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A method is presented to deal with the numerical evaluation of Kramers–Kronig transforms (the Hilbert trans-
forms of even and odd functions on the positive real axis). The general Hilbert transform is also treated. The
functions involved must be continuous on the integration interval with suitable asymptotic behavior for large
values of the argument and must have an appropriate functional form in the vicinity of the singularity of the
integrand of the transform. The approach is based on a specialized Gaussian quadrature technique that uses
the weight function log x21. This choice allows the region in the vicinity of the singularity to be swept into the
quadrature weights and abscissa values. Application to the Lorentzian and Gaussian line profiles is dis-
cussed. © 2002 Optical Society of America
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1. INTRODUCTION
The Hilbert transform of a function f denoted Hf is de-
fined by

~Hf !~x ! 5
1

p
PE

2`

` f~s !ds

x 2 s
. (1)

In Eq. (1) P designates the Cauchy principal value, which
can be expressed by

~Hf !~x ! 5
1

p
lim

e→01
F E

2`

x2e f~s !ds

x 2 s
1 E

x1e

` f~s !ds

x 2 s G . (2)

In the literature, the Hilbert transform is also defined by
use of the opposite sign convention to that given in Eq.
(1). For a function f that satisfies f P Lp(R) with 1 , p
, `, where L(R) denotes the class of Lebesgue inte-
grable functions on the real line (2`, `), the Hilbert
transform of f satisfies Hf P Lp(R).1,2 For the particular
case p 5 1, Hf exists almost everywhere but in general is
not integrable. For the majority of practical problems, it
is the case that f P Lp(R) with p . 1. The often invoked
working assumption is that the functions of interest sat-
isfy f P L2(R). For many applications it is most conve-
nient to write Eq. (1) in a form that involves the interval
(0, `), leading to

~Hf !~x ! 5
1

p
PE

0

`H f~ y !

x 2 y
1

f~2y !

x 1 yJ dy. (3)

If f(x) is an even function @ f(2x) 5 f(x)#, Eq. (3) simpli-
fies to

~Hf !~x ! 5
2x

p
PE

0

` f~ y !

x2 2 y2 dy. (4)

If f(x) is an odd function @ f(2x) 5 2f(x)#, then

~Hf !~x ! 5
2

p
PE

0

` yf~ y !

x2 2 y2 dy. (5)
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Equations (4) and (5) are frequently termed the
Kramers–Kronig transforms of even and odd functions,
respectively.

It is well known3–6 that, for a function f(z) that is ana-
lytic in the upper half complex plane and has suitable
asymptotic behavior, the real and the imaginary parts of
f(z) on the real axis form a Hilbert transform pair, that is,
if

f~x ! 5 g~x ! 1 ih~x !, (6)

then

h~x ! 5 ~Hg !~x !, (7)

g~x ! 5 2~Hh !~x !. (8)

If we suppose for the moment that g(x) is an even func-
tion, then the last pair of equations can be put in the
same form as Eqs. (4) and (5), except for the appearance
of an additional minus sign in the expression for g(x). In
this case we have the Kramers–Kronig transform pair.

Hilbert transforms arise in many applications, and
they are often called by different names such as disper-
sion relations, Kramers–Kronig transforms, and Cauchy
principal value integrals. Because of the important ap-
plications of Hilbert transforms, considerable effort over a
long period of time has been devoted to the numerical
evaluation of Cauchy principal value integrals.7–41

There is also an extensive body of work devoted to the ap-
plication of Kramers–Kronig transforms to experimental
data.42–59 Some strategies have focused on avoiding the
principal value integrals altogether.60–63 A primary area
of application is the analysis of optical data, that is, de-
termination of the dispersive mode from a measurement
of the absorptive mode and vice versa. Two highly read-
able accounts on issues related to the Kramers–Kronig
transforms and the interconversion from dispersive to
dissipative modes are given in Refs. 64 and 65.

There are two principal issues involved in optical data
analysis: (1) fitting measurements to some particular
2002 Optical Society of America
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functional form, including a resolution of the extrapola-
tion problem to regions outside which spectral measure-
ments have been made; and (2) solving the Kramers–
Kronig inversion either analytically or numerically. This
study is concerned with detailing an approach to the nu-
merical evaluation of Hilbert transforms and Kramers–
Kronig transforms, which is fairly simple in application
but gives rather good results. It has obvious generaliza-
tion beyond the immediate application to optical data
analysis. Here I am not concerned with the issues raised
under point (1).

