian might appear to be problematic, but this is not the case,
since the volume element for the evaluation of expectation values involves a

factor of (S2 — tz).

A straightforward calculation shows that the evaluation of
<wy(r;,ry) | H|w(r,r,) > using Egs. (4.2) and (4.3) reduces to a sum of two-
electron integrals that take the form:

L. jke) = [[s'ufedr, (4.4)

where ¢ > 0. The volume element dz in Eq. (4.4) can be obtained directly
from Eq. (3.1) by employing dr, dr, = %dsdt and rr, = %(S2 —t%), so
that

dr = %u(sz —t?)dsdtdusin @, do, dg, dy. (4.5)
Onnoting —U <t < U <SS < oo, then
B 2 [e] 0 u 2_ 2

jdr =7 JO duju ds j_u u(s® —t°)dt. (4.6)
Employing the change of integration order formula

o0 X o0 o0
[ x| toepdy = [ ay[ foyax, (4.7)

0 0 0 y

then Eq. (4.6) can be rewritten as

I dr = ﬂzjow dsJ‘OS du JA_UU u(s® —t?)dt, (4.8)
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and when the wave function contains only even powers of the variable t, which
is the required case for the two-electron ground state, to ensure the spatial part
of the wave function is symmetric under interchange of the coordinates of the
two electrons, then

j dr = 2;z2j: dsjos du j: u(s? —t2ydt . (4.9)

Since expectation values are computed as a ratio <y |7 |y >/<w |y >,

prefactors such as the 27° are sometimes omitted from the integral
expressions, anticipating their cancellation when an expectation value is
computed.

As an example, the evaluation of 1, (i,2J,K,¢) 1s:

o0 S u . . . .
L(i,2],k,¢) = 2”2,[ e_gsdsj uk“duj 15221 gt 2U+ Dy gt
0 0

0
0 s ) 2 j+k+2 2 j+k+4
= Zﬂzj e‘gsdsj {s'*zu SR ydu
0 0 2]+1 2]+3
_4”2(i+2j+k+5)! (4j+k+6)
g 2+ D2 +3)2j+k+3)2j+k+5)
(4.10)
Kinoshita [20] generalized Eq. (4.2) to the form
N
p(r.r) = ey ¢ Py, (4.11)
i=I

thus allowing for the possibility of negative powers for the variables s and U to
be employed. The result obtained for the ground state energy of the helium
atom was impressive, considering the compact expansion employed.
The Kinoshita approach does not lead to any additional complexity for the |5
integrals evaluated in the stu variables. Thakkar and Koga [21] carried out high
precision calculations on S states of two-electron systems using wave functions
of the form:

N
p(r,r) = e ) gsh A Pmun?, (4.12)
i=l
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N
w(r,r,) = e‘gsz c; s A ¢2m y (=2m)/v (4.13)
=

for non-negative values of the parameters A4 and v. The only change
necessary in the evaluation of the two-electron integrals that arise, is to replace
Eq. (2.7) by the definition of the gamma function:

foos“e—“s ds = r(f), for 1 > 0. (4.14)
0 o

A slight modification of the standard stu variables has also been utilized.
The following projective coordinates have been employed [22]:

r n-r
S=r+r, v=—"1— w=-12

(4.15)

Using this choice, the integrals appearing in Eq. (3.2) become uncoupled, so
that

derl dr, = 27[2"‘:055ds‘[01v2 va‘O1 (1-v?w?)dw, (4.16)

assuming that the wave function contains only even powers in the variable w.
When the basis functions are selected as products of generalized Laguerre
polynomials in the variable S, multiplied by Jacobi polynomials in the variables
v and w, then the integral evaluations can be carried out in a straightforward
manner [22].

5. Fourier transform approach to the evaluation of

IZ(i’j’k’a’ﬂ)

In this section, the evaluation of the two-electron correlated integral is
considered, using a Fourier transform approach [23]. The particular case

i=j=0, and k =1, is treated. Let @(a,r) = e “", h(ry,) = L’ and
12
denote the Fourier transforms of ¢(a,r;), @(f,r,), and h(r;,) by F(k,),

G(k,), and H(k3), respectively.
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The Fourier transform F(k;) can be evaluated in spherical polar

coordinates using the change of variables r =a™'s and x;, =a ' k;, and
to simplify the calculation, the polar axis is placed along the vector k;, so
that:

F(k,) = jgp(a,r)e_ikl'r dr

) V4 . 2
= J rle ' drj sin @ e reos? d@j de
0 0 0

ve) 1 .
27za_3f s2eS dsJ. e 'St gt
0 -1

_ 2 j s sin(x;s)e"° ds

a31<1 0

8

= —" (5.1)

a’(1+xl)?
In a similar fashion, with «, = 87"k,

81

. 5.2
BP1+x3) G2

G(kz) =

The Fourier transform of h(ry,) does not exist in the conventional sense.
This issue can be dealt with by modifying the definition of h(ry,) by inserting
in the numerator the factor — 8|r12| for £ > 0, and taking the limit & — 0+

after evaluating the Fourier transform, but before performing the final
integration. Spherical polar coordinates are employed with the polar axis

placed along the vector K -k, and the substitutions U = I, and k; = ‘k3‘ are

used, so that

H(kg) = jh(rlz)e_ikslrlz dry,

J, e—g r,—iksr, dl’lz

P
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* u T —ik, Ucos@
27zJ. ue? duJ. sinfde 3 do
0 0

* -&u ! —ik,ut
272'-[ ue duj. e 3 dt
0 -1

4 > . e
= KJAO sin(k;u)e " du

4

ki + &?

