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1. Introduction 
 In this review my intention is to discuss the treatment of integrals with 
explicit correlation factors using Slater-type functions as the basis. The focus is 
on few-electron systems: covering one-center integrals with as many as six 
factors of the inter-electronic separation distance,  
 The idea to incorporate explicit factors of  in the trial wave function, 
goes back to Slater [1-3], and to Hylleraas [4-8], who was the first to exploit 
the approach in practical calculations. The Hylleraas wave function for an S 
state of a two-electron atomic system can be written as: 
 

±  exchange term,      
    

 (1.1) 

where  denotes the expansion coefficients, N represents the number of terms 
in the expansion,  designates the electron-nuclear separation distance for 
electron n, αµ and βµ are the non-linear parameters and satisfy  
and the integer indices  are each ≥ 0. The electron-electron 

separation distance satisfies .212112 rr −== rr  The specific inclusion of non-
zero values of  in the summation yields the Hylleraas expansion. The 
terminology correlation factor is often used synonymously with the inclusion 
of explicit 12r  factors in wave functions or in integrals. The inclusion of such 
factors in the wave function has led to very impressive results for few-electron 
systems. However, the complexities of the integration problems that emerge 
has led to limited success for larger electronic systems. 
 The layout of this review is as follows. The one-center two-electron 
integrals are covered in sections 2-8. Cases considered include those with 
linear terms like m

ijr  and with exponential terms like ,ijre γ−  as well as the 
situation when logarithmic terms are also incorporated. Sections 2-4 include 
some material directed at the non-expert reader. Each of the common 
coordinate systems that have been employed: (i) spherical polar, (ii) the 

},,{ 1221 rrr  coordinates, (iii) the },,{ uts  coordinates, and (iv) perimetric 
coordinates, are discussed. The use of Fourier transform techniques to deal 
with these integrals is also illustrated. One-center three-electron correlated 
integrals and the associated auxiliary functions, are discussed in sections 9-13. 
The different expansions that have been employed for m

ijr  are also treated. 
Sections 14-15 cover related ground for the one-center four-electron integrals. 
Section 16 provides a concise introduction to the treatment of few-electron 
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molecular systems. Finally, section 17 briefly outlines some of the challenges 
that remain. 
 
2. Two-electron integrals involving explicit 12r  factors 
 In this section we examine the simplest of the one-center correlated 
integrals, that is, integrals with explicit ijr  factors appearing. The problem is 
treated first in spherical polar coordinates. The non-relativistic Hamiltonian for 
a two-electron atomic S state in the infinite nuclear mass approximation can be 
written in the form: 
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where Z denotes the nuclear charge and atomic units have been employed.     
This form has been discussed in a number of sources [5, 8-12]. It is a 
straightforward calculation to show that using the choice of wave function 
given in Eq. (1.1), then the expectation value >< ),(||),( 2121 rrrr ψψ H  
reduces to a sum of integrals of the form: 
 

∫∫ −−= 21121
21

22 ),,,,( rr dderrrkjiI rrkji βαβα ,                                          (2.2) 

 
where the indices },,{ kji  are integers. The constraints on the indices },,{ kji  
and the parameters α  and β  for the integral to be convergent, are: 

,0,0 >> βα  and 
 

,2−≥i  ,2−≥j  ,2−≥k  with .5−≥++ kji                                     (2.3) 
 
If the dummy integration variables are relabeled, then the symmetry property 
for this integral is 
 

).,,,,(),,,,( 22 αββα kijIkjiI =                                                                 (2.4) 
 
The simplest special case for this integral occurs when ,0=k  so that 
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),,(),(),,0,,( 112 βαβα jIiIjiI =                                                                        (2.5) 
 
where the one-electron integral 1I  is defined for 0>α  and 2−≥i  by 
 

∫ −= rderiI ri αα ),(1 .                                                                                  (2.6) 

 
 The 1I  integral can be evaluated in spherical polar coordinates on making 
use of the result: 
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so that 
 

.)!2(4),( 31 +
+

= i
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α
πα                                                                                       (2.8) 

 
     We will examine two simple cases, which will illustrate the important 
distinction between even and odd powers of the factor 12r . First, consider the 
case 2=k  in Eq. (2.2). From the cosine rule, we can write 
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12 cos2 θrrrrr −+= ,                                                                      (2.9) 
 
so that 
 

∫∫ −−−+= 211
21)cos2(),,2,,( 1211
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122 rr dderrrrrrjiI rrji βαθβα  

                       ),2(),(),(),2( 1111 βαβα +++= jIiIjIiI  
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1 cos2 rr dderr rrji βαθ .          (2.10) 

 
To deal with the last integral consider the angular integration first, which we 
denote by .ΩI  Then 
 

∫∫ ΩΩ=Ω 2112cos ddI θ ,                                                                        (2.11) 
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where ∫ Ωd  is shorthand for .sin
0

2

0∫ ∫
π π

φθθ dd  A simple way to carry out the 

integration is to express 12cosθ  in terms of the polar angles },,,{ 2211 φθφθ  as 
 

).cos(sinsincoscoscos 21212112 φφθθθθθ −+=                                (2.12) 

 
 An alternative approach, and one that will prove to be useful for more 
complicated situations, is to write 12cosθ  in terms of a Legendre polynomial, 
and then take advantage of the addition theorem for spherical harmonics [p. 
496, Vol. I, 13]: 
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where ),( φθlmY  denotes a spherical harmonic and * indicates a complex 
conjugate. The spherical harmonics form an orthonormal basis, so that 
 