2. GAUSSIAN QUADRATURE APPROACH
The approach to be employed involves the use of special-
ized quadrature procedures. In this section some concise
background is provided on this technique. A general
method for the numerical evaluation of integrals that is in
widespread use is a Gaussian quadrature.66,67 The clas-
sical formula for the numerical evaluation of an integral
takes the form

E
a

b

f~x !dx ' (
i51

N

wif~xi!, (9)

where N is the number of sample points in the interval,
which can be open or closed, xi denotes the points at
which the integrand is sampled, and the wi represent
weighing coefficients at the sampling points. The sim-
plest examples of this approach are the trapezoidal rule
and Simpson’s rule, which are discussed in many intro-
ductory calculus texts. A common feature of some of the
simpler numerical quadrature approaches is the selection
of the abscissa values, the xi , in an equally spaced fash-
ion.

In Gaussian quadrature schemes, the restriction of
equally spaced evaluation points is dropped. This has
the immediate effect of doubling the number of variables
that can be used to optimize the calculation of the inte-
gral. The second feature of considerable importance is
that the weights and abscissa values can be determined
so that the quadrature is exact (to approximately what-
ever machine precision is being employed) for integrands
of the form

f~x ! 5 W~x !p~x !, (10)

where p(x) is a polynomial and W(x) denotes a weight
function. In what follows I adopt the convention that the
weight function satisfies

W~x ! > 0 for x P @a, b#, (11)

and further assume that all the moments mj , defined by

mj 5 E
a

b

W~x !xjdx, (12)

are finite. If the weights and abscissa values are specifi-
cally tailored for the function f(x), we can write

E
a

b

f~x !dx 5 E
a

b

W~x !p~x !dx ' (
i51

N

wip~xi!. (13)
The approximation sign (') is maintained, since we are
concerned with computer evaluations. The important ob-
servation to note is that the function W(x) no longer oc-
curs explicitly in the summation in Eq. (13) but appears
implicitly in the values of $wi , xi%. A key question is
how many evaluation points are required for a polynomial
of a particular order? The answer is that Eq. (13) is exact
when p(x) is a polynomial up to order 2N 2 1.

It is possible for a variety of common functional forms
to tabulate the values $wi , xi% for different values of N,
assuming that the integration range is kept fixed. This
has been done for the functions shown in Table 1.67 This
list more or less defines the standard weight functions
employed in Gaussian quadrature. Functions not in this
list give rise to what are generally termed specialized
quadratures (or more specifically, specialized Gaussian
quadratures). The obvious question that the reader
should have is: what happens when the function of in-
terest cannot be expressed in the form of Eq. (10)? For
example, suppose the required integral over the interval
[0, `) involves the function

f~x ! 5
exp~2ax !

Ab 1 x3
, a, b . 0. (14)

A simple change of integration variable suggests the use
of a Gauss–Laguerre quadrature. The function g(x)
5 @a/(a3b 1 x3)#1/2 is not a polynomial function, so it is
clear that the formula

E
0

`

f~x !dx 5 E
0

` exp~2ax !

Ab 1 x3
dx 5 AaE

0

` exp~2x !

Aa3b 1 x3
dx

' (
i51

N

wig~xi! (15)

Table 1. Some Common Functions and the
Integration Ranges for which $wi , xi% Are

Available as a Function of N

Integration
Range

Weight
Function

W(x) Name

[21, 1] 1 Gaussian quadrature
(Gauss–Legendre
quadrature)

[21, 1] (1 2 x)a(11x)b Gauss–Jacobi
quadrature

[21, 1]
1

A1 2 x2

Gauss–Chebyshev
quadrature

[0, `) exp(2x) Gauss–Laguerre
quadrature

(2`, `) exp(2x2) Gauss–Hermite
quadrature
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will lead to an approximate result, independent of any er-
rors associated with computer roundoff. How effective a
numerical quadrature on a function like this will be de-
pends on how well g(x) can be approximated by a polyno-
mial of order 2N 2 1. As a specific example, consider
the evaluation of the following integral:

I 5 E
0

1

logS 1 1 x

1 2 x D dx. (16)

This integral can be done in closed form, with the result
that I 5 2 log 2 5 1.386 294 36 ... . If we take the weight
function W(x) 5 1 and use a 32-point Gaussian quadra-
ture, the value 1.385 696 is obtained, whereas a 384-point
Gaussian quadrature yields 1.386 290.68 The first of
these two estimates is not close to the exact result, and, if
high accuracy is required, the second value falls a bit
short. In a situation such as this, it is possible to resort
to interval dissection techniques, where the integral is
split into several integrals and Gaussian quadrature is
applied to each interval. An alternative strategy is to
keep expanding the size of the quadrature until conver-
gence at some desired level is obtained. There is of
course a limit to the size of N for which tabulated values
of $wi , xi% can be found or conveniently computed.

