
1
O
f

w
t
e
e
K
E
g
P

c

w
a
t
K
t
K
f
n
t
c
s
s
o
t
s
d
t

Frederick W. King Vol. 24, No. 7 /July 2007 /J. Opt. Soc. Am. B 1589
Numerical evaluation of truncated
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The truncated Kramers–Kronig transform, used widely in the analysis of optical data, is recast into a form that
avoids the need to evaluate a Cauchy principal-value integral. A specialized Gaussian quadrature involving the
weight function loge x−1 is employed. This approach yields accurate results for functions that lead to kernels
with relatively rapid decay, which covers the cases most commonly encountered in optical data analysis. An
application to the reststrahlen region of the GaAs spectrum is made. © 2007 Optical Society of America

OCIS codes: 000.4430, 160.4760.
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. INTRODUCTION
ne of the standard forms of the Kramers–Kronig trans-

orm is given by

K�O���� =
2

�
P�

0

� ��O����d��

�2 − ��2 , �1�

here P signifies that the Cauchy principal value is
aken; O��� denotes an optical property or, in a more gen-
ral setting, the dissipative component of a complex prop-
rty for a causal system; and K can be regarded as the
ramers–Kronig operator. A slightly modified version of
q. (1) also arises with the factor �� replaced by −�. For
eneral background on the Kramers–Kronig relations, see
eiponen et al. [1].
A truncated version of the Kramers–Kronig transform

an be written in the form

k�1,�2
��� � KT�h���� =

1

�
P�

�1

�2 h����d��

�2 − ��2 , �2�

here the circular frequency � satisfies 0��1����2
nd k�1,�2

��� and h��� denote optical properties, though
hey may also represent other functions for which a
ramers–Kronig analysis is required. The additional fac-

ors of 2� or 2�� that occur in the standard form of the
ramers–Konig transforms will be incorporated into the

unctions k�1,�2
��� or h����, respectively. To simplify the

otation, we replace k�1,�2
��� with k��� and adopt this

ype of notational simplification throughout. Under ideal
ircumstances, the circular frequency �1 should be chosen
ufficiently small and the circular frequency �2 selected
ufficiently large, so that k�1,�2

��� is in fact independent
f these two frequencies, to a precision level justified by
he experimental data. This selection is not always pos-
ible because of limitations of the available experimental
ata or because of difficulties associated with data ex-
rapolation outside the measured spectral range.
0740-3224/07/071589-7/$15.00 © 2
In practical applications, two approaches are generally
mployed for the evaluation of the Kramers–Kronig
ransform. Experimental data of necessity cannot be mea-
ured over a complete spectral domain. One approach
andles the missing data region by data extrapolation,
hich can be aided by the introduction of various physical
odels of the optical property under investigation. There

re several issues associated with this type of extrapola-
ion procedure, and these have been discussed in a num-
er of sources [2,3]. A second approach is to deal with the
xperimental data at hand, without attempting any ex-
rapolation. This strategy is expected to be successful only
hen the asymptotic behavior of the optical property falls
ff quickly outside the measured spectral range. Cases
here this is a likely scenario include various nonlinear
ptical properties [3–5]. To treat the experimental data in
he measured spectral range, one can employ two com-
on curve-fitting approaches. In one case, fairly simple

unctional forms are selected, which allow the truncated
ramers–Kronig transform to be evaluated in closed

orm. The second situation involves more complicated
unctional forms in the fitting process, choices that do not
llow an analytic solution for the truncated Kramers–
ronig transform to be obtained. In such cases, it is nec-
ssary to resort to numerical approaches to evaluate the
runcated Kramers–Kronig transform. This particular
ituation is the subject of the present study. In this work,
n efficient and accurate approach is provided to deal
ith the truncated Kramers–Kronig transform, by reduc-

ng it to a specialized Gaussian quadrature.

. APPROACH
e start by employing a partial fraction resolution of the

enominator in Eq. (1), so that

k��� =
1

2��
P�

�1

�2 h����d��

� − ��
+

1

2��
�

�1

�2 h����d��

� + ��
. �3�

he second integral, which we denote by k2���, is not a
auchy principal-value integral and can be dealt with in
007 Optical Society of America
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straightforward manner. To treat this integral, employ
he change of integration variable

�� = 1
2 ��1 + �2� + 1

2 ��2 − �1�x; �4�

hen

k2��� =
��2 − �1�

2��
�

−1

1 h� 1
2 ��1 + �2� + 1

2 ��2 − �1�x�dx

2� + �1 + �2 + ��2 − �1�x
.

