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Abstract

The numerical evaluation of Hilbert transforms on the real line for functions that exhibit oscillatory behavior is investigated.
A fairly robust numerical procedure is developed that is based on the use of convergence accelerator techniques. Several different
types of oscillatory behavior are examined that can be successfully treated by the approach given. A few examples of functions
whose oscillations are too extreme to deal with are also discussed. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A great deal of effort has been devoted to the numerical evaluation of singular integrals in general, and the
Hilbert transform in particular [1–44]. Much of this work has been driven by the wide occurrence of Hilbert
transforms in a diverse array of problems of considerable significance in the physical sciences, engineering, and
applied mathematics [45–55]. In the present work, we are concerned with the numerical evaluation of Hilbert
transforms on the real line for functions exhibiting oscillatory behavior. Some of the simplest examples are the sine
and cosine functions, which occur widely in applications in the applied sciences and in engineering problems.

The Hilbert transform off , denotedHf , is defined by

(Hf )(x0)= 1

π
P

∞∫
−∞

f (x)dx

x0 − x
. (1)

In Eq. (1)P designates the Cauchy principal value, that is

(Hf )(x0)= 1

π
lim

ε→0+

{ x0−ε∫
−∞

f (x)dx

x0 − x
+

∞∫
x0+ε

f (x)dx

x0 − x

}
. (2)

We note that the Hilbert transform is occasionally defined with the opposite sign to that given in Eq. (1). It is
well known that for a functionf satisfyingf ∈ Lp(R) for 1 < p < ∞, the Hilbert transform off satisfies
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Hf ∈ Lp(R) [56,57]. For the casep = 1, Hf exists almost everywhere, but in general is not integrable. The focus,
either explicitly or implicitly, of most of the published literature on the numerical evaluation of Hilbert transforms
and other singular integrals covers functions belonging to the classLp (for p � 1). Some of the simple cases that
we consider do not fall within the classLp(R), for example, the choicef (x)= sinax, with a denoting a constant,
gives

∫ ∞
−∞ |sinax|p dx = ∞ for p > 0.

2. Numerical evaluation technique

The methodology we present for numerically evaluating the Hilbert transform of a function with oscillatory
behavior consists of breaking up the region of integration into three parts:

P

π

∞∫
−∞

f (x)

x0 − x
dx = 1

π

x0−ε∫
−∞

f (x)

x0 − x
dx + P

π

x0+ε∫
x0−ε

f (x)

x0 − x
dx + 1

π

∞∫
x0+ε

f (x)

x0 − x
dx. (3)

The second integral on the right-hand side of Eq. (3) can be recast as

P

π

x0+ε∫
x0−ε

f (x)

x0 − x
dx = 1

π
lim

τ→0+

ε∫
τ

{f (x0 − t)− f (x0 + t)}dt

t
+ 1

π

{ x0+ε∫
ε

f (x0 − t)dt

t
−

ε−x0∫
ε

f (x0 + t)dt

t

}
.

(4)

In Eq. (4) the last two integrals are not singular sincex0 ∈ (−ε, ε). We impose the restriction that the functionf is
Hölder continuous on the interval of integration(−ε, ε) with exponentα, with α > 0. That is∣∣f (x0 − t)− f (x0 + t)

∣∣ � C|t|α, for α > 0. (5)

In this case we can write

1

π
lim

τ→0+

ε∫
τ

{f (x0 − t)− f (x0 + t)}dt

t
= 1

π

ε∫
0

{f (x0 − t)− f (x0 + t)}dt

t
. (6)

The last integral is no longer a Cauchy principal value integral. The idea just outlined is well known. Sloan [3]
applied it in the context of the numerical evaluation of the finite Hilbert transform with a singular point at the
origin.

We have usedMathematica [58] to carry out the basic numerical evaluation approach. The principal value
integral is evaluated directly, using theCauchyPrincipalValue object in Mathematica, over a small interval
(x0 − ε, x0 + ε), where we have chosenε to be 10−3 in our implementation. This particular choice yielded high
accuracy for most of the test functions examined.Mathematica employs the approach indicated in Eq. (4), and then
applies a Gauss–Kronrod procedure—an adaptive Gaussian quadrature approach to handle the resulting integrals.

There is potential for significant loss of precision in the evaluation of Eq. (6) ast → 0+. If the rounding errors
for the evaluation off (x0 − t) − f (x0 + t) are sizable, they become magnified by the termt−1 ast → 0+. It is
therefore essential to have appropriate precision available for the evaluation off (x0− t)−f (x0+ t). Mathematica
is ideally suited for this calculation.

When the function isnot Hölder continuous in the vicinity of the singular point, then the approach of the present
work is likely to meet with limited success, or fail completely. Cases where the singularity is embedded in a region
of extreme oscillatory behavior are much more difficult to deal with using a general robust algorithm.

The integrals over(−∞, x0 − ε) and(x0 + ε,∞) are separately partitioned into sets of integrals, for which the
specific details are described below. Each integral in a set is treated as a term of a slowly converging infinite series.
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Convergence acceleration techniques are then applied to obtain the desired precision. The details of the approach
are now addressed.