The reason for the relatively low precision obtained for
the preceding example is not difficult to find. The inte-
grand has a slowly converging series representation and
is not well represented by a simple polynomial function.
The same situation would apply to extensions of the form

I 5 E
0

1

logS 1 1 x

1 2 x D f~x !dx, (17)

even if f(x) is a relatively smooth function on the interval
[0, 1]. Examples of this type are candidates for a special-
ized Gaussian quadrature.68 As noted above, they are
specialized in the sense that they are not currently part of
the literature of commonly tabulated Gaussian values for
$wi , xi%.

We now briefly outline the approach for evaluation of
the values $wi , xi%. The scalar product for two functions
f(x) and g(x) with weight function W(x) on the interval
@a, b# is defined by

~ f, g ! 5 E
a

b

W~x !f~x !g~x !dx. (18)

If ( f, g) is zero, the two functions are said to be orthogo-
nal, if ( f, f ) is unity, the function f is normalized. We
now seek the set of polynomials that is orthogonal on the
interval @a, b# with the weight function W(x). If we de-
note the jth-order polynomial

p~x ! 5 x j 1 a1x j21 1 ¯ 1 aj (19)

by pj , we then have

~ pj , pk! 5 0 for j Þ k. (20)

The polynomial p(x) is termed monic because the leading
coefficient (of the jth power of x) is unity. These polyno-
mials can be constructed by a recursive scheme called the
Gram–Schmidt orthogonalization. We have

p0~x ! 5 1, (21)
p1~x ! 5 x 2 a0 , (22)

pi11~x ! 5 ~x 2 a i!pi~x ! 2 b i pi21~x ! for i > 1,
(23)

where

a i 5
~xpi , pi!

~ pi , pi!
for i > 0, (24)

b i 5
~ pi , pi!

~ pi21 , pi21!
for i > 1. (25)

We denote the roots of the polynomial pN(x) by
x1 , x2 ,..., xN . The xi are real, simple, and lie in the in-
terval (a, b). The solution of the system of equations

(
i51

N

pj~x !wi 5 H 0 for j 5 1, 2 ,..., N 2 1

~ p0 , p0! for j 5 0
(26)

is denoted by w1 ,w2 ,..., wN . These weights can be de-
termined by use of standard methods of solving systems
of linear equations or by employing the alternative result

wi 5
~ pN21 , pN21!

pN21~xi!pN8 ~xi!
, (27)

where the prime denotes derivative. The key result is
then

E
a

b

W~x !p~x !dx 5 (
i51

N

wip~xi!, (28)

where p(x) is a normed polynomial of degree 2N 2 1.
The simplest case of Eq. (28) occurs when W(x) 5 1

and the integration interval is taken as [21, 1]. This is
called a Gaussian quadrature in honor of Gauss who is
credited with Eq. (27). It is also referred to as a Gauss–
Legendre quadrature, which reflects the fact that the sys-
tem of polynomials orthogonal on the interval [21, 1] with
weight function 1 are the Legendre polynomials.

The problem therefore breaks down into three steps,
which are (1) determine the polynomial, that is, find the
coefficients ai in Eq. (19); (2) find the roots xi of the poly-
nomial; (3) evaluate the weights wi . For the classical
polynomials, the recursive formulas have been studied in
detail, and there are well-known expressions for the coef-
ficients ai .67 Departure from the standard choices of
weight functions can lead to significant computational dif-
ficulties. Consider, for example, the numerical evalua-
tion of the integral

I 5 E
0

1

log~1/x !f~x !dx, (29)

where we suppose that f(x) is continuous in the interval
[0, 1]. This integral will be useful in Section 3. Based
on what has been described above for the example in Eq.
(16), a normal Gaussian quadrature is not expected to be
particularly effective for the evaluation of Eq. (29). Let

W~x ! 5 log~1/x !. (30)

