Reply to "Comment on 'Analysis of some integrals arising in the atomic four-electron problem'" [J. Chem Phys. 99, 3622 (1993)]

Frederick W. King ${ }^{\text {a) }}$
Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702

(Received 6 November 2003; accepted 14 November 2003)
[DOI: 10.1063/1.1638994]

The comment by Harris et al. makes three principal points on the paper cited in the title. The authors point out that the seventh and 21st W_{4} auxiliary functions contain an incorrect argument. I have checked the formulas and I am in agreement. These are both typographical errors; τ_{7} should have read τ_{8} in the seventh W_{4} term in Eq. (42), and τ_{4} should have read τ_{6} in the 21st W_{4} term. The calculated results reported in Table I were based on the correct formula.

Harris et al. have produced an elegant simplification of the angular integral that occurs in Eq. (34). The computational approach that I employed makes substantial use of tabled values for a significant number of the $3-j$ symbols that arise. This makes the calculation of the angular integral a very minor component of the computational cost of a single I_{4} integral evaluation. This is particularly the situation with the more difficult integrals involving a multiple number of $r_{i j}^{n}$ factors with odd values for the exponent indices, cases that are important in practical calculations. Every computational simplification should be exploited, and the improved formula given in the comment may allow for some minor gains in evaluation speed. With the continuing reduction in the cost of computer memory, the formula of Harris et al. offers an alternative evaluation strategy for I_{Ω} by tabling a large number of $6-j$ symbols. The radial integral contribution consumes the most significant fraction of the computer resources when evaluating an individual I_{4} integral. Substantial improvements in computational speed depend on continuing refinements and proper selection of convergence acceleration techniques, Richardson extrapolations, and the related asymptotic series expansion techniques. ${ }^{1-5}$

The final comment by Harris et al. concerns a way to set
up the various argument lists to carry out the required permutations for the ordering of the distance factors r_{i} so that $r_{i} \leqslant r_{j} \leqslant r_{k} \leqslant r_{l}$. This suggestion is potentially useful for the generation of the formulas using symbolic algebra packages. The permutation structure associated with this ordering is an important complication to the evaluation of the I_{4} integrals. The number of auxiliary W_{N} integrals scales as N !, where N is the number of electrons. Clearly, the complexity spirals significantly with increasing N, and the resulting correlated integrals are likely to be rather intractable. It is possible to circumvent this problem entirely for the case $N=4$ by employing a different form of the Sack expansion. ${ }^{6}$ This leads to additional infinite series to contend with, but judicious application of convergence acceleration techniques may resolve these infinite series issues. The auxiliary functions that arise have not been previously studied, and the general cases lead to some recalcitrant integration problems. They are currently under investigation.

The author thanks the Donors of the Petroleum Research Fund, administered by the American Chemical Society, and the National Science Foundation, for support of this work.

[^0]
[^0]: ${ }^{\text {a) }}$ Electronic mail: fking@.uwec.edu
 ${ }^{1}$ D. Levin, Int. J. Comput. Math. B 3, 371 (1973).
 ${ }^{2}$ E. J. Weniger, Comput. Phys. Rep. 10, 189 (1989)
 ${ }^{3}$ E. J. Weniger, Comput. Phys. Commun. 64, 19 (1991).
 ${ }^{4}$ E. J. Weniger, Int. J. Quantum Chem. 57, 265 (1996); erratum 58, 319 (1996).
 ${ }^{5}$ P. J. Pelzl and F. W. King, Phys. Rev. E 57, 7268 (1998).
 ${ }^{6}$ R. A. Sack, J. Math. Phys. 5, 245 (1964).