21212211
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mmllmlml dYY δδφθφθ =Ω∫ ,                                                      (2.14) 

 
where the Kronecker delta jkδ  satisfies ,1=jkδ  for ,kj =  and ,0=jkδ  for 

.kj ≠  Noting that 
π

φθ
4
1),(00 =Y , then from Eq. (2.11), 
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Hence, 
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2

2 3 3 2 2
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This simple example illustrates a feature that is more general: positive even 
powers of ijr  do not lead to any particular complexity for the integral 

evaluation. For higher even powers of ,ijr  a finite sum of terms is obtained. 
     We consider a second example which illustrates the increase in complexity, 
when the power on ijr  is odd. The case 1−=k  is treated. To handle this 

situation, we introduce the first and best known of the expansions of 1−
ijr  that 

will be dealt with in this review: 
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where },min{ ji rrr =<  and },max{ ji rrr => . A general expansion for n
ijr  in 

terms of Legendre polynomials has been discussed by Chapman [14]. The 
derivation of the preceding result is straightforward on using the generating 
function expansion for the Legendre polynomials. For our second example, we 
have 
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The angular integration can be carried out in a similar fashion to                   
Eq. (2.15), to yield: 
 

0
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so that Eq. (2.18) becomes 
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 On making use of Eq. (2.7) and the result 
 

∑∫
=

+

−
−∞

=
i

m

m

i

xa
ra

x

i

m
xa

a
eidrer

0
1 !

)(! ,                                                            (2.21) 

 
leads to 
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Particular cases are 
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 The preceding analysis needs to be modified slightly to deal with the case 

,2−=k  which arises in various applications. Discussion of this case can be 
found in [15-16]. 
 There is one special point we want to emphasize in the preceding 
derivation. Since the goal of all the analytic developments is to eventually 
finish with a numerical result, it is always necessary to check derived formulas 
for the possibility of round-off errors becoming substantial, leading to a major 
loss of computational precision. For the formulas given in Eq. (2.23), all the 
terms are positive, so both these results would be stable for numerical 
evaluation. However, Eq. (2.22) may not be. Let us examine the evaluation of 
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Eq. (2.22) for the case 0== ji  and consider the combination of the first two 
terms in the {.}, as might occur in a computer code. Let ,εαβ =  then the first 
two terms in brackets lead to: 
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 Now if ε turns out to be rather small, say, 10-3, then the above calculation 
becomes: 
                    
first pair of terms ]}61.00200099[998002996.01{2 2 LL−= −α  

                              }600.999999991{2 2 L−= −α ,            (2.25) 
 

which represents a loss of eight digits of precision. While such a spread in the 
exponents just indicated is unlikely in a typical practical calculation, it is far 
better to produce algorithms that are robust towards changes in the parameters, 
and anticipate numerical instabilities of this type. A way to circumvent this 
particular numerical problem is to proceed as follows: 
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This form is numerically stable when the value of β  is small with respect to 
the value of .α  
 

3. Two-electron integrals evaluated using ,1r  ,2r  and 
12r  variables 

 A straightforward approach to the evaluation of ),,,,(2 βαkjiI  is to work 
directly in terms of the coordinates ,1r  ,2r  and .12r  The transformation from 
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spherical polar coordinates for an atomic system, to the coordinates 1r , 2r , and 

12r , can be done as follows [17-19]. The triangle formed from the sides 1r , 2r , 
and 12r  can rotate about the 1r  direction over the angle χ , which is ]2,0[ π . 
The direction 1r  is allowed to rotate over the polar angles ,1θ .1φ  If we let the 

1r  direction lie along the polar axis, and differentiate the cosine rule for 12r  
with respect to 12θ  keeping the sides 1r  and 2r  fixed, so that 
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The ),,,,(2 βαkjiI  integral can then be written for 1−≥k  as 
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For the case of even k the preceding result simplifies to 
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A binomial expansion can be carried out for the factor in square brackets in the 
preceding formula. However, to preserve invariance under the simultaneous 
interchange ji ↔  and βα ↔  by visual inspection, a symmetric form for the 
binomial expansion is carried out, with the result that: 
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where ⎣ ⎦x  denotes the floor function, the greatest integer less than or equal to 
x. A related formula can be developed for the case k is odd, though attention 
needs to be paid to possible precision loss in the formula, as indicated in the 
discussion for Eqs. (2.24) – (2.26). 
 
4. Two-electron integrals evaluated in the stu 
variables 
 In this section we consider the evaluation of the two-electron integral in 
the stu variables. The stu variables were introduced by Hylleraas [5, 8] and 
take the form: 
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In the stu variables the Hylleraas wave function for S states of atomic two-
electron systems can be written in the form 
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where the set },,{ iii nml  are non-negative integers and the exponent ς  is .0>  
The non-relativistic Hamiltonian for a two-electron atomic S state in the 
infinite nuclear mass approximation in atomic units is given by [20]: 
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 The factor )( 22 ts −  that occurs in the denominator of several of the terms 
in the Hamiltonian might appear to be problematic, but this is not the case, 
since the volume element for the evaluation of expectation values involves a 
factor of ).( 22 ts −  
 A straightforward calculation shows that the evaluation of 

>< ),(||),( 2121 rrrr ψψ H  using Eqs. (4.2) and (4.3) reduces to a sum of two-
electron integrals that take the form: 
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and when the wave function contains only even powers of the variable t, which 
is the required case for the two-electron ground state, to ensure the spatial part 
of the wave function is symmetric under interchange of the coordinates of the 
two electrons, then 
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Since expectation values are computed as a ratio ,|/|| ><>< ψψψψ O  
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computed. 
 As an example, the evaluation of ),,2,(2 ςkjiI  is: 
 