Then suppose that the set of orthogonal polynomials on
the interval [0, 1] is determined by use of this weight
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function. In this example, the unfavorable part of the in-
tegrand from a numerical point of view is the region near
x → 01. By sweeping this poor behavior into the
$wi , xi% values, it is possible to obtain a numerically
stable and effective evaluation scheme for smooth func-
tions f(x). Unfortunately, for a significant amount of
time, the implementation of this scheme was essentially
an impossible task because the recursive system of Eqs.
(21)–(25) becomes highly unstable from a numerical view-
point as the polynomial degree increases. The problem is
often termed as being extremely ill-conditioned. The
only values that have been published giving a reasonable
number of digits for the weights and abscissa for this
choice of weight function are restricted to N < 16.67,69–71

This is not a particularly large value of N for a quadra-
ture scheme. The general advice that is often given is to
avoid this recursive approach.66 This advice is not en-
tirely correct. With the development of modern symbolic
algebra packages, it is possible to work with the recursive
scheme given, either in an analytic mode or in a numeri-
cal form by use of high-precision arithmetic.

Some significant refinements have been discovered that
improve the recursive scheme, particularly when the in-
tegration interval is finite.72 One idea that has proved
useful in some circumstances is to replace the powers of x
in Eq. (19) by known polynomials that form an orthogonal
set. Denote these polynomials by r i(x) and assume that
the moments mi , defined by

mi 5 E
a

b

W~x !r i~x !dx, (31)

can be accurately found. The new polynomials r i(x) sat-
isfy an analogous recursive scheme to that given above:

r0~x ! 5 1, (32)

r1~x ! 5 x 2 c0 , (33)

r i11~x ! 5 ~x 2 ci!r i~x ! 2 dir i21~x ! for i > 1,
(34)

where the coefficients ci and di are explicitly known, be-
cause of the particular choice of r i(x). The coefficients in
the desired polynomial can be found by use of a simple re-
cursive scheme.66,72

3. SPECIALIZED GAUSSIAN QUADRATURE:
THE HILBERT TRANSFORM
Let the function f(x) satisfy the following conditions:
f(x) is continuous in the interval (2`, `) and for any non-
zero constant c and some nonnegative constant m, not
necessarily an integer,

lim
x→0

$ f @~1 1 x !c# 2 f @~1 2 x !c#% 5 xm with m . 0.

(35)

Then with a change of variable we can write the Hilbert
transform as
~Hf !~x ! 5 2
1

p
PE

2`

` f @x~s 1 1 !#ds

s
~x Þ 0 !

5 2
1

p
PH E

2`

21 f @x~s 1 1 !#ds

s

1 E
21

1 f @x~s 1 1 !#ds

s
1 E

1

` f @x~s 1 1 !#ds

s J
5 2

1

p
PH E

21

1 f @x~s 1 1 !#ds

s

1 E
1

` f @x~s 1 1 !#ds

s
2 E

1

` f @x~1 2 s !#ds

s J .

(36)

The first integral on the right-hand side of Eq. (36) sim-
plifies to

PE
21

1 f @x~s 1 1 !#ds

s

5 lim
e→0

E
e

1 $ f @x~s 1 1 !# 2 f @x~1 2 s !#%ds

s

5 E
0

1 $ f @x~s 1 1 !# 2 @x~1 2 s !#%ds

s
, (37)

which follows from the initial assumption on the behavior
of the numerator in the lim s → 0. An integration by
parts then leads to

PE
21

1 f @x~s 1 1 !#ds

s

5 E
0

1

$ f @x~1 1 s !# 2 f @x~1 2 s !#%
d log s

ds
ds

5 $ f @x~1 1 s !# 2 f @x~1 2 s !#%log su0
1

1 E
0

1

log s21$ f8@x~1 1 s !# 2 f 8@x~1 2 s !#%ds

5 E
0

1

log s21$ f8@x~1 1 s !# 2 f 8@x~1 2 s !#%ds, (38)

where the prime denotes differentiation with respect to s
and use has been made of the result

lim
s→0

$ f @~1 1 s !x# 2 f @~1 2 s !x#%log s 5 lim
s→0

sm log s 5 0,

(39)

because m . 0. Since the logarithmic factor is treated
as a weight function, it is put into a form to satisfy the
positive requirement indicated above in Section 2. Using
the change of variable s 5 t21, one can write the second
and third integrals in Eq. (36) as
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PH E
1

` f @x~s 1 1 !#ds

s
2 E

1

` f @x~1 2 s !#ds

s J
5 PE

0

1 $ f @x~1 1 t21!# 2 f @x~1 2 t21!#%dt

t

5 E
0

1

$ f @x~1 1 t21!# 2 f @x~1 2 t21!#%
d log t

dt
dt

5 $ f @x~1 1 t21!# 2 f @x~1 2 t21!#%log tu0
1

1 E
0

1

log t21$ f8@x~1 1 t21!# 2 f 8@x~1 2 t21!#%dt.