�5�

dopting the same notational simplification employed for
�1,�2

���, we introduce the function O�� ,x� by the defini-
ion

O��,x� =
��2 − �1�h� 1

2 ��1 + �2� + 1
2 ��2 − �1�x�

2���2� + �1 + �2 + ��2 − �1�x�
; �6�

hen

k2��� =�
−1

1

O��,x�dx. �7�

or all the common optical properties, the function
�� ,x� will be a continuous function on the interval �
1,1�. In this case the integral can be conveniently evalu-
ted by a Gauss–Legendre quadrature of the form

k2��� 	 

i=1

N

O��,xi�wi, �8�

here the weights wi and evaluation points xi for a
auss–Legendre quadrature are readily available for

airly large values of N (see, for example, Stroud and
ecrest [6]).
The focus of the remainder of this section is the singu-

ar integral appearing in Eq. (3), which we will denote by
1���. The evaluation strategy to be employed utilizes a
pecialized Gaussian quadrature, with the integration
ange restricted to the interval (0,1). However, it will first
e useful to put this integral into a standard form that
ill be amendable to different numerical approaches. Em-
loying the same change of variable indicated in Eq. (4)
eads to

k1��� =
1

2��
P�

�1

�2 h����d��

� − ��

=
1

2��
P�

−1

1 h� 1
2 ��1 + �2� + 1

2 ��2 − �1�x�dx

�2� − �1 − �2���2 − �1�−1 − x
. �9�

sing the substitutions

x0 = �2� − �1 − �2���2 − �1�−1, �10�

f�x� = h� 1
2 ��1 + �2� + 1

2 ��2 − �1�x� , �11�

K�x0� = ��1 + �2 + x0��2 − �1��k1� 1
2 ��1 + �2� + 1

2 ��2 − �1�x� ,

�12�

hen
K�x0� =
1

�
P�

−1

1 f�x�dx

x0 − x
, �13�

here −1�x0�1. Equation (13) is the standard form of
he finite Hilbert transform. This transform occurs widely
n problems in physics, and, consequently, a variety of nu-

erical techniques have been proposed to evaluate this
ingular integral; see, for example, Bertie and Zhang [7].
ere we propose a specialized Gaussian quadrature

cheme, which is straightforward to implement and pro-
ides accurate results.

To deal with Eq. (13), we will assume that f�x� is Hölder
ontinuous on the interval �−1,1� with positive exponent
; that is,

�f�x − �� − f�x + ��� � C���m, �14�

here C is a positive constant. This constraint will be sat-
sfied by all the continuous optical properties encountered
n practical applications. Equation (13) can be recast as

K�x0� =
1

�
lim
�→0
��

−1

x0−� f�x�dx

x0 − x
+�

x0+�

1 f�x�dx

x0 − x

=

1

�
lim
�→0
��

�

1+x0 f�x0 − s�ds

s
−�

�

1−x0 f�x0 + s�ds

s 
 ,

�15�

here the change of variables s=x0−x and s=x−x0 were
mployed in the first and second integrals, respectively.
he function K�x0� can be rewritten as

K�x0� =
1

�
lim
�→0

�
�

1 �f�x0 − s� − f�x0 + s��ds

s

+
1

���1

1+x0 f�x0 − s�ds

s
+�

1−x0

1 f�x0 + s�ds

s 
 .

�16�

mploying an integration by parts allows the first inte-
ral in the preceding result to be expressed as

im
�→0

�
�

1 �f�x0 − s� − f�x0 + s��ds

s

= lim
�→0

�
�

1

�f�x0 − s� − f�x0 + s��
d loge s

ds
ds

= lim
�→0
�− �f�x0 − �� − f�x0 + ���loge �

−�
�

1

loge s�f��x0 − s� − f��x0 + s��ds

=�

0

1

loge s−1�f��x0 − s� − f��x0 + s��ds, �17�

here the prime denotes differentiation with respect to
he variable s and the condition given in expression (14)
as been employed to simplify the term lim�→0 loge ��f�x0
��− f�x +���.
0
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The other pair of integrals in Eq. (16) can be written in
form suitable for a Gauss–Legendre quadrature using