∫∫∫ +++∞ − −=
u jijis ks dttstsduudsekji
0

)1(222
0

1
0

2
2 }{2),,2,( ςπςI  

  du
j

us
j

usdse
kj

i
kj

iss }
3212

{2
4222

2

00

2

+
−

+
=

++++
+∞ − ∫∫ ςπ  

                    .
)52)(32)(32)(12(

)64()!52(4 62
2

++++++
+++++

=
+++ kjkjjj

kjkji
kjiς

π                 
                         

                    (4.10) 
 

 Kinoshita [20] generalized Eq. (4.2) to the form 
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N

i
i

s utsce 22

1
21 ),( −−

=
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thus allowing for the possibility of negative powers for the variables s and u to 
be employed. The result obtained for the ground state energy of the helium 
atom was impressive, considering the compact expansion employed.                    
The Kinoshita approach does not lead to any additional complexity for the 2I   
integrals evaluated in the stu variables. Thakkar and Koga [21] carried out high 
precision calculations on S states of two-electron systems using wave functions 
of the form: 
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for non-negative values of the parameters λ  and .ν  The only change 
necessary in the evaluation of the two-electron integrals that arise, is to replace 
Eq. (2.7) by the definition of the gamma function: 
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α
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 A slight modification of the standard stu variables has also been utilized. 
The following projective coordinates have been employed [22]: 
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Using this choice, the integrals appearing in Eq. (3.2) become uncoupled, so 
that 
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assuming that the wave function contains only even powers in the variable w. 
When the basis functions are selected as products of generalized Laguerre 
polynomials in the variable s, multiplied by Jacobi polynomials in the variables 
v and w, then the integral evaluations can be carried out in a straightforward 
manner [22]. 
 
5. Fourier transform approach to the evaluation of 

)(2 βα,k,j,i,I  
 In this section, the evaluation of the two-electron correlated integral is 
considered, using a Fourier transform approach [23]. The particular case 

,0== ji  and ,1−=k  is treated. Let ,),( re ααϕ −=r  ,1)(
12r

h =12r  and 

denote the Fourier transforms of ),,( 1rαϕ  ),,( 2rβϕ  and )( 12rh  by ),( 1kF  
),( 2kG  and ),( 3kH  respectively. 
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 The Fourier transform )( 1kF  can be evaluated in spherical polar 

coordinates using the change of variables sr 1−= α  and ,1
1

1 k−= ακ  and              
to simplify the calculation, the polar axis is placed along the vector ,1k  so 
that: 
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In a similar fashion, with ,2

1
2 k−= βκ  
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 The Fourier transform of )( 12rh  does not exist in the conventional sense. 
This issue can be dealt with by modifying the definition of )( 12rh  by inserting 
in the numerator the factor 12rε−  for ,0>ε  and taking the limit +→ 0ε  
after evaluating the Fourier transform, but before performing the final 
integration. Spherical polar coordinates are employed with the polar axis 
placed along the vector ,3kk −  and the substitutions 12ru =  and 3k=3k  are 
used, so that 
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An alternative approach to evaluate )( 3kH  which avoids the insertion of the 
convergence factor, is to take note of the distributional nature of the integral 
involved. To do this, we first introduce the Heisenberg delta functions, defined by: 
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In the distributional sense we have 
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Inserting the inverse Fourier transforms for ),,( 1rαϕ  ),,( 2rβϕ  and )( 12rh  
leads to 
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which is the required result. 
 
6. The two-electron integral with exponential 12r  
factor 
 When the trial wave function of Eq. (1.1) is modified to include 
exponential correlation factors, so that 
 

1221
1221

1
21 ),( rrrkji
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∑=rr  ± exchange term,              (6.1)                      

 
then the quality of the results obtained for the energy and other properties, 
tends to be very good, even using rather compact wave functions [24]. 
Evaluation of the expectation value >< ),(||),( 2121 rrrr ψψ H  using the 
preceding wave function and the Hamiltonian given in Eq. (2.1), reduces to a 
sum of one-center integrals of the form: 
                                       

∫∫ −−−= 21121
1221

22 ),,,,,( rr dderrrkji rrrkji γβαγβαI ,                             (6.2) 
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where ,0>+ γα  ,0>+ γβ  and .0>+ βα  The symmetry property for this 
integral is 
 

),,,,,(),,,,,( 22 γαβγβα kijkji II = .                                                     (6.3) 
 
 One approach to the evaluation of ),,,,,(2 γβαkjiI  makes use of 
perimetric coordinates. These coordinates are introduced with the definitions: 
 

,1221 rrrx −+=  1122 rrry −+= , and .2112 rrrz −+=               (6.4) 

 
These coordinates were introduced by Coolidge and James [25] and utilized 
and discussed by a number of authors [8, 18, 26-35]. Some of these authors use 
slightly different definitions of perimetric coordinates formed by inserting 
different multiplicative constants on the right hand side of each of the formulas 
in Eq. (6.4). The volume element 21 rr dd  can be evaluated from Eq. (3.1) 

using Eq. (6.4) and =1221 drdrdr  ,
4
1 dzdydx  so that 
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The Hamiltonian in perimetric coordinates is discussed in [31, 34-35]. For an S 
state, we can write 
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 We will consider the evaluation of ),,,1,1,1(2 γβα−−−I , which will 
prove to be of use in the sequel. A straightforward calculation yields 
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Now to evaluate the general integral ),,,,,(2 γβαkjiI , we have 
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 We can proceed by making a binomial series expansion of 1)( ++ izx  and 
the two related terms. An alternative approach is to take advantage of the 
formula 
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so that 
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 The last formula can be readily evaluated using Eq. (6.7). The approach 
just outlined does not cover the situation when .2−=k  This case can be 
conveniently treated in perimetric coordinates [24]. 
 A recursive scheme for the evaluation of ),,,,,(2 γβαkjiI  has been 
discussed by Sack et al. [36]. For additional discussion on the one-center two-
electron integral with exponential 12r  factor, see [24, 27, 36-38]. 
 