(5.3)

An alternative approach to evaluate H (k) which avoids the insertion of the

convergence factor, is to take note of the distributional nature of the integral
involved. To do this, we first introduce the Heisenberg delta functions, defined by:

1 _ 1 .. 1
5T(X) = —=——1lim ———, and O (X) = =— lim —
2ri 8_>0+(x+|g) 27l 8_>0+(x—|g)
5.4
In the distributional sense we have
on sinku du = i_{J‘OO e du — on e kU du}
0 21 Jo 0
= %{Zﬁy(k) — 276 (k)}
i
-2 i L L iim L
i Y 27 K+ieg 27 k—i¢
c—>0+ c—>0+
l1.. 1 1
= lim gt o
c—>0+
__k (5.5)
k? + 0+

Inserting the inverse Fourier transforms for ¢(a,r;), @(f,r,), and h(ry,)
leads to
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100-Le B) = [ [pl@r)e(B.r)h(ry)dr dr,

_ (21)9 J‘J‘J‘F(kl)eikl'rl dli‘G(kz)eikz'rz deIH(ka)eikyI’lZ dk3 drler
T

! ik qiky o, LiKg T,
= (2”)9 jJ.jF(kl)G(kg)H(kg) dkldedkSJ.J.ek pikeT2 ik dr, dr,
1 N
= L[ [ [Pk Fko)Hks) 5k, +kg) a0k, kg )dkdk kg
(27)” *
1 .
= F(-k3)G(k;)H(k3)dk
(27)} | (—k3)G(kz)H(ks)dk;
32 * 1 1_
@B 1+ a2k 1+ fk2)? k2
1287 (= dk,
@0 (1+a k) (14 Bk
_ 327%(a” +3ep + B7)

a’p*(a+ B)

Ks

(5.6)

which is the required result.

6. The two-electron integral with exponential r,

factor

When the trial wave function of Eq. (1.1) is modified to include
exponential correlation factors, so that

N
i i —a, =B, =y, T
w(r,r) = Z C, ey b rlzkﬂ o Wi FulTula 4 exchange term, (6.1)
pu=1

then the quality of the results obtained for the energy and other properties,
tends to be very good, even using rather compact wave functions [24].

Evaluation of the expectation value <w(r,,r,)|H |w(r,r,)> using the

preceding wave function and the Hamiltonian given in Eq. (2.1), reduces to a
sum of one-center integrals of the form:

7,3, j.k.a.B.y) = “’ i vl e AR g dr, (6.2)
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where a+y >0, f+y >0, and o+ £ > 0. The symmetry property for this
integral is

Iz(i,j,k,a,ﬂ,]/) = Iz(j,i,k,ﬂ,a,]/). (63)

One approach to the evaluation of Z,(i, J,K,a,,7) makes use of
perimetric coordinates. These coordinates are introduced with the definitions:

These coordinates were introduced by Coolidge and James [25] and utilized
and discussed by a number of authors [8, 18, 26-35]. Some of these authors use
slightly different definitions of perimetric coordinates formed by inserting
different multiplicative constants on the right hand side of each of the formulas
in Eq. (6.4). The volume element dr,dr, can be evaluated from Eq. (3.1)

using Eq. (6.4) and dr, dr, dr, = idx dy dz, so that

dr,dr, = %(x+ Y)(X+Z)(y+z)dxdydzsing, d6g, dg, dy . (6.5)

The Hamiltonian in perimetric coordinates is discussed in [31, 34-35]. For an S
state, we can write

IJ dr, dr, = éj.:dxj‘:dy I:(x+ Y)(X+z)(y+2)dz . (6.6)

We will consider the evaluation of 7,(-1,-1,-lLa,f,7), which will
prove to be of use in the sequel. A straightforward calculation yields

Iz(—l,—l,—l,a,ﬂ,y) _ 2”2I OOdXI OOdy Iooe—a(x+z)/2—/3(x+y)/2—7/(y+z)/2dz
0 0 0

_ 1672
(@a+B)(B+yNa+y)

(6.7)

Now to evaluate the general integral 7, (i, j,K,a, f,7) , we have
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.. _ i+1 j+l k+1
7,0, K, a, B,7) = 2,+,+k+2j x| "y [ e 2 ey (v )
—a(x+z)/2—/3(x+y)/2—y(y+z)/2dz . (6.8)

We can proceed by making a binomial series expansion of (x+z)"*! and

the two related terms. An alternative approach is to take advantage of the
formula

8i+le—a(x+z)/2

(X+Z)I+1 a(X+Z)/2 — (_2)I+1 , (69)

aai+l
so that
oo A JHKA3 j—a(X+2)/ 2-P(x+Y)/ 2—y(y+2)/2
Ty jka ) = 22 [ o “dy| R dz
ocop oy
— 272_2 (_1)i+j+k+1 al+1+k+3‘tz_-2 (_19__19_136{) ﬁ: 7/) (6 10)
aal-i-laﬂj-i—la]/k-i-l :

The last formula can be readily evaluated using Eq. (6.7). The approach
just outlined does not cover the situation when k = —2. This case can be

conveniently treated in perimetric coordinates [24].
A recursive scheme for the evaluation of Z,(i, J,k,a, ,7) has been

discussed by Sack et al. [36]. For additional discussion on the one-center two-
electron integral with exponential r, factor, see [24, 27, 36-38].

7. Two-electron correlated integrals with spherical
harmonic factors

One-center two-electron correlated integrals with spherical harmonic terms
take the form:

A0, LK L,mu L, my,a, B) = ” r ry r§e?i-/n Yi,m, (@18 Yi,m, (6,¢,)dr; dr, |
(7.1)

We illustrate how to deal with this type of integral involving spherical
harmonic functions, by considering the case k = —1. On making use of Eq.

(2.17) we have
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© © . o .
‘YZ(i:ja_lallamlaIZszaaaﬂ) = ZJ.O rlle_arldrl.[o rzje_ﬂr2r<| r>_l_1dr2 |Q> (72)
1=0

where the angular integral |, can be evaluated by making use of Egs. (2.13)
and (2.14), so that

lg = J‘J‘Fﬂ (c08612) Y m (61,81 Y1 m, (05,4,)dQ, dQ,

|
4—”1 2 D" [0 8V 01000 [ Y0¥y, (0262160

_ 4wy, 6n,

== Z( D" S, -,

478y, Sy, (D™ O,
21 +1

: (7.3)

and we have made use of the relationship [p. 495, Vol. I, 13]

Yim (02,65) = (=D™Y,"1,(6,,8,) . (7.4)

Equation (7.2) simplifies to give

4z(-)™M &y O wrirhe ,Brz
A, J,=Ll,m,l,my,a, B) = =D "o, mlmzj |—ar1d J'

2l +1 o ara.