he substitutions s=1+ 1
2x0�1+x� in the first of the pair

nd s=1− 1
2x0�1+x� in the second integral, so that Eq. (13)

an be expressed as

K�x0� =
1

�
�

0

1

loge x−1�f��x0 − x� − f��x0 + x��dx

+
x0

�
�

−1

1 � f�x0

2
�1 − x� − 1�

x0�x + 1� + 2
−

f�x0

2
�1 − x� + 1�

x0�x + 1� − 2
�dx.

�18�

et

g1�x0,x� =
1

�
�f��x0 − x� − f��x0 + x��, �19�

g2�x0,x� =
x0

�
� f�x0

2
�1 − x� − 1�

x0�x + 1� + 2
−

f�x0

2
�1 − x� + 1�

x0�x + 1� − 2
�;

�20�

hen

K�x0� 	 

i=1

N̄

g1�x0, x̄i�w̄i + 

i=1

N

g2�x0,xi�wi, �21�

here x̄i and w̄i denote the points and weights for a spe-
ialized Gaussian quadrature based on the weight func-
ion loge x−1. The singular structure of the integrand in
q. (13) is now submerged in the values x̄i and w̄i. The
umber of evaluation points N̄ for the specialized quadra-
ure and the number N for the Gauss–Legendre quadra-
ure need not be the same. In applications, N can be se-
ected much larger than N̄, simply because the
vailability of the �x̄i ,w̄i� values is rather limited.
The principal difficulty in implementing expression

21) is the determination of the weights w̄i and abscissas
i to high accuracy using the weight function loge x−1. Val-
es of �x̄i ,w̄i� for this particular choice of weight function
an be found in the literature, but either the precision is
omewhat limited or the size of N̄ is rather modest [6,8,9].
n the present work the �x̄i ,w̄i� were determined from a
tandard recursive scheme [10]. Because this recursive
cheme is well known to be numerically extremely un-

Table 1. Comparison of Numerical Quadr
versus Exa

�x� 1
�P�−1

1 f�s�ds

x−s

(Exact Result)

x
� log� 1+x

1−x �− 2
�

x ex

� �E1�1−x�−E1�1+x�−2 Shi�1−x��
in x sin x

� �Ci�1+x�−Ci�1−x��− cos x
� �Si�1+x�+Si�1−x

aThe evaluation point x= 1 has been employed.
2
table, it was necessary to resort to high-precision arith-
etic. The calculations of the �x̄i ,w̄i� were carried out us-

ng the MATHEMATICA software. A modified recursive
pproach is available, with improved stability [10,11].

. APPLICATIONS
hree examples were selected to test expression (21).
ach of these examples was chosen because the resulting
ingular integral can be evaluated analytically, and hence
direct check on the numerical scheme is obtained. The

hoices also display a range of different functional behav-
ors. In practical applications, optical data could be fitted
o rather general functional forms, for example, a ratio of
ower series (a Padé approximant), for which the result-
ng truncated Kramers–Kronig singular integral cannot
e evaluated conveniently in analytic form.
Table 1 shows the results obtained from expression (21)

or the selected test cases. The special functions [12] ap-
earing in the table are the cosine integral, Ci�x�,

Ci�x� = −�
x

� cos ydy

y
; �22�

he sine integral, Si�x�,

Si�x� =�
0

x sin ydy

y
; �23�

he exponential integral, defined by

En�z� =�
1

� e−zydy

yn for n = 0,1,2, ¯ , with Re z � 0;

�24�

nd the hyperbolic sine integral function,

Shi�z� =�
0

z sinh tdt

t
. �25�

The Gauss–Legendre quadrature was carried out using
=384, and the specialized Gaussian quadrature with

he log weight was performed using N̄=60. The number of
oints employed for the Gauss–Legendre quadrature was
ore than sufficient to achieve a high level of accuracy for

he second integral in Eq. (18), for the test cases exam-
ned. This is expected to be the general case for optical
roperties, for which the kernel function of the second in-
egral in Eq. (18) can be represented by a functional form
hat has an accurate polynomial approximation on the in-
erval �−1,1�. There is the possibility of numerical prob-