7. Two-electron correlated integrals with spherical 
harmonic factors 
 One-center two-electron correlated integrals with spherical harmonic terms 
take the form: 
 

∫∫ −−= 21221112111 ),(),(),,,,,,,,(
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rrkji φθφθβα βαI .  

                 (7.1) 
 
We illustrate how to deal with this type of integral involving spherical 
harmonic functions, by considering the case .1−=k  On making use of Eq. 
(2.17) we have 



One-center Slater-type integrals with explicit correlation factors 57 

Ω

∞

=

−−
>

∞
<

−∞ −∑ ∫∫=− Idrrrerdrermlmlji
l

llrjri

0
2

1
0 20

1222 21
111 ),,,,,,1,,( βαβαI ,           (7.2) 

 
where the angular integral ΩI  can be evaluated by making use of Eqs. (2.13) 
and (2.14), so that 
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and we have made use of the relationship [p. 495, Vol. I, 13] 
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Equation (7.2) simplifies to give 
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The preceding double integral evaluates as 
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where a change of integration order (recall Eq. (4.7)) has been employed and 
the 2W  integral is defined by 
 

∫∫
∞ −∞ −=
x

ybjxai dyeydxexbajiW
0

2 ),,,( .                                                (7.7) 

 
The 2W  integral is convergent for ,0>a  ,0>b  ,0≥i  and .1−≥+ ji  This 
auxiliary function has been extensively studied [39-50]. For the case that 

,0≥j  2W  can be evaluated using Eq. (2.21), so that 
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Integration by parts using Eq. (7.7) for the case 0≥j  leads to a simple 
recurrence relationship for ).,,,(2 bajiW  For the case ,0<j  2W  can be 
calculated using [44] 
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provided b is not close to zero, in which case other computational strategies 
need to be employed [48]. 
 The final result for the correlated integral is 
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Extensions and further reading on these types of integrals can be found in [45, 
51-53]. 
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8. Two-electron correlated integrals with logarithm 
factors 
 It has turned out to be effective to supplement the basis set for wave 
functions as given by Eq. (4.2), and the further extensions mentioned in section 
4, by the inclusion of logarithmic factors [54-58], the simplest of which takes 
the form: 
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Using the approach discussed in section 4, evaluation of the one-center 
correlated two-electron integrals in the stu variables reduces to the integral: 
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 This integral can be evaluated [54, 57] by starting from the definition of 
the gamma function: 
 

dxeedxexj xxjxj e −∞ −−∞ − ∫∫ ==Γ
0

log)1(

0

1)( ,    for ,0>j                        (8.3) 

 

and then using the abbreviation ,)()()(
k

k
k

j
jj

∂
Γ∂

≡Γ  we have on employing the 

substitution sx ς=  and making a binomial expansion: 
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 denotes a binomial coefficient, and hence 



Frederick W. King 60

),,()(log)(),,( LL

1

0

)( ςςςς lj
l
k

jkj lk
e

k

l

kj II −
−

=

− ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Γ= .                           (8.5) 

 
The derivative of the gamma function can be readily expressed in terms of 
derivatives of the digamma function. 
 An integration by parts directly on Eq. (8.2) yields the recursion formula, 
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This formula can be evaluated using the starting values: 
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where )(kψ  denotes the digamma function, which is defined by [59] 
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and γ  is Euler’s constant. A generalization that includes an exponential 12r  
term is discussed in [60]. 
 
9. The one-center three-electron integral 

)(3 γβ,α, n,m,l,k,j,i,I  
 In this section we examine the one-center three-electron correlated 
integrals that arise for the S states of atomic species. The trial Hylleraas wave 
function involves an expansion in terms of explicit factors of the electron-
electron separation distance of the form: 
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where A  is the three-electron antisymmetrizer, and µχ  is a spin 

eigenfunction. The constants ,µa  ,µb  and µc  are > 0, and the integer indices 

},,,,,{ µµµµµµ nmlkji  are each ≥ 0. The Hamiltonian for an atomic three-

electron S state can be written as [9-11, 44]: 
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where ijkP  indicates that the summation is over the six permutations ⎟
⎠
⎞⎜

⎝
⎛

kji
321  

and the notational simplifications ,231 ru =  ,312 ru =  and 123 ru =  are 
employed. It can be shown that the expectation value < ),,( 321 rrr  ψ  

>),,(||) 321 rrr  ψH for atomic S states is reducible to a sum of three-electron 
integrals of the form 
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where ,0>α  ,0>β  and .0>γ  The individual integer indices },,,,,{ nmlkji  
must be 2−≥  for the integral to be convergent. The focus in this section will be 
on the cases for which the indices },,{ nml  are each ,1−≥  which applies for a 
calculation of the energy, and a number of other properties. Other cases will be 
discussed later in section 11. It should be noted that the integral is often defined 
with the order of the ijr  factors gives as nml rrr 121323 , so some care is needed when 
comparing numerical values from different sources. This integral has been 
discussed extensively in the literature [39-40, 43-44, 48, 61-71], with some effort 
directed towards the analytic evaluation of various cases [72-77]. 
 The symmetry property for ),,,,,,,,(3 γβαnmlkjiI  is 
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Special cases of ),,,,,,,,(3 γβαnmlkjiI  are 
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and 
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A useful test case for computational checking, is the result [72] 
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where )(Li2 x  is the dilogarithm function, defined by [78-79] 
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 We now consider the reduction of the three-electron integral to simpler 
auxiliary functions, focusing on the case where the indices },,{ nml  are each 