(7.5)

The preceding double integral evaluates as

N " oorJ Ile pn © Ly
~¢lidr j 2= dnp =j e “"dn
0

|1+1

n . o0 .
[Tt e g o h [T e A gy
Tl IS 2+ 6 2
rll 0 n

o0 1 r1 H _
= | e gy | rthe A gr
o 1), " 2

_|_

* it —ar X il -1 —pr
I r'e “ldrl'[ e 2 dr,
0 ]
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= I rszrIl e An drzj rli_'l_le_“ dr,
0 )
+ I rthe-a rldrlj‘ rzj_'l_l e "2 dr,
0 I’l
= W2(J + Ilai - Il _1aﬂaa) +W2(i + Il: J - Il _laaaﬂ) s (76)

where a change of integration order (recall Eq. (4.7)) has been employed and
the W, integral is defined by

W, G, j,a,b) = j: x‘e—adej:’ yle®Ydy . (1.7)

The W, integral is convergent for a >0, b >0, i >0, and i+ j > —1. This

auxiliary function has been extensively studied [39-50]. For the case that
] 20, W, can be evaluated using Eq. (2.21), so that

. - i+m! b \"
W, (i, j,a,b) = b‘”(a+b)'”z — Ka+b}' (7.8)

Integration by parts using Eq. (7.7) for the case j >0 leads to a simple
recurrence relationship for W, (i, j,a,b). For the case j <0, W, can be
calculated using [44]

. (i+j+m!f a "
W, (i, j,a,b) = a(a+b)'“”z p— (a“J : (7.9)

m=1

provided b is not close to zero, in which case other computational strategies
need to be employed [48].
The final result for the correlated integral is

N 4z (- 1)ml5 5 mlm - -
'72(|7Ja_lyllymlalzamzaaaﬂ) - 2| +1 {W2(1+I1a|_|1_1aﬂaa)

+W2(i+ll,j—ll—1,a,,6’)}. (7.10)

Extensions and further reading on these types of integrals can be found in [45,
51-53].
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8. Two-electron correlated integrals with logarithm
factors

It has turned out to be effective to supplement the basis set for wave
functions as given by Eq. (4.2), and the further extensions mentioned in section
4, by the inclusion of logarithmic factors [54-58], the simplest of which takes
the form:

N
p(r.n) = ey ¢sh t*Mu" (log, ) . (8.1)
i=1

Using the approach discussed in section 4, evaluation of the one-center
correlated two-electron integrals in the stu variables reduces to the integral:

(k) = [ si 7 (oges)¥e e as. (82)
0

This integral can be evaluated [54, 57] by starting from the definition of
the gamma function:

r(j) = iji—le—de _ jwe<i—l>1°gexe—de, for j > 0, (8.3)
0 0
0y = & T0)
and then using the abbreviation I )(j) =—— > we have on employing the

J)

substitution X = ¢S and making a binomial expansion:
r®(j) = j x 7 (log,, x)e *dx
0

= gjj s37 (log, c5)¥e <°ds
0

k
_ k 0 .
] k-1 j—1 Il ,—¢s
S IEZO[J(Ioge <) '[0 s’ (log, s) e °7ds, (8.4)

K
where {I j denotes a binomial coefficient, and hence
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k-1

. k ]
iL(Jke) = ¢7T9()) —Zmaoge )L (5.1g). (8.5)

1=0

The derivative of the gamma function can be readily expressed in terms of
derivatives of the digamma function.
An integration by parts directly on Eq. (8.2) yields the recursion formula,

L (j+Lk,¢) = ¢ i1 (j,k,¢) + ¢ 'k (j,k—1,¢), for j>1and k > 1.

(8.6)
This formula can be evaluated using the starting values:
I (,0,¢) = ¢7M(j-D!, for j>1, (8.7)
and
IL(3Le) = ¢ (i -DHw(j) - loge g}, for j>1, (8.8)
where (k) denotes the digamma function, which is defined by [59]
. S
(i) =-r+) —, (8.9)
o K

and y 1s Euler’s constant. A generalization that includes an exponential I,
term is discussed in [60].

9. The one-center three-electron integral
IS(i,j’k’l’m,n’a’ﬂ’Y)

In this section we examine the one-center three-electron correlated
integrals that arise for the S states of atomic species. The trial Hylleraas wave
function involves an expansion in terms of explicit factors of the electron-
electron separation distance of the form:

N
i j -a,n-b,n—c,r
p(r,r,r) = ‘Q/Z C 131y ey g B K ©.1)

=l
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where .o/ is the three-electron antisymmetrizer, and y, is a spin

eigenfunction. The constants a,, b,, and ¢, are >0, and the integer indices

;Ll,

i are each > 0. The Hamiltonian for an atomic three-
(UPR LR PR

electron S state can be written as [9-11, 44]:

3 2 2

10 1 0 Z 0 2 0 1

“Szl{iﬁﬁa—ﬁﬁﬁ*muﬁ]
|:

1 {ri2+u|%—rj2 52 1ui2+u|%—uj2 0? ], (9.2)
Ak

2 Hu,  Ohou. 2 20U ou; duy

where . % indicates that the summation is over the six permutations G f E )

and the notational simplifications U} =T,;, U, =T, and U; =1, are
employed. It can be shown that the expectation value <wy(r,r,,r;)

| H | w(r,,r,,r;) > for atomic S states is reducible to a sum of three-electron
integrals of the form

I3, k1m0, B,7) = ﬁ j F e T e AR T B dndrdry,  (9.3)

where o >0, B >0, and y > 0. The individual integer indices {i, j,k,l,m,n}
must be > —2 for the integral to be convergent. The focus in this section will be
on the cases for which the indices {I,m,n} are each > —1, which applies for a

calculation of the energy, and a number of other properties. Other cases will be
discussed later in section 11. It should be noted that the integral is often defined

with the order of the r;; factors gives as r2'3 T 1}, so some care is needed when

comparing numerical values from different sources. This integral has been
discussed extensively in the literature [39-40, 43-44, 48, 61-71], with some effort
directed towards the analytic evaluation of various cases [72-77].