Values for the Finite Hilbert Transform
aluationa

Numerical Quadrature From the Exact
Result Result

−0.4617701961 −0.4617701961
−0.2908672551 −0.2908672551

−0.4088775094 −0.4088775094
ature
ct Ev

��
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ems when the evaluation point x lies almost on the end
oints ±1, though this will depend on the behavior of the
ernel function as x→ ±1.
For the results presented in Table 1, the accuracy ob-

ained was actually better than the number of digits re-
orted. For typical optical data analysis, fewer significant
gures will generally be required, compared with
he number displayed in Table 1. Error estimates
an be incorporated to improve the results; see Stroud
nd Secrest [6] for details. For the log-weighted quadra-
ure, the required error coefficient has the value
.7405584259367010480923722�10−73 for �2N̄� !e2N̄ us-
ng N̄=60. For the test cases considered, error correction
as unnecessary.
As a further example, we consider a popular oscillator
odel for the analysis of optical data [13]. Suppose the

ermittivity as a function of circular frequency is repre-
ented as

���� − �� =
����L

2-�T
2 �

�T
2 − �2 − i	�

; �26�

hen the real part �r��� and the imaginary part �i��� are
iven by

�r��� − �� =
����L

2-�T
2 ���T

2 − �2�

��T
2 − �2�2 + 	2�2

, �27�

�i��� =
����L

2-�T
2 �	�

��T
2 − �2�2 + 	2�2

. �28�

n this model, �T, �L, ��, and 	 are treated as flexible pa-
ameters to describe the particular optical constant under
onsideration. We have employed the values for GaAs,
hich are [13] �T=268.7 cm−1, �L=292.1 cm−1, ��

11.0 cm−1, and 	=2.4 cm−1, and these describe the rest-
trahlen region of the spectrum. We have selected this ex-
mple because it is possible to put the truncated
ramers–Kronig transforms in closed form, thus allowing
direct assessment of the quality of the numerical treat-
ent of the corresponding truncated Kramers–Kronig

ransforms. Even slight modifications of Eq. (26) can
uickly lead to intractable principal-value integrals.
The two Kramers–Kronig relations for the permittivity

ake the form

�i��� =
2�

�
P�

0

� ��r���� − ���d��

�2 − ��2 , �29�

�r��� − �� = −
2

�
P�

0

� ���i����d��

�2 − ��2 . �30�

o evaluate the truncated Kramers–Kronig transform,

�r��� − �� = −
2

�
P�

�1

�2 ���i����d��

�2 − ��2 , �31�

e introduce the substitutions

a2 =
�2

�
, a1 =

�1

�
, a =

�T

�
, �32�
A = �L
2 − �T

2 , b =
	

2�
, c = �a2 − b2, �33�

o that, after some tedious algebra,

�r��� − �� =
A��

2�2c�
�b� 1

�c + 1�2 + b2

−
1

�c − 1�2 + b2�loge� �1 + a2��1 − a1�

�a2 − 1��a1 + 1��
+ � �c − 1�

�c − 1�2 + b2 +
�c + 1�

�c + 1�2 + b2

��tan−1�a2 − c

b � + tan−1�a2 + c

b �
− tan−1�a1 − c

b � − tan−1�a1 + c

b �

+

b

2� 1

�c − 1�2 + b2 +
1

�c + 1�2 + b2

��loge��b2 + �a2 + c�2�/�b2 + �a1 + c�2��

− loge��b2 + �a2 − c�2�/�b2 + �a1 − c�2���
 .

�34�

n the limits �1→0 (that is, a1→0) and �2→� (that is,
2→�), the first logarithm term and also the pair of loga-
ithm terms in the preceding formula vanish, the sum of
he first two arctangents gives a contribution of �, and
he sum of the third and fourth arctangents cancels, so
hat Eq. (34) simplifies to

�r��� − �� =
A��

2�2c� �c − 1�

�c − 1�2 + b2 +
�c + 1�

�c + 1�2 + b2
 . �35�

short rearrangement of Eq. (35) leads to

�r��� − �� =
A��

�2

�a2 − 1�

�a2 − 1�2 + 4b2 , �36�

hich corresponds to Eq. (27).
The truncated Kramers–Kronig transform for �i��� is