,1−≥  which is the situation that has received the most attention. The Sack 
expansion [80] is given by 
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where ),( 211
rrRll  is a Sack radial function. This represents a generalization of 

the expansion given in Eq. (2.17). Inserting the Sack expansion for each of the 
ijr  factors in Eq. (9.3), leads to 
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where the radial integrals are given by 
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and the angular integrals are 
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The angular integral can be readily evaluated by employing the                 
standard expansion of the Legendre polynomials in terms of spherical 
harmonics, so that 
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Inserting this result into Eq. (9.10) leads to 
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where 
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The Sack radial function [80] can be written for 1−≥l  as 
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where ),min( 2112 rrr =<  and ),,max( 2112 rrr =>  the coefficients wlua  are 
given by 
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and n)(α  denotes a Pochhammer symbol, defined in terms of the gamma 
function )( pΓ  as [59]: 
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 An alternative expansion for Eq. (9.9) has been given by Perkins [66]: 
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where vqkC  are coefficients. This expansion is a rewriting of Eqs. (9.9) and 
(9.16), since for 0=q  we have 
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and for 1≥q  
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The limit on the product takes advantage of term cancellation in the numerator 
and denominator in the expansion of the Pochhammer symbols. Equation 
(9.19) can be expressed as 
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where 2/max vq =  for v even, ∞=maxq  for v odd, qvk −= )2/(max  for v 
even, and 2/)1(max += vk  for v odd. These summation constraints follow 
from the property of the Pochhammer symbol: 0)( =− qp  for integer p and 

.pq >  
 Inserting the expansions for the Sack radial functions into Eqs. (9.14) – 
(9.15) leads to: 
 

∑∑∑∑
∞

=

∞

=

∞

=

∞

= +

−−−
=

000
32

0

3
3

})2/1{()12(

)2/()2/()2/(
64),,,,,,,,(

svuww
wnswmvwlr

www aaa
w

I
nml

cbanmlkji π
 

{ ),,,,,(),,,,,( 3K4I2J33K5J1I3 cabnmlWcbanmlW ωωωωωω −++−+++−++−++
 

(K ,J ,I , , , ) (I ,K ,J , , , )53 3 1 3 1 6 2

(J ,K ,I , , , ) (K ,I ,J , , , ) },3 2 6 1 3 3 4 2

W n l m c b a W m l n a c b

W n l m b c a W m l n c a b

ω ω ω ω ω ω

ω ω ω ω ω ω

+ + + + + + − + + + − + + −

+ + + + + + − + + + + + + −    (9.23) 
 
where the 3W -integral is defined for integer i, j, and k by 
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and the notational simplifications, 
 

2I += i ,   2J += j ,    2K += k ,                                                            (9.25) 
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wvu 2221 ++=ω ,  wsu 2222 ++=ω ,  wsv 2223 ++=ω ,                (9.26) 
 

vu 224 −=ω , su 225 −=ω , sv 226 −=ω ,                                           (9.27) 
 
have been employed. The 3W -integrals have received extensive study, and 
there are well-developed algorithms for the high precision evaluation of these 
auxiliary functions [39-48, 61-69]. 
 Recalling 0)( =− qp  for integer p and ,pq >  then each of the 
summations over u, v, and s, in Eq. (9.23) terminate at finite values. For 
example, the u summation terminates at 2/)1( +l  if l is odd, and at 

2/)2( wl −  if l is even. The w summation terminates at }2/,2/,2/min{ nml  
for l, m, and n each even; at }2/,2/min{ ml , l and m even, and n odd; at 

}2/,2/min{ nl , l and n even, and m odd; at }2/,2/min{ nm , m and n even, 
and l odd; at }2/min{l , l even, m and n odd; at }2/min{m , m even, l and n 
odd; and at }2/min{n , n even, l and m odd. The only case leading to an 
infinite summation is the case l, m, and n each odd. 
 When the w summation is infinite, it can be shown that the asymptotic 
behavior of the series is of the form [44, 69] 
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For the evaluation of the energy, only one of the indices l, m, and n takes the 
value -1, the other two values are .0≥  Hence, the slowest case scenario for the 
convergence in Eq. (9.28) arises for the three-odd case with ,1=++ nml  so 
the series takes the asymptotic form 
 

∑
∞

=1
63 ~

s

s

s
I

α
.                                                                              (9.29) 

 
 Methods to sum slowly converging series are called convergence 
acceleration techniques. These methods utilize knowledge of the asymptotic 
behavior of the series, and thus restrict the number of series terms that require 
evaluation. In some cases, the results can be extremely impressive. There are 
however well-known numerical stability issues that may arise. Some 
references that the reader might pursue on this vast topic are [81-95]. 
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 The result given in Eq. (9.23) might be regarded as the classical approach 
to the 3I  integral evaluation. Two other schemes deserve mention. The first 
has focused on the analytic evaluation of the 3I  in terms of standard functions. 
Remiddi [72] succeeded in deriving closed form expressions for selected 3I  
integrals, of which Eq. (9.7) is an example. He treated one of the                
important cases required for the evaluation of the energy. However, the final 
result is rather lengthy. Further work on the Remiddi approach has appeared 
[73-77]. 
 An alternative approach to this integration problem involves setting up a 
fairly long recursive scheme [76]. This recursive scheme has been 
implemented in practical calculations, and the current best available results for 
the ground state energy of the lithium atom have been determined with this 
approach by Puchalski and Pachucki [96]. 
 The reader might wonder if there is an extension of the scheme discussed 
in section 3 to the case of the three-electron integrals. It is possible to write the 
radial part of τd  in the form ,231312321 drdrdrdrdrdrJd radial =τ  
unfortunately, the Jacobian of the transformation involves a denominator term 
involving the square root of a sixth-order polynomial in the variables 

},,,,,{ 231312321 rrrrrr  [97-98]. Therefore, this coordinate system does not look 
promising for the evaluation of the 3I  integrals. 
 