(40)

If f(x) P L2(2`, `), then

lim
t→0

$ f @x~1 1 t21!# 2 f @x~1 2 t21!#%log t

5 lim
t→0

tn log t 5 0, (41)

since n . 0. Hence, we can write Eq. (36) as

~Hf !~x ! 5 E
0

1

log s21K~s, x !ds, (42)

where

K~s, x ! 5 p21$ f8@x~1 2 s !# 2 f 8@x~1 1 s !#

1 f 8@x~1 2 s21!# 2 f 8@x~1 1 s21!#%

for x Þ 0. (43)

In Eq. (43) the derivatives are with respect to the variable
s. For the case where x 5 0, we have

~Hf !~0 ! 5 E
0

1

log s21K~s, 0!ds, (44)

with

K~s, 0! 5 p21@ f8~2s ! 2 f 8~s ! 1 f 8~2s21! 2 f 8~s21!#.

(45)
We can use the even–odd character of f(x) to obtain some
simplification. The Hilbert transform of an even function
is odd and the Hilbert transform of an odd function is
even. If f(x) is an even function,

K~s, 0! 5 0, (46)

K~s, x ! 5 p21$ f8@x~1 2 s !# 2 f 8@x~1 1 s !#

1 f 8@x~s21 2 1 !# 2 f 8@x~s21 1 1 !#%

for x Þ 0. (47)

If f(x) is an odd function,

K~s, 0! 5 22p21$ f8~s ! 1 f 8~s21!%, (48)

K~s, x ! 5 p21$ f8@x~1 2 s !# 2 f 8@x~1 1 s !#

2 f 8@x~s21 2 1 !# 2 f 8@x~s21 1 1 !#%

for x Þ 0. (49)
4. SPECIALIZED GAUSSIAN QUADRATURE:
THE KRAMERS–KRONIG TRANSFORM
For the analysis of functions that have a particular even
or odd symmetry and are measured as a function of a
variable that takes on positive values, for example, a fre-
quency, it is more common to write the Hilbert transforms
as given in Eqs. (4) and (5). Repeating the analysis out-
lined above for Eq. (4) leads to

~Hf !~x ! 5 E
0

1

log s21K~s, x !ds for f~x ! even,

(50)

with K(s, x) given by Eq. (47) for x Þ 0 and by Eq. (46)
for x 5 0. The Kramers–Kronig transforms given in
Eqs. (4) and (5) can each be reduced to two mathemati-
cally equivalent Hilbert transform relations. The choice
of one form over the other is dictated by the structure of
the function near the origin. For f even a result closely
related to Eq. (50) can be readily derived in which the ker-
nel function has a slightly different form from that given
in Eq. (47). For Eq. (5) we obtain

~Hf !~x ! 5 E
0

1

log s21K1~s, x !ds for f~x ! odd,

(51)

where K1(s, x) is given by

K1~s, x ! 5
1

px
$ g8@x~1 2 s !# 2 g8@x~1 1 s !#

1 g8@x~s21 2 1 !# 2 g8@x~s21 1 1 !#%

for x Þ 0, (52)

where g(s) 5 sf(s), and Eq. (48) applies for x 5 0. Al-
ternatively, for odd f we can show that the kernel function
given in Eq. (49) can also be employed.

Equations (42) and (44) are in a form suitable for
Gaussian quadrature. The weight function described in
Section 2 is identified with log s21. The result for the Hil-
bert transform then takes the form

~Hf !~x ! 5 (
i51

N

wiK~xi , x !, (53)

where N denotes the number of evaluation points, and the
weights (wi) and evaluation points (xi) are determined
from the set of polynomials based on the weight function
log s21. The principal advantage of this approach is that
the singularity in the original integral is now incorpo-
rated in the weights wi . Although determination of the
weights and evaluation points is far from a trivial assign-
ment, this evaluation needs to be carried out only once.
The one possible numerical problem that might occur is a
loss of precision in the evaluation of K(xi , x). Some nu-
merical experiments with representative functional forms
indicates that this problem does not arise to any signifi-
cant extent.