The symmetry property for 15(i, j,k,I,m,n,ea, f,7) is

1331, ), k., L,m,n, e, B,7) = I3(i,K, j,m,I,n,a, 7, f)
= I3(],Lk,l,n,m, B,a,y)
= I3(),k,i,n,I,m,5,7,)
= I3(k, j,i,n,m, |7, B,«)
= I3(k,i, j,m,n,l,y,a, B) - (9.4)
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Special cases of 15(i, j,k,I,m,n,a, f,7) are

|3(i’j7k3090903a9ﬂ’7/) = Il(iaa)ll(jaﬂ)ll(kay)a (95)
and
150, J,k,1,0,0,c, B,7) = 1,(, I,1,a, B) 1, (K, 7). (9.6)

A useful test case for computational checking, is the result [72]

2
Iy (-1,-1,-1L-1-1-LLL1) = 487°[2log, 2 log, 3 — {log, 2} — % — 2Li,(~1/2)],

(9.7
where Li,(X) i1s the dilogarithm function, defined by [78-79]
. XxJog(l —t)dt S X"
L Xz—j—: —, for |x| < 1. 9.8
L ém or [ (9:8)

We now consider the reduction of the three-electron integral to simpler
auxiliary functions, focusing on the case where the indices {l,m,n} are each

> —1, which is the situation that has received the most attention. The Sack

expansion [80] is given by
i = Y Ry (. 15)P (cosd),), 9.9)
,=0

where Ry (1, I;) is a Sack radial function. This represents a generalization of

the expansion given in Eq. (2.17). Inserting the Sack expansion for each of the
i factors in Eq. (9.3), leads to

o0 0 0
I3(i,j,k,l,m,n,a,b,c)=z Z ZIR(i,j,k,l,m,n,Il,ml,nl,a,b,c)IQ(Il,ml,nl), (9.10)
|1=0 m1=0n1=0

where the radial integrals are given by
Iz (1, J,k,I,m,n,l,,m,n,a,b,c) =

i+2 j+2 k+2 —ar —br, —cr
Ijjrl S5 Ry, (0, 1) R, (Fs 13) R, (1, 13) €21 7275 dy diry diry

(9.11)
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and the angular integrals are
lo(l,,m,n,) = I”P,l (c08013) Py, (cos0;3) Py (cosfs) dQ, dQ,dQ; . (9.12)

The angular integral can be readily evaluated by employing the
standard expansion of the Legendre polynomials in terms of spherical
harmonics, so that

lo(l,m,n) = (2|1+1)(2m1+1)(2n1+1)z Z ZJ.J.IYIS(QI’¢1)YISI(HZ’¢2)

s;=—l; ty=—m; u;=—n,

nlul (92:¢2)Yn1u1 (93:¢3)Ym1t1 (03, 03) Yy, (61, 6,) A, dQ2, A5

= Smn O
2l +1)(2m1+1)(2n1+l) Z Z Z b @sit, O s, Omn Ot

S;=—l ty=—m u=—-n

647[35| m, 5| n

) (2;1+]) = Z Z ngt, u,s, t]u]

S;=—l, t;=—m, u;=-n,

64z35,1m1 S0 Smn,

= . (9.13)
@2l +1)?
Inserting this result into Eq. (9.10) leads to
15(, j,k,I,m,n,a,b,c) = 647r3z %IR(Lj,k,l,m,n,w,w,w,a,b,C),
oo Cw+1)
(9.14)

where
s, K, I,m,n,w,w,w,a,b,c) =
i+2 _j+2 k+2 —ar, —br, —cr
.[Ijrl r2J 3 “Rw(, ) Rmw(hs B)Raw(n, 3) e 1 273 drdry drs .

(9.15)

The Sack radial function [80] can be written for | > —1 as

( |/2)W r12<
R L, r ESE— < N E a 5 9.16
|W( 1 2) (1/2)w 12 12 wlu Mos ( )
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where r,. = min(r,,r,) and r,, = max(r,r,), the coefficients a,,, are

given by
| 1 |
(W_*)u (_*_*)u
Ay = 2 g 2 (9.17)
u!(w+5)u

and (o), denotes a Pochhammer symbol, defined in terms of the gamma
function I'(p) as [59]:

,_ To+a).

9.18
I'(p) O

(Pg = p(P+DH(p+2)---(p+q-1
An alternative expansion for Eq. (9.9) has been given by Perkins [66]:

0 0

Vo _ q+2k ,.v—q—2k

2 = Z Pq(coselz)z Cugk M2< N> ) (9.19)
q=0 k=0

where C,q are coefficients. This expansion is a rewriting of Egs. (9.9) and

(9.16), since for g = 0 we have

v 1 Vv (1+V)'
o O 2Kr-aky (14 v)! ’ (9.20)
! k), ki2 M@k +Dlt Ck+DI(v+1-2k)!
2
and for q > 1
v 1 v
_ (v/2), (q_E)k (_E_E)k
T /2), PENE
2
v 1 v
_(v/2), [(k—g)q (=Vv/2)4] (—V/z)k(—g—g)k

L (PR WETE NI
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(3/2), K- ;)q
= vOk

1/2 3
(1/2)q (k+2)q

min{g—1,(v+1)/2}

2k —v+2t
(29+1) Coy ( )

2k +1+2q-2t)

9.21)
t=0

The limit on the product takes advantage of term cancellation in the numerator
and denominator in the expansion of the Pochhammer symbols. Equation
(9.19) can be expressed as

Oimax max

v q+2k .v—q-2k

=2 P (008‘912)2 Cugk Mize Mos' (9.22)
a0

where q,,, =V/2 for v even, (,,, = forvodd, k., =(V/2)-q forv
even, and K. = (V+1)/2 for v odd. These summation constraints follow
from the property of the Pochhammer symbol: (-p), =0 for integer p and
q>p.

Inserting the expansions for the Sack radial functions into Egs. (9.14) —
(9.15) leads to:

o N (=1/2)y (—M/2). (—N/2)y S = =
I5(i, j,k,I,m,n,a,b,c) = 647:32 (2WW+ 02 {(1‘;"2) 3 = Zawn Zawmv Zawns
W

w=0 u=0 v=0 s=0
W31+ @, ] +1 — w5, K+ m+n—-a3,a,b,¢) + W3(J+ @y, 1+ — @4, K+ M+n-a3,b,a,C)

+W (K+a) J+a)5+n I+1+m- @ cba)+W(I+a) K+m- a)6,J+I+n @, ,a,C,b)

+W (J+a) K+n+a)6,I+I+m @ bca)+W (K+a) I+m+a)4,J+I+n @, ,c,ab) }, (9.23)

where the W; -integral is defined for integer i, j, and k by

W, (i, j,k,a,b,c) = JOO X' e_adeJ“” yle™®Vdy J‘w z¥eC%dz | (9.24)
0 X y
and the notational simplifications,

I=i+2, J=j+2, K=k+2, (9.25)
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@ =20+2V+2W, @, =2U+2S+2W, @; =2V+2S+2W, (9.26)
®w; =20-2V, @5 =2U-2S, ws =2V-28, (9.27)

have been employed. The Wj;-integrals have received extensive study, and
there are well-developed algorithms for the high precision evaluation of these
auxiliary functions [39-48, 61-69].