10. The auxiliary function )(3 cb,a,k,j,i,W  
 The 3W  auxiliary function defined in Eq. (9.24) is convergent for 

,0,0,0 >>> cba  and 
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The numerical evaluation of 3W  is best considered as two separate cases: (1) j 
and k are both positive, and (2) one or both of j and k are negative. For the first 
case, Eq. (2.21) can be employed to give 
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A simple recurrence relationship can also be set up for this case of the 3W  
auxiliary function [39-40]. For the second case, the following formula [40, 44] 
can be used 
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Further discussion on the numerical evaluation of this auxiliary function, 
including recurrence schemes, can be found in [39-49, 61-69]. 
 
11.   )(3 γβ,α, n,m,l,k,j,i,I  with arguments }{ nm,l,  equal 
to -2 
 The cases where one or two of the indices },,{ nml  are allowed to be ,2−  
lead to significant additional complications, and some of these problems have 
been addressed in the literature [99-107]. These integral cases are required for 
the evaluation of lower bounds to the energy of three-electron atomic systems 
[108-109], as well as relativistic effects [96, 110-111]. 
 There are two different expansions of 2−

ijr that have been employed                      
to handle these more recalcitrant integrals. The first expansion takes                 
the form 
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This expansion can be derived by starting with the Sack expansion [80] 
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where the Sack radial function ),(2 jil rrR−  is given in terms of a 
hypergeometric function as 
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and .)(2 222 −+= jiji rrrrρ  The preceding result can be written in terms of the 

Legendre functions of the second kind, ,lQ  so that 
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Expressing lQ  in terms of the Legendre polynomial ,lP  and after some 
algebraic manipulation (see [99] for details), then Eq. (11.1) is obtained. The 
expansion in Eq. (11.1) was given first by Pauli and Kleindienst [112] in a 
slightly different but mathematically equivalent form [100]. For other 
additional discussion on the expansion of ,2−

ijr  see [113-114]. 
 The key factor that should catch the reader’s attention in Eq. (11.1) is the 
appearance of the logarithmic term. This contribution significantly complicates 
the evaluation of the radial integrals that arise. Three different auxiliary 
functions occur for the evaluation of the radial integrals; these are extensions 
of the 3W  integrals defined in Eq. (9.24): 
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Numerical approaches to treat these auxiliary functions have been discussed in 
[99-100, 102, 105-106]. Specialized Gaussian quadrature procedures and 
convergence acceleration methods have proved to be useful numerical methods 
to obtain reasonably accurate values for these auxiliary functions. There is no 
increase in complexity for the angular integration. 
 An alternative expansion of ,2−

ijr  and one having a closer structure to the 

expansion of 1−
ijr  given in Eq. (2.17), is [99, 103, 114-115]: 
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where )(cos1

ijlC θ  denotes a Gegenbauer polynomial. Using this expansion 
means that the radial integrals that arise from the evaluation of 

),,,,,,,,(3 γβαnmlkjiI  reduce to the 3W  auxiliary functions defined in Eq. 
(9.24). The increased complexity of the integral evaluation now occurs in the 
angular integration. A straightforward approach that has been implemented, is 
to expand )(cos1

ijlC θ  as a series of Legendre polynomials ),(cos ijlP θ  and 
then proceed as indicated in Eqs. (9.12) – (9.13). If ,2−=l  then it can be 
shown [103] that the convergence of the resulting series for the 3I  integral for 
the case 1−=m  and ,1−=n  behaves as 
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This series converges too slowly for a brute force numerical evaluation of the sum. 
Various techniques have been discussed to treat this evaluation problem [103-104, 
106]. Judicious application of convergence acceleration techniques have proved to 
be fairly effective to deal with this problem [103, 106]. 
 Some extensions of the 3I  integral to include kernels that contain terms 

like 322 )( −− ijji rrr  and 322 )( −− ijjkki rrr  have been treated [116]. In these cases, the 
factors cannot be broken apart into two integrals, since each of the separate 
integrals would diverge. 
 

12. Three-electron integrals with exponential ijr  

factors 
 As remarked at the start of section 6, the introduction of exponential terms 
with explicit ijr  factors into the wave function, leads to quality results for two-
electron systems. It would be expected that a generalization of the wave 
function given in Eq. (9.1) to the form: 
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would also lead to improved results for the properties of the S states of 
members of the lithium isoelectronic series. Evaluation of 

>< ),,(||),,( 321321 rrrrrr   ψψ H using the Hamiltonian given in Eq. (9.2) 
requires the following one-center integrals: 
 

3323 212313121
232313131212321),,,,,,,,( rrr ddderrrrrrnmlkji rrrrrrnmlkji∫∫∫ −−−−−−= αααγβαγβαI .  

           (12.2) 
 

 A detailed study of these integrals was undertaken by Fromm and                
Hill [37]. The analysis depends heavily on tracking the branch structure for  
the multi-valued functions involved. Harris [117] has presented a 
simplification of the results and further discussion is given in [97].                
No computational program employing this approach for atomic systems is 
known to the author. 
 