The moments that are needed to determine the weights
and evaluation points are easy to evaluate:

E
0

1

sm log s21ds 5
1

~m 1 1 !2 . (54)
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The solution of the recursion scheme given in Eqs. (21)–
(25) is numerically highly unstable when the weight func-
tion is log s21. As previously indicated, several authors
have tabulated the $wi , xi% for the case when log s21 is
the weight function,67,69–71 however, the restriction to
small values of N is insufficient for the present purpose.
The numerical instability of the recursion scheme ex-
plains the limitations of earlier calculations of $wi , xi%.
One can circumvent the numerical difficulty by working
in higher-precision arithmetic using packages such as
Mathematica,73 or by working with codes that are capable
of performing high-precision calculations.74,75 The
former was used in this study. The weights and abscissa
values $wi , xi% up to N 5 60 have been determined in
steps of 10. These values have application beyond the
applications of this study and are therefore given in Table
2 for N 5 20 and in Table 3 for N 5 30. Thirty quadra-
ture points would probably be sufficient to deal with most
cases of practical interest at a reasonable accuracy level.

The principal applications of the use of Eq. (53) fall into
two main groups. The first are those problems for which
the function is specified, but the Hilbert transform cannot
be evaluated in terms of known functions. The second
group of examples comprises those cases for which the
function is unknown but is instead represented by a set of
discrete experimental data points.

5. RESULTS AND DISCUSSION
I start with an example that can be evaluated in a simple
closed form. The analytic solution therefore serves as a
valuable comparison point for the numerical quadrature
approach. Suppose a set of data, which is of the form of a
set of discrete points $Ii , xi%, is fitted to a Lorentzian line
profile. The Lorentzian function takes the form
I~x ! 5
1

p

a

a2 1 ~x 2 x0!2 , (55)

where a and x0 are constants. The factor of p21 in Eq.
(55) is selected so that the Lorentzian encloses unit area
on the interval (2`, `). The Lorentzian can also be nor-
malized so that the curve encloses unit area on the inter-
val [0, `). On this interval we might consider Ii as an
absorption intensity and xi as a frequency. There are
several issues associated with the fitting process. What
underlying physical reasoning leads the experimentalist
to believe that a Lorentzian profile will provide a satisfac-
tory fit to the experimental data? Since the data are col-
lected over a finite frequency range, can the experimen-
talist be sure that, outside the measured frequency
interval, the Lorentzian will be a reasonable representa-
tion of the absorption profile? Even though these are im-
portant issues, they are separate from the actual numeri-
cal transformation of the data that we now carry out.
The Hilbert transform of the Lorentzian can be obtained
in closed form:

~HI !~x ! 5
1

p

~x 2 x0!

a2 1 ~x 2 x0!2 . (56)

In Table 4 we show a comparison of the use of the quadra-
ture formula versus the exact result as a function of x
based on a quadrature with N 5 60. The calculations
were carried out in quadruple precision by use of a 32-bit
word (;30 or 31 digits) with the weights and abscissas in-
put with 30 digits of precision. It is useful to keep in
mind that, if we are dealing with experimental data, typi-
cally no more than three to four digits of precision for the
data are typically available, and therefore an error of
;1022% in the Hilbert transformation would be accept-
able. Except at x 5 1, this condition is met. The per-
Table 2. Abscissas and Weights for a Gaussian Quadrature with a Weight Function of log x21

Abscissas (xi) for N 5 20 Weights (wi)

0.0025883279559219554283327359 0.0431427521332080785789708432
0.0152096623495602317206559633 0.0753837099085893595504548599
0.0385365503721653279598479658 0.0930532674516630513726903187
0.0721816138158739064349676493 0.1014567118498297544369183081
0.1154605264876331505588940442 0.1032017620560720690578209545
0.1674428562753296857182838946 0.1000225498052731665327959061
0.2269837872602025033612950778 0.0932597993002976780836606811
0.2927549609415458329919802565 0.0840289528719410564970846278
0.3632774298578589045379836519 0.0732855891300307409628311569
0.4369571400907683184866372473 0.0618503369137302899572280804
0.5121225946789673361956659079 0.0504166044383746776370507997
0.5870640449144099151324930349 0.0395513700052983853329369672
0.6600734133149094139120980731 0.0296940778958128448046071929
0.7294840839296874988710464156 0.0211563153554270976730226771
0.7937096719870858177436895133 0.0141237329389640204365980865
0.8512808927891257272221674697 0.0086609745043354986282325129
0.9008796808544175942234387574 0.0047199401462036049543670820
0.9413697491290916763026513697 0.0021513974039652061146779200
0.9718227410752631937384773794 0.0007197282146532026463582613
0.9915380814387119726524613572 0.0001204276763302167416927636
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Table 3. Abscissas and Weights for a Gaussian Quadrature with a Weight Function of log x21