�i��� =
2�

�
P�

�1

�2 ��r���� − ���d��

�2 − ��2 , �37�

nd, for the oscillator model, it can be worked out in
losed form, with the result that

�i��� =
A��

2�2c�
�� c + 1

�c + 1�2 + b2

+
c − 1

�c − 1�2 + b2�loge� �1 + a2��1 − a1�

�a2 − 1��a1 + 1���
+ b� 1

�c − 1�2 + b2 −
1

�c + 1�2 + b2
�tan−1�a2 + c

b �
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− tan−1�a1 + c

b �� + tan−1�a2 − c

b � − tan−1�a1 − c

b �
+

1

2� c + 1

�c + 1�2 + b2 −
c − 1

�c − 1�2 + b2

��loge��b2 + �a2 + c�2�/�b2 + �a1 + c�2��

− loge��b2 + �a2 − c�2�/�b2 + �a1 − c�2���. �38�

aking the limits �1→0 and �2→� in Eq. (38) leads to
q. (28).
The approach presented in Section 2 is applied to

valuate the truncated Kramers–Kronig transforms given
n Eqs. (31) and (37), using the oscillator model applied to
he GaAs data. The results for the determination of
r���−�� are displayed in Fig. 1, calculated assuming
runcation intervals of �1=100 cm−1 and �2=320 cm−1.
his is a fairly narrow range but does incorporate all the
ssential structure in the real and imaginary components
f the permittivity, using the given data for GaAs in the
eststrahlen region of the spectrum.

For a given value of �, a split of the integration interval
as tested, to ensure the quadrature result was accurate

o within a preselected tolerance. Given the precision of
he data for GaAs, an accuracy tolerance of about 0.1%
ould be sufficient; for the calculations we report in the
gures, an accuracy tolerance of 0.001% was employed.
urther splitting of the integration interval was auto-
ated, so that the accuracy of the quadrature was below

he set tolerance. For most values of the circular fre-
uency, this was accomplished without splitting the inter-
al for the nonsingular parts of the integral and with
inimum or no splitting for the singular part of the inte-

ral.
In Fig. 1, the quadrature determination of �r���−��

rom the truncated Kramers–Kronig transform is com-
ared with the result from the exact solution, Eq. (34).
he two results are observed to be superimposed, thus es-
ablishing the effectiveness of the quadrature approach
resented. As a parenthetical comment, we note that the
xact result for �r���−�� from Eq. (27) differs slightly
rom the truncated Kramers–Kronig result. This behavior
s clearly evident in Fig. 1.

ig. 1. (Color online) Numerical quadrature result for �r���
��. The values of �r���−�� from the exact result, Eq. (27), are
epresented by the long-dashed curve. The input �i��� for the nu-
erical quadrature is represented by the short-dashed curve.
he solid curve is the numerical quadrature result superimposed
n the exact result for the truncated Kramers–Kronig transform
rom Eq. (34).
The results for the quadrature determination of �i���
rom the truncated Kramers–Kronig formula, Eq. (37),
re displayed in Fig. 2. The quadrature result and the ex-
ct result from Eq. (38) are superimposed upon each
ther. The exact result for �i��� from Eq. (28) is also in-
luded in the figure as a useful reference. This latter re-
ult coincides closely with the other two results—with
ome small departures evident in the tails on both sides of
he �i��� maximum. The better agreement between the
xact and the truncated Kramers–Kronig transform re-
ults for the case of �i���, as compared with the behavior
or �r���−��, is due to the faster falloff of �i��� as a func-
ion of increasing circular frequency, thus leading to
maller errors when the truncation of the Kramers–
ronig transform is carried out.
A nonoptimized FORTRAN code used for the evaluation

f the truncated Kramers–Kronig transform for a
ypical set of values of �, �1, and �2 outperforms the
AUCHYPRINCIPALVALUE numerical integration function

n MATHEMATICA, by a factor of approximately 100 in
erms of CPU usage. This reflects in part the known com-
utational overhead of compiled MATHEMATICA functions.
ince the calculation of individual integrals for a given set
f �, �1, and �2 values is substantially less than a second,
PU considerations are not much of an issue. The more

mportant consideration is accuracy. The CAUCHYPRINCI-

ALVALUE function gives reasonably good accuracy, pro-
ided that the function under investigation does not ex-
ibit relatively rapid changes in the integration interval.
or the oscillator model, numerical experiments using the
AUCHYPRINCIPALVALUE function indicate a loss of accu-
acy as the dissipative profile of the permittivity was
odified by decreasing the value of the damping constant
. The algorithm of Section 2 was able to handle this
hange without difficulty, as judged by comparison with
he results produced from the exact truncated Kramers–
ronig transform.