Recalling (-p)q =0 for integer p and q > p, then each of the
summations over U, Vv, and S, in Eq. (9.23) terminate at finite values. For
example, the U summation terminates at (I+1)/2 if | is odd, and at
(I-2w)/2 if | is even. The w summation terminates at min{l/2,m/2,n/2}
for I, m, and n each even; at min{l/2,m/2}, | and m even, and n odd; at
min{l/2,n/2}, | and n even, and m odd; at min{m/2,n/2}, m and n even,
and | odd; at min{l/2}, | even, m and n odd; at min{m/2}, m even, | and n
odd; and at min{n/2}, n even, | and m odd. The only case leading to an

infinite summation is the case |, m, and n each odd.
When the W summation is infinite, it can be shown that the asymptotic
behavior of the series is of the form [44, 69]

0
0(5

1,Gi, j.k,1,m,n,a,b,c) ~ ZW (9.28)
s=1

For the evaluation of the energy, only one of the indices |, m, and n takes the
value -1, the other two values are > 0. Hence, the slowest case scenario for the

convergence in Eq. (9.28) arises for the three-odd case with |+ m+n =1, so
the series takes the asymptotic form

Iy~ > % (9.29)

Methods to sum slowly converging series are called convergence
acceleration techniques. These methods utilize knowledge of the asymptotic
behavior of the series, and thus restrict the number of series terms that require
evaluation. In some cases, the results can be extremely impressive. There are
however well-known numerical stability issues that may arise. Some
references that the reader might pursue on this vast topic are [81-95].
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The result given in Eq. (9.23) might be regarded as the classical approach
to the |, integral evaluation. Two other schemes deserve mention. The first

has focused on the analytic evaluation of the |5 in terms of standard functions.
Remiddi [72] succeeded in deriving closed form expressions for selected |5

integrals, of which Eq. (9.7) is an example. He treated one of the
important cases required for the evaluation of the energy. However, the final
result is rather lengthy. Further work on the Remiddi approach has appeared
[73-77].

An alternative approach to this integration problem involves setting up a
fairly long recursive scheme [76]. This recursive scheme has been
implemented in practical calculations, and the current best available results for
the ground state energy of the lithium atom have been determined with this
approach by Puchalski and Pachucki [96].

The reader might wonder if there is an extension of the scheme discussed
in section 3 to the case of the three-electron integrals. It is possible to write the
radial part of dr in the form dr 44, = Jdr dr, dr;dr, dr;dr,,,

unfortunately, the Jacobian of the transformation involves a denominator term
involving the square root of a sixth-order polynomial in the wvariables
{r,ry, 0,0, 05, b [97-98]. Therefore, this coordinate system does not look

promising for the evaluation of the |5 integrals.

10. The auxiliary function ws(i, j,k,a,b,c)
The W, auxiliary function defined in Eq. (9.24) is convergent for
a>0,b>0¢>0, and

i >0, i+)>-1 i+j+k > -2 (10.1)

The numerical evaluation of W; is best considered as two separate cases: (1)

and k are both positive, and (2) one or both of j and k are negative. For the first
case, Eq. (2.21) can be employed to give

k. m j+m . n
| | |
Ws(i, j.k,a,b,c) = k! (+m!( c J (i+n) b+c ) ‘

i+1 J+1ck+1 m' (b+c n la+b+c
(a+b+c) " (b+c)'"c o k o \

(10.2)

A simple recurrence relationship can also be set up for this case of the W,

auxiliary function [39-40]. For the second case, the following formula [40, 44]
can be used
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. i~ a" W,(i+ j+mk,a+b,c)
W.(, j,k,a,b,c) = — 2 - .
(1) ) aZ (m+i)!

(10.3)

m=1

Further discussion on the numerical evaluation of this auxiliary function,
including recurrence schemes, can be found in [39-49, 61-69].

11.  I3(i, j,k,L,m,n,a,B,y) With arguments {I,m,n} equal
to -2

The cases where one or two of the indices {l,m,n} are allowed to be -2,

lead to significant additional complications, and some of these problems have
been addressed in the literature [99-107]. These integral cases are required for
the evaluation of lower bounds to the energy of three-electron atomic systems
[108-109], as well as relativistic effects [96, 110-111].

There are two different expansions of rij—z that have been employed

to handle these more recalcitrant integrals. The first expansion takes
the form

B 2 ol 41 o+ | o _ minfre,l -] 1Y 21 =2vY(1 -2
o R iy (e

v=0

1-1 min[x,l-x-1] |-2i-1 j 1 1Y 21-2
_ 25— 1-2x-2 J J L v
22 i T _ * [ K= ] )Z;Zj—2v+l v | Fi(costy):

(11.1)

This expansion can be derived by starting with the Sack expansion [80]
2 = D Ri(5,1)) R (costy), (112)
1=0

where the Sack radial function R_, (r,r;) 1is given in terms of a

hypergeometric function as
O

Ry (r,r5) = PR L

(1/2),(F% +1])

+ +1;p%), (11.3)

N | W

A
2°2 2
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and p =21 T; (ri2 +r 12 )_2. The preceding result can be written in terms of the

Legendre functions of the second kind, Q,, so that

21 +1

2rnr;

Qp ™). (11.4)

Ry (i, 15) =

Expressing Q, in terms of the Legendre polynomial P, and after some

algebraic manipulation (see [99] for details), then Eq. (11.1) is obtained. The
expansion in Eq. (11.1) was given first by Pauli and Kleindienst [112] in a
slightly different but mathematically equivalent form [100]. For other

additional discussion on the expansion of rI , see [113-114].