Abscissas (xi) for N 5 30 Weights (wi)

0.0012147717930219078619721006 0.0226427880155717972364752744
0.0070698848398636750737533940 0.0413409551797399820101542980
0.0179065334209946570966305841 0.0535552862121838184181036241
0.0336625807723838111165915285 0.0616404701977886751557191408
0.0542024908397753460463388698 0.0666716469645710224033528535
0.0793322130781204850643511402 0.0692992302274823246760522915
0.1088050595268703156314527676 0.0699838673153801675089576039
0.1423259410593709649922480915 0.0690857692423597837279540197
0.1795553150184500145917898783 0.0669051377878338536260187226
0.2201132403152004107157416530 0.0637023827725008780859398918
0.2635836721058316158484568971 0.0597087974372192066609431041
0.3095190319213846653744364405 0.0551323069967228090289563000
0.3574450468663050737184337872 0.0501605203287082618537455726
0.4068658301337656204348113582 0.0449622584725675350110335564
0.4572691630337391855682951966 0.0396882215927176291916741416
0.5081319313878266644607028144 0.0344711889762481862846590559
0.5589256644938356104249742630 0.0294259983406547029653365544
0.6091221219482568961309204283 0.0246494636759520711105755976
0.6581988719544272807805487755 0.0202203370228654626740508914
0.7056448040796570904501244317 0.0161993846047650720413967623
0.7509655196063949323128239950 0.0126296238529002917479516805
0.7936885435542358419120213755 0.0095367507774674102056836543
0.8333683040568877979879093287 0.0069297743569083090191822777
0.8695908269833030438714047134 0.0048018646776125538937283664
0.9019780963694003887372300190 0.0031314135724879546569499634
0.9301920340588491078199217901 0.0018832999405013986144201825
0.9539380538003178065748955753 0.0010103464495323391500696887
0.9729681404440586949363011266 0.0004549497337611650082475757
0.9870833569545012580278362274 0.0001508624177249058278381933
0.9961351660193061567458035849 0.0000251028572704322048291612
The exact value for the Hilbert transform at this fre-
quency is zero, and the calculated quadrature value is
23 3 10230, which is in excellent agreement with the
true result.

Now we compare how well Eq. (42) does for different
size quadratures in comparison with the exact result just

Table 4. Hilbert Transform of the Lorentzian by
Use of a Logarithmic Gaussian Quadraturea

x
Quadrature Result

for the Hilbert Transform
Percentage

Error

0.1 21.582 756 340 3 1021 2.1 3 1028

0.2 21.552 731 152 116 052 07 3 1021 28.0 3 10216

0.5 21.273 239 544 735 162 686 151 ... 3 1021 21.2 3 10230

0.9 23.151 583 031 522 679 916 215 ... 3 1021 23.1 3 10230

1.0 23. 3 10230 —
2.0 1.591 549 430 918 453 357 688 ... 3 1021 0
5.0 7.489 644 380 795 074 624 417 6 3 1022 26.2 3 10221

10.0 3.493 645 092 261 1 3 1022 24.1 3 10213

20.0 1.670 687 247 3 1022 24.0 3 1028

30.0 1.096 316 7 3 1022 3.7 3 1026

40.0 8.156 432 3 1023 3.0 3 1025

50.0 6.493 4 3 1023 4.6 3 1024

a The values a 5 1 and x0 5 1 have been employed.
given. In Table 5 a comparison of the Hilbert transform
quadrature formula is shown versus the exact result for
two selected values of x. From these results it appears
that values of around N 5 30 are sufficient to obtain the
Hilbert transformation to a precision that is better or ap-
proximately matches the experimental precision. Since
the computer time required for the numerical evaluation
of Eq. (4) is almost negligible, the safest approach is to
employ the largest size quadrature possible, assuming the
availability of the abscissa points and weights.