. DISCUSSION
or functions that lead to kernels in Eq. (18) that can be
ell approximated by a polynomial of limited degree, the
uadrature approach outlined will be effective. Using 60

ig. 2. (Color online) Numerical quadrature result for �i���. The
alues of �i��� from the exact result, Eq. (28), are represented by
he short-dashed curve. The input �r���−�� for the numerical
uadrature is represented by the long-dashed curve. The solid
urve is the numerical quadrature result superimposed on the
xact result for the truncated Kramers–Kronig transform from
q. (38).
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Table 2. Abscissas and Weights for a Gaussian Quadrature with a Weight Function of loge x−1 for N̄=60

Abscissas �x̄i� Weights �w̄i�

0.3242993314 4248107289 12086753 E-03 0.7155181881 1300426417 62569777 E-02
0.1860416905 5784504158 15950880 E-02 0.1373694600 1689768187 39119679 E-01
0.4696573639 0991652078 39421141 E-02 0.1869537888 1776323261 40629494 E-01
0.8833904836 9572925024 05254807 E-02 0.2263474845 1526893488 03176064 E-01
0.1426594295 0014852993 59075483 E-01 0.2582207148 4993127288 09788143 E-01
0.2098127619 9176948993 75918976 E-01 0.2840945573 6376243830 23740854 E-01
0.2896429015 1974968507 77796613 E-01 0.3049634644 8417452363 64635613 E-01
0.3819550862 7577167845 76524517 E-01 0.3215378277 2867450134 83128685 E-01
0.4865179933 4554167127 17892587 E-01 0.3343582004 8381905227 23927553 E-01
0.6030652447 3874537777 99581031 E-01 0.3438560534 1658051990 39257271 E-01
0.7312966757 2377715272 19560949 E-01 0.3503889570 1292293530 72188840 E-01
0.8708795071 6818465500 47868478 E-01 0.3542622661 8137415111 60834543 E-01
0.1021449492 7718703334 37534345 0.3557431317 9722807461 68939944 E-01
0.1182612079 0207493527 67365360 0.3550698901 9998310718 19109188 E-01
0.1353943598 7942803410 62150527 0.3524585360 1232078426 25832897 E-01
0.1534992510 2791649982 44103932 0.3481072831 2964683853 77116284 E-01
0.1725280687 4247676881 07516152 0.3421998324 7375104565 33520258 E-01
0.1924304764 8440543587 94060473 0.3349077416 9485313548 99206955 E-01
0.2131537537 9162642166 49791475 0.3263921574 4805421225 31608779 E-01
0.2346429417 4030179976 88820397 0.3168050869 5948533893 63340905 E-01
0.2568409936 8793538512 01640973 0.3062903316 6486108988 64536888 E-01
0.2796889310 5491968614 55351222 0.2949841701 0523366161 83963033 E-01
0.3031260038 4673172558 90597421 0.2830158532 0746897358 54189801 E-01
0.3270898555 7690101950 71618612 0.2705079584 7117274794 61080971 E-01
0.3515166922 1778264157 37389705 0.2575766378 9968035821 51906590 E-01
0.3763414547 7968952572 17397767 0.2443317861 4624767855 67389969 E-01
0.4014979950 9749646457 95562510 0.2308771492 5795409049 59389643 E-01
0.4269192543 8636326868 53936516 0.2173103899 0143052525 78216135 E-01
0.4525374441 1401036027 93196121 0.2037231215 8329769188 99028894 E-01
0.4782842287 2551210517 52776207 0.1902009218 1711193980 25609730 E-01
0.5040909097 4749546810 89911828 0.1768233322 1730712784 24231726 E-01
0.5298886107 9168916656 71621170 0.1636638519 6378294852 73754391 E-01
0.5556084629 7277580090 61005602 0.1507899298 6756158028 59216140 E-01
0.5811817902 5231879837 89849734 0.1382629592 9824698944 60722438 E-01
0.6065402942 1906302504 31149301 0.1261382794 4941953790 76135105 E-01
0.6316162378 1606124476 92522564 0.1144651857 7548128854 46957183 E-01
0.6563426275 2679276478 30505384 0.1032869519 0076314604 93804968 E-01
0.6806533935 3566088849 86063477 0.9264086485 4849783331 65202495 E-02
0.7044835673 8293455484 58207044 0.8255827510 8878508270 69568103 E-02
0.7277694566 4029349689 04441159 0.7306466256 2173184923 01686737 E-02
0.7504488161 4060444129 26572297 0.6417971934 6374123518 26380248 E-02
0.7724610153 0435804028 93767166 0.5591745006 7047158592 38924556 E-02
0.7937472011 1529142145 35345932 0.4828628988 4274780594 39472622 E-02
0.8142504563 0906633852 22587269 0.4128924063 9033490732 27806408 E-02
0.8339159523 5142074989 45672602 0.3492402505 7411225839 44405848 E-02
0.8526910967 9590805452 69922043 0.2918325890 6919565532 41258132 E-02
0.8705256746 2611647352 99979058 0.2405464083 5959599528 52300011 E-02
0.8873719832 0303087598 55773764 0.1952115949 7066545695 73897805 E-02
0.9031849604 5482295781 03094573 0.1556131743 5442202694 35263614 E-02
0.9179223059 6359360185 33336050 0.1214937111 5354054258 44980658 E-02
0.9315445946 2097135151 50164879 0.9255586357 3497100062 22011536 E-03
0.9440153825 4095212996 78639651 0.6846508368 2151985039 66829933 E-03
0.9553013049 3140747807 62997290 0.4885245462 6620370345 95480646 E-03
0.9653721656 2844728181 58690176 0.3331765500 4587598419 89636978 E-03
0.9742010179 6975726056 16350959 0.2143203994 8545842187 36594045 E-03
0.9817642365 5412274904 05066658 0.1274182787 6086249031 91376689 E-03
0.9880415789 2436265047 76861980 0.6771381333 3216217294 81754795 E-04
0.9930162339 2887477895 28321127 0.3026569953 0513963209 42851280 E-04
0.9966748400 1858749516 02439285 0.9982035828 0485052441 39485304 E-05
0.9990073230 8937402711 32293595 0.1655280633 5491778653 48936290 E-05
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uadrature points for the weight function loge x−1 gives
ood accuracy in these cases. The weights and abscissas
or N̄=60 are reproduced in Table 2. For functions that
annot be so represented, the accuracy of the approach is
ikely to be more modest but probably sufficiently accu-
ate for analysis of optical data. Typical optical properties
re expected to be well approximated on any finite spec-
ral interval by functions for which the series representa-
ion of the kernels of Eq. (18) is accurately represented by
polynomial approximation.
A useful evaluation strategy is to first check that the