The key factor that should catch the reader’s attention in Eq. (11.1) is the
appearance of the logarithmic term. This contribution significantly complicates
the evaluation of the radial integrals that arise. Three different auxiliary
functions occur for the evaluation of the radial integrals; these are extensions
of the W; integrals defined in Eq. (9.24):

W, (i, j,k,a,b,c) = J.OO x! e‘axdxjw yle™®Ydy J.OO 2% log, |- Y |ec2qy
1 0 X y Z—
(11.5)
s _ —-ax i y+ by —cz
W,_2 @, J,k,a,b,c) IO x'e dxj y' log,|—— v dyI dz,
(11.6)
W, j.k,a,b,c) = joo adej yle bydyJ. z loge e “%dz.
3 0 — X
(11.7)

Numerical approaches to treat these auxiliary functions have been discussed in
[99-100, 102, 105-106]. Specialized Gaussian quadrature procedures and
convergence acceleration methods have proved to be useful numerical methods
to obtain reasonably accurate values for these auxiliary functions. There is no
increase in complexity for the angular integration.

An alternative expansion of rI , and one having a closer structure to the

expansion of rij_ given in Eq. (2.17), 1s [99, 103, 114-115]:
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o0 |

_ r

7 = D, 1y Clleosty). (11.8)
1=0 'ij>

where C|1 (cos@;j) denotes a Gegenbauer polynomial. Using this expansion
means that the radial integrals that arise from the evaluation of
150, ,k,I,m,n,a, B,7) reduce to the W, auxiliary functions defined in Eq.

(9.24). The increased complexity of the integral evaluation now occurs in the
angular integration. A straightforward approach that has been implemented, is

to expand C|1 (cos@jj) as a series of Legendre polynomials P (cosé;), and
then proceed as indicated in Egs. (9.12) — (9.13). If | = -2, then it can be
shown [103] that the convergence of the resulting series for the | integral for
the case m =—1 and n = —1, behaves as

a
o~ > == (11.9)

s S

This series converges too slowly for a brute force numerical evaluation of the sum.
Various techniques have been discussed to treat this evaluation problem [103-104,
106]. Judicious application of convergence acceleration techniques have proved to
be fairly effective to deal with this problem [103, 106].

Some extensions of the |, integral to include kernels that contain terms

like (r;* — rjz)rij_3 and (rg — rjzk )rij_3 have been treated [116]. In these cases, the

factors cannot be broken apart into two integrals, since each of the separate
integrals would diverge.

12. Three-electron integrals with exponential f

factors
As remarked at the start of section 6, the introduction of exponential terms
with explicit r;; factors into the wave function, leads to quality results for two-

electron systems. It would be expected that a generalization of the wave
function given in Eq. (9.1) to the form:

w(r,r,r) =
N - -
MZ Cn'ury i3k ol My e
u=1

—a,N=B,0h-r,3-0 =03 f3—0; T
uN=Pua=r7ul3—cp o~z h3—az3 13
“ “ “2 oy, (12.1)
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would also lead to improved results for the properties of the S states of
members of the lithium isoelectronic  series.  Evaluation of
<wy(r,ry,,r;)|H|wy(r,r,,r;) >using the Hamiltonian given in Eq. (9.2)
requires the following one-center integrals:

I3(i, j,k,l,m,n,a,ﬂ,)/) — jjj rl| r2J r3k rlI2 rlr3n r2n3 e—a n-pgrn-y I’3—a12r12—0t13l’13—0t23r23dr1 dl’zdl’3 .

(12.2)

A detailed study of these integrals was undertaken by Fromm and
Hill [37]. The analysis depends heavily on tracking the branch structure for
the multi-valued functions involved. Harris [117] has presented a
simplification of the results and further discussion is given in [97].
No computational program employing this approach for atomic systems is
known to the author.

13. Three-electron integrals with spherical harmonic
factors

To treat states of non S symmetry for three-electron atomic systems, the
wave function of Eq. (9.1) is modified so that the basis functions are of the
form [53, 104]:

-a,h-b,n-—c,r_
i g /(/|1|2)|12 l; (rl’ LK )Zﬂ

(13.1)

I J, K | m n
@, (N,0p,13) = LALLMy g ATy e

The additional term r;) that appears is an angular

LM

i)l (.12,
momentum eigenfunction involving an expansion in terms of the spherical
harmonics Y, (1), Y. n (), and Y, (), where f; =r/r, with
appropriate coupling coefficients, so that a state of total angular momentum L

is obtained. The Hamiltonian for a general symmetry state of a three-electron
atom takes the form [10, 118-119]:

, cotb; 8 1 o
Hy = Hg —+ 26,
-0 Ez(r 007 12 06, nzﬁnzﬁiaﬁzl

i i rj{sin6; cos@; —cos b, sin@; cos(§ —¢;)} 5>
r I.. 59,8[’”

i=1 j=1 i tij
j#i)

/'\_
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_23: 23: rjsind;sin(g —¢;) o2
ri I’ij sin 9i 8¢i8rij ’

(13.2)

where Hg is the S state contribution given in Eq. (9.2). The generalization of
Eq. (13.2) to include multiple nuclear centers is given in [120]. Using
the basis functions given in Eq. (13.1), then evaluation of
<wy(r,ry,r;) | H|w(r,r,,r;) > using the Hamiltonian H| leads to one

class of one-center integrals that take the form:
'yé(isj)ksIsmans|19m17|29m27|39m39I{smialéamrzaléamésasﬁaj/) =
i.j. k.l .m_n_ —an-Br—yr
II_I R A A Y Yym, (G40 Y1,m, (65, 6))

Yi,ms, (63.83)Yim: (61, 81) Yismy (62, 62)Yigmy (63, ¢3) drydradrs
(13.3)

Each of the r; factors will generate a pair of spherical harmonics, so that the

angular integration leads to integrals involving a product of four spherical
harmonics of the form Y, (0,0) Yy (0,0)Yn (0,0)Y|n, (0.4). These

products can be simplified by taking advantage of the result [Vol. II, p. 1057,
13]:

I +1, L /2
Yim (0:8) Yim (6,9) = Ak {(% +1)21, + DL+ 1)}
L=l -l M=-L Az
L, L, LYl I, L
((; 3 OJ(mll m22 M jYI——M (99 ¢) s (134)