As a second example, consider a set of data that has
been modeled by a Gaussian function

I~x ! 5 A exp@2a~x 2 x0!2#, (57)

where A, a, and x0 are constants. For convenience we
center the Gaussian at the origin (set x0 5 0) and take
A 5 1. The Hilbert transform of a Gaussian can be ex-
pressed in terms of the error function with a complex ar-
gument

H@exp~2ax2!# 5 2i exp~2ax2!erf~iAax !, (58)

where the error function erf(z) is defined by

erf~z ! 5
2

Ap
E

0

z

exp~2s2!ds. (59)
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Equation (58) can be rewritten in terms of Kummer’s con-
fluent hypergeometric function 1F1(a;b; x):

H@exp~2ax2!# 5 2Aa

p
x exp~2ax2! 1F1S 1

2
;

3

2
;ax2D

5 2Aa

p
x 1F1S 1;

3

2
;2ax2D . (60)

The hypergeometric function can be evaluated by use of
the series expansion

1F1~a;b;z ! 5 (
k50

`
~a!k zk

~b!kk!
, (61)

Table 5. Hilbert Transform of the Lorentzian by
Use of a Logarithmic Gaussian Quadraturea

N
Quadrature Result

for the Hilbert Transform
Percentage

Error

Test value: x 5 0.1, exact result,
21.582 756 340 140 395 604 331 441 3 1021

10 22 3 1021 32
20 21.575 3 1021 24.7 3 1021

30 21.582 79 3 1021 2.4 3 1023

40 21.582 757 0 3 1021 4.3 3 1025

50 21.582 756 32 3 1021 21.4 3 1026

60 21.582 756 340 5 3 1021 2.1 3 1028

Test value: x 5 10, exact result,
3.493 645 092 261 117 126 634 033 830 128 3 1022

10 3.42 3 1022 22.2
20 3.493 58 3 1022 21.8 3 1023

30 3.493 646 3 1022 3.0 3 1025

40 3.493 645 094 3 1022 3.8 3 1028

50 3.493 645 092 253 3 1022 2.2 3 10210

60 3.493 645 092 261 10 3 1022 24.1 3 10213

a The values a 5 1 and v0 5 1 have been employed.

Table 6. Hilbert Transform of a Gaussian by Use
of a Logarithmic Gaussian Quadraturea

x
Quadrature Result for
the Hilbert Transform

Percentage
Error

0.2 6.3239258 3 1022 2.3 3 1026

0.3 1.2398235848 3 1021 24.4 3 1028

0.4 1.79928906255 3 1021 2.7 3 1029

0.5 2.291471375338 3 1021 23.6 3 10210

0.6 2.702045938494 3 1021 25.7 3 10211

0.7 3.0224364264440 3 1021 21.0 3 10211

0.8 3.24996976916080 3 1021 21.6 3 10212

0.9 3.387464676226255 3 1021 2.0 3 10213

1.0 3.442357927011524 3 1021 1.8 3 10213

1.5 2.90621533638526725 3 1021 2.0 3 10215

2.0 2.056118376478668203 3 1021 21.7 3 10216

3.0 1.18128131171603032992 3 1021 28.9 3 10218

4.0 8.462414178948227469695 3 1022 23.6 3 10219

5.0 6.640891109983551851412 3 1022 21.3 3 10218

a The value a 5 1 has been employed and N 5 60.
where (a)k denotes a Pochhammer symbol, which is de-
fined in terms of the gamma function by

~a!k 5 a~a 1 1 !~a 1 2 !...~a 1 k 2 1 ! 5
G~a 1 k !

G~a!
.

(62)

Some representative results for the Gaussian function are
presented in Table 6 by use of the value N 5 60. For this
particular example the quadrature formula in Eq. (53) is
actually more straightforward to evaluate than the exact
result. The accuracy of the numerical quadrature results
is observed to be high.

In summary, it has been found that the proposed pro-
cedure for numerical evaluation of Hilbert and Kramers–
Kronig transforms yields results of high precision. The
ease of implementation makes the proposed technique at-
tractive as a means for numerical evaluation of these sin-
gular integrals. All the intensive computational labor oc-
curs in the determination of the weights and evaluations
points, but this needs to be done only once.

Support from the Petroleum Research Fund of the
American Chemical Society and the National Science
Foundation is greatly appreciated.
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