13. Three-electron integrals with spherical harmonic 
factors 
 To treat states of non S symmetry for three-electron atomic systems, the 
wave function of Eq. (9.1) is modified so that the basis functions are of the 
form [53, 104]: 
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 The additional term ),,( 321,)( 31221

rrrLM
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that appears is an angular 

momentum eigenfunction involving an expansion in terms of the spherical 
harmonics ),ˆ( 111

rmlY  ),ˆ( 222
rmlY  and ),ˆ( 333

rmlY  where ,/ˆ 111 rrr =  with 
appropriate coupling coefficients, so that a state of total angular momentum L 
is obtained. The Hamiltonian for a general symmetry state of a three-electron 
atom takes the form [10, 118-119]: 
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where HS is the S state contribution given in Eq. (9.2). The generalization of 
Eq. (13.2) to include multiple nuclear centers is given in [120]. Using                   
the basis functions given in Eq. (13.1), then evaluation of 

>< ),,(||),,( 321321 rrrrrr   ψψ H  using the Hamiltonian LH  leads to one 
class of one-center integrals that take the form: 
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Each of the ijr  factors will generate a pair of spherical harmonics, so that the 
angular integration leads to integrals involving a product of four spherical 
harmonics of the form ),(),(),(),(

44332211
φθφθφθφθ mlmlmlml YYYY . These 

products can be simplified by taking advantage of the result [Vol. II, p. 1057, 
13]: 
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 denotes a 3j symbol [Vol. II, 13; 121-123]. This leaves 

an integral over a product of three spherical harmonics. The approach to solve 
this is discussed in the following section. Other integrals obtained using the 
basis set of Eq. (13.1) are discussed in [98, 104]. 
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14. The one-center four-electron integral 
)(4 δγ,β,α, t,s,q,p,n,m,l,k,j,i,I  

 Extension of Eqs. (9.1) and (9.2) to treat four-electron atomic S states 
leads to integrals that are the obvious extension of Eq. (9.3): 
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where ,0>α  ,0>β  ,0>γ  and .0>δ  The individual indices i through t 
must be 2−≥  for the integral to be convergent. The focus in this section will 
be on the case for which these indices are each ,1−≥  which is the situation 
required for an energy evaluation. Various cases of this integral have been 
discussed in the literature [124-132]. One particular result I indicate is that for 
a number of special cases, the 4I  integrals can be reduced to a sum of 3I  
integrals [127]. 
     The symmetry property for 4I  is 
           

),,,,,,,,,,,,,(),,,,,,,,,,,,,( 44 δγαβδγβα tpnsqmlkijItsqpnmlkjiI =  
     ),,,,,,,,,,,,,(4 δαβγpsmtnqlijkI=  
                        ),,,,,,,,,,,,,(4 αγβδnmqptsikjlI= , etcetera.           
                        (14.2) 
 
Particular special cases are: 
 

),,,,(),,,,(),,,,,0,0,0,0,,,,,( 224 δγβαδγβα tlkImjiItmlkjiI = ,         (14.3) 
                   

),(),,,,,,,,(),,,,0,0,,0,,,,,,( 134 δγβαδγβα lIqnmkjiIqnmlkjiI = ,    (14.4) 
 
and some symmetry related results for each of these formulas. 
 To evaluate the 4I  integral insert the Sack expansion given in Eq. (9.9) for 
each of the ijr  factors, the result is  
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where the angular integral ),,,,,( 111111 tsqpnmIΩ  is given by 
 

)(cos)(cos)(cos),,,,,( 141312111111 111
θθθ pnm PPPtsqpnmI ∫ ∫ ∫ ∫=Ω  

                                          4321342423 )(cos)(cos)(cos
111

ΩΩΩΩ ddddPPP tsq θθθ ,            
                        (14.6) 
 
and RI  denotes the radial integral 
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 To handle the angular integral, we make use of the result [Vol. II, p. 1057, 13]: 
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Then Eq. (14.6) can be expressed as 
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The triple summation simplifies using a contraction formula for the sum of 
four 3j symbols [p. 146, 123] so that [129]: 
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where 
⎭
⎬
⎫

⎩
⎨
⎧

qst
pnm

 denotes a 6j symbol [121-123]. 

 The radial integral in Eq. (14.7) reduces to a six-fold infinite summation of 
a set of 24 4W  auxiliary functions [127-128]. The 4W  auxiliary function is 
treated in the following section. As indicated in section 2, there is a substantial 
difference between odd and even powers of ijr  as far as finding efficient 
numerical schemes to evaluate the resulting radial integrals. Currently, as 
many as four odd powers of ijr  and two nonzero even powers can be 
effectively dealt with [127]. This leaves the two cases of five and six odd 
powers of ijr  in Eq. (14.1) to be evaluated accurately and quickly. Both these 
cases are important if accurate calculations are to be made for the S states of 
atomic four-electron systems using the Hylleraas approach. 
 The general four-electron correlated integral with additional spherical 
harmonic factors can be treated by an extension of the approach indicated in 
section 13. Some special cases of the four-electron integral with additional 
angular factors have been considered in [133]. 
 

15. The auxiliary function )(4 dc,b,a,l,k,j,i,W  
 The auxiliary function required for a treatment of the four-electron 
problem takes the form: 
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           (15.1) 
 
The conditions required for a convergent 4W  integral are: 

,0,0,0,0 >>>> dcba  and 
 

,0≥i ,1−≥+ ji ,2−≥++ kji 3−≥+++ lkji .                          (15.2) 
 