I I I
where ( ! 2 3 j denotes a 3j symbol [Vol. II, 13; 121-123]. This leaves
m_ m, m,

an integral over a product of three spherical harmonics. The approach to solve
this is discussed in the following section. Other integrals obtained using the
basis set of Eq. (13.1) are discussed in [98, 104].
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14. The one-center four-electron integral
I4(i,j,k,l,m,n,p,q,s,t,a,ﬂ,y,é)

Extension of Egs. (9.1) and (9.2) to treat four-electron atomic S states
leads to integrals that are the obvious extension of Eq. (9.3):

. i j k.. .m_n s .t
|4(Ia Jakalamana paqasataaaﬂayaé‘) = IJII rl r2Jr3 r4 r12 r13 rlél:l) r2q3 r24 r34

e @M1 =AR=r B0 g dr, dry dry » (14.1)

where ¢ >0, >0, >0, and 6 > 0. The individual indices I through t
must be > —2 for the integral to be convergent. The focus in this section will
be on the case for which these indices are each > —1, which is the situation

required for an energy evaluation. Various cases of this integral have been
discussed in the literature [124-132]. One particular result I indicate is that for
a number of special cases, the |, integrals can be reduced to a sum of I,

integrals [127].
The symmetry property for 1, is

|4(i9 j,k,l,m,n, p,q,S,t,Ol,,B,7/,5) = |4(j9i9k7|9m9q957n9 p,t,ﬂ,a,7,5)

= |4(k: j:ialaq)n:ta m,s, pa7,,3,05:5)
= |4(|9 jakaiasata pP,q,m, n,é‘,ﬂ,ﬂ/,a) , etcetera.
(14.2)

Particular special cases are:

|4(i9 j:kalamaoaoaoaoataaoﬂay:é‘) = |2(i9 j:maa:ﬂ)lz(kolztayaé‘) ) (143)

|4(i9 j:kalamanaoaqaoaoaaaﬂayaé‘) = |3(i: j:k:m:n:q:a,ﬂJ/) I](I3§)3 (144)

and some symmetry related results for each of these formulas.
To evaluate the 1, integral insert the Sack expansion given in Eq. (9.9) for

each of the r;; factors, the result is

o o oo o

1@, ).k, I,mn, p,g,s,t,, B,y,0) = ZZZZZZ'Q(M Ny, PG, S;51)

m=0n=0 p;=0 ;=0 5=0 ;=0
g (MmN, p,q,s,t,m;,n;, P;,0;,5,,t), (14.5)
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where the angular integral 1,(m;,n;, p;,0d;,S;,t;) is given by

Lo (M, Ny, P10, SLt) = IIIJ P, (c086,,) P, (cosb;3) Py, (cosbyy)
Py, (€08053) Py (cos0,4) P, (cosby,)dQ; dQ, dQ; dQY,,

(14.6)
and |y denotes the radial integral
IR(m: na p:qasat:mlanla p1,Q1951,taa:ﬂa7:5) =
J‘J‘”‘ (2 042 kA2 42 ma -y -,
1y I3 iy
R, (115 12) R, (175, 13) Ry (1, T4) Ryq (12, 13)
(14.7)

R, (25 14) Ry, (15, 1,)dry dr, dry dry .

To handle the angular integral, we make use of the result [Vol. II, p. 1057, 13]:

C[@ @, @+ T2 L LY L L
[Yim @0 Y, 0.9, 0,900 —{ e } o o olm m oml

(14.8)

Then Eq. (14.6) can be expressed as

me nopyme q S a4 Ly P s
I m ’n , , ,S ,t = 256 4 1 1
a(My,N, Py, a5, 8;,t) 4 (0 0 0](0 0 OJ[O 0 OJ(O 0 0]

i i i(—l)M”\”Q mn Py m q S
M N -M=N\-M Q M-0

M=-m; N=-n, Q=-q

nq L% Py S| [ - (14.9)
-N -Q N+Q\M+N Q-M -N-Q
The triple summation simplifies using a contraction formula for the sum of
four 3] symbols [p. 146, 123] so that [129]:

m- N ppym o S
Lo (M, N, PpL0p,S,t) = 25624 (=M1 1
o(Mmy,ny, py,a;,S,t) 7 (=1) (0 o olo o o

N o 4P s t)ym nop (14.10)
o 0 ofo o o)lt, s qf |
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m n
where {t . g} denotes a 6] symbol [121-123].

The radial integral in Eq. (14.7) reduces to a six-fold infinite summation of
a set of 24 W, auxiliary functions [127-128]. The W, auxiliary function is
treated in the following section. As indicated in section 2, there is a substantial
difference between odd and even powers of I as far as finding efficient

numerical schemes to evaluate the resulting radial integrals. Currently, as
many as four odd powers of r; and two nonzero even powers can be

effectively dealt with [127]. This leaves the two cases of five and six odd
powers of r; in Eq. (14.1) to be evaluated accurately and quickly. Both these

cases are important if accurate calculations are to be made for the S states of
atomic four-electron systems using the Hylleraas approach.

The general four-electron correlated integral with additional spherical
harmonic factors can be treated by an extension of the approach indicated in
section 13. Some special cases of the four-electron integral with additional
angular factors have been considered in [133].

15. The auxiliary function w,(i, j,k,i,a,b,c,d)
The auxiliary function required for a treatment of the four-electron
problem takes the form:

WG,k bab.ed) = [ e e Tyletray[ Tate ] Tul e,
(15.1)

The conditions required for a convergent W, integral are:
a>0,b>0,¢c>0,d >0, and

1 >0,i+]>-Li+j+k > -2, i+j+k+] > -3. (15.2)

This integral has received considerable attention in the literature [124, 127,
131, 134-138]. When | > 0 the W, integrals can be reduced to a sum of W,

integrals using the formula

I ZI: dYWs(i, j,k +v,a,b,c+d)

W, (@, ).k, la,b,c,d) = —= V!