ernel functions that arise in Eq. (18) can be expanded in
series form for x� �0,1� for the first integral and x� �

1,1� for the second integral. Then check that these se-
ies are well approximated by polynomials of modest de-
ree, that is, a polynomial of size 	2N̄ for the kernel of
he first integral in Eq. (18) and 	2N for the kernel of the
econd integral in the same equation. Abscissas and
eights for the Gauss–Legendre quadrature are available

o rather high order; however, for the log quadrature, de-
ermination of the abscissas and weights for values of N̄
n excess of 100 becomes problematic, particularly if these
re to be determined to high accuracy. The author has de-
ermined the �x̄i ,w̄i� values for N̄ from 10 to 100 in steps
f 10. The values for �x̄i ,w̄i� for N̄ greater than 60 can be
btained by contacting the author. The convergence of the
uadrature approach can be monitored by successively in-
reasing the size of N̄ and N. An alternative approach is
o split the integration interval of the initial truncated
ramers–Kronig transform into two or more segments.
his can be carried out in an automated fashion and ter-
inated when a required cutoff tolerance is reached.
A related approach can be carried out for the Hilbert

ransform on the interval �−� , � �. For the case of func-
ions that have reasonably good decay characteristics, the
pecialized Gaussian quadrature approach produces accu-
ate results [14].
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