This integral has received considerable attention in the literature [124, 127, 
131, 134-138]. When 0≥l  the 4W  integrals can be reduced to a sum of 3W  
integrals using the formula 
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When 0<l  an integral rearrangement leads to 
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which is valid when ,0≥j  ,1−≥+ kj  ,2−≥++ lkj  and when the 
differencing does not lead to the loss of too many digits of precision. A general 
result that has increased numerical stability is 
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= ++
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iv
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16. Few-electron molecular systems 
 Space considerations prevent a detailed discussion of the correlated integrals 
that arise in the treatment of few-electron molecular systems. The recent book 
[139] and review [140] provide general discussion of this topic. I want to draw 
attention to some explicitly correlated calculations on few-electron diatomic 
systems, which instead of working with the standard Neumann expansion in 
elliptical coordinates, transform the Hamiltonian in a different manner. A focus 
of the discussion will be the positive ion, HeH+. A conventional chemical view 
of HeH+ is that the molecule has two natural centers, located at the two nuclei. 
This viewpoint leads to the use of elliptical coordinates to treat the integrals that 
arise. 
     An alternative description is to start with the total Hamiltonian TH  written 
in terms of the coordinates of the laboratory frame, ,iR  where one particle is 
identified as the reference particle, and the other n particles are treated on an 
equal footing: 
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where iq  is the charge of particle i, im  is the corresponding mass of the 
particle, and atomic units are employed. For ni ,,2,1 L=  employ the 
following coordinate transformations: 
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where X  denotes the center-of-mass coordinate and TM  is the total mass of 
the system. This converts Eq. (16.1) into a separable Hamiltonian: 

,XHHHT +=  where XH  accounts for the translation of the entire system, 
and a term ,H  which covers the internal system dynamics. The former is not 
of interest for the particular application at hand, and is dropped from further 
consideration. The Hamiltonian H takes the form 
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where the reduced mass relative to the reference particle is 

)/( 00 mmmm iii +=µ  and .jiijr rr −=  For the particular case of HeH+, with 

the helium nucleus taken as the reference particle, the Hamiltonian takes the form 
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where the position vectors of the two electrons and the proton are 1r , 2r , and 3r , 
respectively, and pm  and Hem  denote the mass of the proton and the helium 
nucleus, respectively. Using this Hamiltonian, and assuming basis functions of the 
form: 
 

321231312321321 ),,( rcrbranmlkji errrrrr ννννννννννφ −−−=rrr ,               (16.5) 

 
leads to integrals that take the form of the 3I  integrals given in Eq. (9.3). 
Employing this approach, Zhou, Zhu, and Yan [141] obtained a ground-state 
energy converged to a few parts in .1010  The interested reader can pursue 
further discussion on this species [142] and a similar approach for other few-
electron diatomic molecules in [143-145]. 
 

17. Progress, problems, and some future directions 
 Progress on the accurate evaluation of the properties of few-electron 
systems has been tied to advances in computer technology, the development of 
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new integral formula evaluations, and improvements in numerical strategies 
for various types of calculation. 
 Over the past forty years, considerable progress has been made on the 
evaluation of properties using explicit ijr  factors in the wave function for two-
electron [21-22, 26, 54-58, 146-160], three-electron [44, 161-190], and four-
electron atomic systems [191-195]. The results for the two- and three-electron 
systems indicate the significant progress that has been made using correlated 
STO basis functions with explicit ijr  factors. It is noteworthy that similar 
progress on the calculation of the properties of the beryllium atom and 
members of its isoelectronic series using correlated STO basis functions, has 
been somewhat limited. The best results for the energy of atomic Be have been 
obtained with a basis set of exponentially correlated Gaussian functions [196]. 
In order to match calculated results with experimental transition energies or 
ionization potentials, several contributions to the total energy of each state are 
needed, including the non-relativistic energy, finite mass corrections, 
relativistic contributions, and quantum electrodynamic corrections. For two- 
and three-electron atomic systems, the non-relativistic energy contribution is 
now known with an accuracy well beyond what is required to make a match 
with the currently best available experimental results. 
 The focus of most of this review has been on few-electron atomic systems, 
where the natural center for the coordinates is the nucleus. In the infinite 
nuclear mass approximation, the center of mass is at the nucleus. For more 
exotic atomic species, containing a collection of elementary particles, there is 
no longer a natural center at a particular particle. In a general three-body 
problem, it makes more sense to replace the set of coordinates },,{ 1221 rrr  by 
the set },,,{ 231312 rrr  thereby giving no special place to any one particle. The 
analogue of Eq. (6.2) then becomes the general correlated three-body integral 
 

∫ −−−= τγβα γβα derrrkji rrrkji 231312
231312),,,,,(I ,                                        (17.1) 

 
with 231312231312 drdrdrrrrd →τ  after dealing with the angular integration. A 
considerable number of papers have appeared on the discussion of general 
correlated three-body and four-body integrals [33, 47, 60, 97-98, 197-198]. 
 To treat electronic systems beyond the four-electron level using Hylleraas 
basis sets, several mathematical problems will need to be addressed. 
Employing the expansion for the Sack radial function given in Eq. (9.16) 
generates for an N-electron atomic system, an !N  problem – that is, there are 

!N  NW  auxiliary functions that arise. Judicious selection of basis sets can 
considerably reduce this problem. It would be useful to have an effective 
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computational strategy that avoids this issue, which means looking for 
alternative expansions of the Sack radial functions, avoiding the <r  and >r  
variables. A second issue that arises in integral evaluations is the requirement 
to deal with the numerical evaluation of multiple nested infinite summations. 
There is a clear need to have available, convergence acceleration techniques 
for multiply nested sums that do not scale as ,nN  where N  is the typical 
number of term evaluations that are required to accelerate a single infinite 
summation, and n is the number of nested infinite summations. Such 
procedures would have the potential to improve substantially, various integral 
evaluation algorithms. 
 Progress beyond four-electron systems has been very limited using 
explicitly correlated STOs. Examples such as the CI-Hylleraas calculation on 
the ground state of the neon atom have been forced to use a restricted basis 
expansion, with only terms linear in ijr  being employed [199]. It appears that 
it would be useful to resolve some of the more recalcitrant integral issues 
associated with the four-electron problem. That will probably provide a guide 
for the solution of the correlated integration problem for more complicated 
electronic systems. 
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