(15.3)
v=0

When | < 0 an integral rearrangement leads to
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2

! a'W;(j +v,k,|,a+b,c,d)}
v=0

. il .
Wi (i, ko Lab.e.d) = — W (k. Lb.c.d) - > .
(15.4)

which is valid when j>0, j+k>-1 j+k+1>-2, and when the

differencing does not lead to the loss of too many digits of precision. A general
result that has increased numerical stability is

o0

W, G, j.k,1,a,b,c,d) = ity

v=0

a"W,(i+ j+v+1k,l,a+b,c,d)
(V+i+1)! '

(15.5)

16. Few-electron molecular systems
Space considerations prevent a detailed discussion of the correlated integrals
that arise in the treatment of few-electron molecular systems. The recent book
[139] and review [140] provide general discussion of this topic. I want to draw
attention to some explicitly correlated calculations on few-electron diatomic
systems, which instead of working with the standard Neumann expansion in
elliptical coordinates, transform the Hamiltonian in a different manner. A focus
of the discussion will be the positive ion, HeH'". A conventional chemical view
of HeH" is that the molecule has two natural centers, located at the two nuclei.
This viewpoint leads to the use of elliptical coordinates to treat the integrals that
arise.
An alternative description is to start with the total Hamiltonian Hy written

in terms of the coordinates of the laboratory frame, R;, where one particle is

identified as the reference particle, and the other n particles are treated on an
equal footing:

Hy =——L v2 _ ZHZLVZ +anzn:& (16.1)
T om, R m R Ri—Rj" :

i=1 < i=0 j>i

where (; is the charge of particle i, m; is the corresponding mass of the
particle, and atomic units are employed. For i=1,2,---,n employ the
following coordinate transformations:

1 n
=R, -R,, and X = W; mR,, (16.2)
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where X denotes the center-of-mass coordinate and M+t is the total mass of

the system. This converts Eq. (16.1) into a separable Hamiltonian:
Hy = H + Hy, where Hy accounts for the translation of the entire system,
and a term H, which covers the internal system dynamics. The former is not

of interest for the particular application at hand, and is dropped from further
consideration. The Hamiltonian H takes the form

H =—Zn:—V2——ZZ ViV, +qozq—'+zzq'ql

|12'u' i=1 j>i i=1 j>i

(16.3)

where the reduced mass relative to the reference particle is
Hi = m;my /(mM; +mg) and 1 = ‘ri —r; ‘ For the particular case of HeH', with

the helium nucleus taken as the reference particle, the Hamiltonian takes the form

mp + rT'lHe 1

1
H = - MHe (g2 y2y _ vi- (Vi-Vy+V,-V3+V,-V3)
2m He 2mpmHe mHe
2202 0 11 e
n n n I 23 13

where the position vectors of the two electrons and the proton are ry, I,, and ry,
respectively, and mp and My, denote the mass of the proton and the helium

nucleus, respectively. Using this Hamiltonian, and assuming basis functions of the
form:

by (N.1.13) = v n vk gl e & i e s, (16.5)
leads to integrals that take the form of the |; integrals given in Eq. (9.3).
Employing this approach, Zhou, Zhu, and Yan [141] obtained a ground-state

energy converged to a few parts in 10'°. The interested reader can pursue
further discussion on this species [142] and a similar approach for other few-
electron diatomic molecules in [143-145].

17. Progress, problems, and some future directions

Progress on the accurate evaluation of the properties of few-electron
systems has been tied to advances in computer technology, the development of
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new integral formula evaluations, and improvements in numerical strategies
for various types of calculation.

Over the past forty years, considerable progress has been made on the
evaluation of properties using explicit r;; factors in the wave function for two-

electron [21-22, 26, 54-58, 146-160], three-clectron [44, 161-190], and four-
electron atomic systems [191-195]. The results for the two- and three-electron
systems indicate the significant progress that has been made using correlated
STO basis functions with explicit r; factors. It is noteworthy that similar

progress on the calculation of the properties of the beryllium atom and
members of its isoelectronic series using correlated STO basis functions, has
been somewhat limited. The best results for the energy of atomic Be have been
obtained with a basis set of exponentially correlated Gaussian functions [196].
In order to match calculated results with experimental transition energies or
ionization potentials, several contributions to the total energy of each state are
needed, including the non-relativistic energy, finite mass corrections,
relativistic contributions, and quantum electrodynamic corrections. For two-
and three-electron atomic systems, the non-relativistic energy contribution is
now known with an accuracy well beyond what is required to make a match
with the currently best available experimental results.

The focus of most of this review has been on few-electron atomic systems,
where the natural center for the coordinates is the nucleus. In the infinite
nuclear mass approximation, the center of mass is at the nucleus. For more
exotic atomic species, containing a collection of elementary particles, there is
no longer a natural center at a particular particle. In a general three-body
problem, it makes more sense to replace the set of coordinates {r;,r,,r,} by

the set {r,,n;,r;}, thereby giving no special place to any one particle. The
analogue of Eq. (6.2) then becomes the general correlated three-body integral

ZG, i ke fy) = [y fy iy e g, (17.1)

with dz — 1}, 15 I3 dry, dr; dry; after dealing with the angular integration. A
considerable number of papers have appeared on the discussion of general
correlated three-body and four-body integrals [33, 47, 60, 97-98, 197-198].

To treat electronic systems beyond the four-electron level using Hylleraas
basis sets, several mathematical problems will need to be addressed.
Employing the expansion for the Sack radial function given in Eq. (9.16)
generates for an N-electron atomic system, an N! problem — that is, there are

N! Wy auxiliary functions that arise. Judicious selection of basis sets can

considerably reduce this problem. It would be useful to have an effective
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computational strategy that avoids this issue, which means looking for
alternative expansions of the Sack radial functions, avoiding the r_ and r,

variables. A second issue that arises in integral evaluations is the requirement
to deal with the numerical evaluation of multiple nested infinite summations.
There is a clear need to have available, convergence acceleration techniques

for multiply nested sums that do not scale as N'", where N is the typical

number of term evaluations that are required to accelerate a single infinite
summation, and Nn is the number of nested infinite summations. Such
procedures would have the potential to improve substantially, various integral
evaluation algorithms.

Progress beyond four-electron systems has been very limited using
explicitly correlated STOs. Examples such as the CI-Hylleraas calculation on
the ground state of the neon atom have been forced to use a restricted basis
expansion, with only terms linear in r; being employed [199]. It appears that

it would be useful to resolve some of the more recalcitrant integral issues
associated with the four-electron problem. That will probably provide a guide
for the solution of the correlated integration problem for more complicated
electronic systems.
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