The numerical integration over(−∞, x − ε) is achieved by first determining the oscillatory characteristics of
the function in the integrand,h(x0, x), where

h(x0, x)= f (x)

π(x0 − x)
. (7)

In the following discussion we assume some fixed value ofx0 is selected and abbreviateh(x0, x) by h(x). A trace
is made overh′(x). Initializing two variables, one tox0 − ε and one tox0 − ε − δ, whereδ denotes a step-size,
we scan in the direction of negative infinity, stepping by−δ. Any changes in the sign ofh′(x) across this interval
causes a call to the built-inMathematica objectFindRoot, which in turn uses Newton’s method to determine the
root more precisely. A maximum of two roots are gathered in this manner and the search stops once these two roots
are found or if either variable goes beyond(x0 − ε − �), where� is a hand-tuned constant acting as an upper-
limit on the range of our trace. Our implementation has tuned|δ| to 10−1 and|�| to 100, based upon the general
characteristics of the functions under investigation, although these values could easily be parameterized in the code.
We also note that when available,Mathematica precision and accuracy specific options are used to aid in obtaining
a user-specified precision level,P . Specifically, theMathematica optionsAccuracyGoal andPrecisionGoal are set
to one and a half timesP andWorkingPrecision is set to four timesP . These have proven to be sufficient to obtain
the requested precision level based on our empirical experience.Mathematica objects we utilize that accept these
options includeFindRoot, NIntegrate, andCauchyPrincipalValue.

Three outcomes from our trace are possible: (a) no roots are detected, (b) one root is found, or (c) two roots
are found. Although all the integrands of interest are oscillatory in nature, it is feasible that the separation between
roots could be larger in magnitude than any chosen fixed value|�|, hence the necessity of cases (a) and (b) simply
for reasons of robustness in the code. An auxiliary functiong(x) is introduced to describe the partitioning scheme
for the integration ofh(x). For cases (a) and (b), we takeg(x) = sinx, which leads to evenly spaced partition
points and the desired robustness in the application of our algorithm. However, for the vast majority of integrals
of interest, case (c) occurs. In this case, a check is made to ascertain whetherh(x) evaluates to zero at either of
the two roots, and if so,g(x) is taken to beh′(x). This resolves the case whereh(x) oscillates, touching but not
crossing thex-axis. Whenh(x) does oscillate across thex-axis,g(x) is taken to beh(x).

Onceg(x) is known, a set of partition points can be determined. For cases (a), (b), and also (c), whenh(x)

oscillates across thex-axis, the partition points are taken to be the roots ofg(x). However, for case (c) whenh(x)
doesnot oscillate across thex-axis, we take the partition points to be the roots ofg(x) that correspond to where
h(x) touches thex-axis. The net result, after a trace overg(x) is made, is a set of intervals over each individual
oscillation inh(x).

Using a similar tracing procedure to that described above, a set ofn roots{ρ1, ρ2, ρ3, . . . , ρn} is gathered from
g(x). Only one small change is made to the tracing algorithm: after two or more roots have been found,δ is set
equal to the difference between adjacent roots times a small, hand-tuned fractional value. This has the advantage of
permitting our trace to discover roots more closely spaced than the originalδ and to dynamically adapt to any given
oscillatory function. Next, we numerically integrate using theMathematica objectNIntegrate, between successive
roots in the set we gathered, and obtain a set of values{v1, v2, v3, . . . , vn−1}.

As these individual values may or may not represent terms of a monotonic slowly converging infinite series, we
cannot treat everyvi as a term in a sequence to be summed by convergence acceleration techniques. Rather, we
begin to sum the values:

Vm =
m∑
i=1

vi, (8)
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while |vi | < |vi+1|, searching for a peak value that can be used as a valid initial term of a non-increasing series.
Vm is eventually added to the result of the convergence acceleration of the sub-series{vm+1, vm+2, . . . , vn−1}. Once
the initial valuevm+1 is determined, partial sums are calculated,

Sk =
k∑

j=1

vj , for k = 1,2, . . . , n− 1, (9)

wherevm+1 now plays the role of the first term, and the series is convergence accelerated to obtain a result for
the integral over(−∞, ρ1). References that we have found to be valuable for their discussion of convergence
acceleration techniques and applications are [59–73]. Our implementation uses a Levinu transformation [61] to
perform this acceleration:

uk =
∑k

j=0(−1)j
(
k
j

)
(j + 1)k−2 Sj+1

Aj+1∑k
j=0(−1)j

(
k
j

)
(j + 1)k−2 1

Aj+1

, (10)

where
(
k
j

)
is a binomial coefficient,Aj denotes thej th term in the series to be summed, andSj designates thej th

partial sum, that is,

Sj =
j∑

n=1

An. (11)

Certain situations exist where alternative transformations give rise to improved results. Overall, the Levinu

transformation has shown itself to be quite adept at accelerating the convergence of a wide range of series, including
alternating and monotonic series alike. In special instances, however, it may be advantageous to use such non-linear
sequence transformations as the Wynnρ algorithm [62], one of two transformations presented by Weniger [66–68],
or the Levint transform [61].

Lastly, any residual interval(ρ1, x0 − ε) is numerically integrated usingNIntegrate and added to the result
of the aforementioned convergence acceleration. In this manner, we obtain a result for the first integral on the
right-hand side of Eq. (3). A similar approach can be applied to the integral in Eq. (3) covering the interval
(x0+ε,∞). The only change necessary in the procedure is the obvious one of switching the direction of the trace—
towards positive infinity, fromx0 + ε. As discussed previously, the center integral about the principal value point
was done directly using theMathematica objectCauchyPrincipalValue. The latter calculation is straightforward,
provided severe oscillation does not occur in very close proximity to the singular point. The summation of all
three results provides a numeric answer to the Hilbert transform in Eq. (1). A copy of the code will be available at
http://www.chem.uwec.edu/king/hilbert.

There is a key item about this technique that deserves special mention for the case of alternating series, which
arise from an integrand which oscillates across the axis. This is handled very effectively by the choice of a Levin
u transform for the convergence accelerator. The alternation of sign from the Levinu transform cancels out that of
the alternating series to provide a monotonic acceleration that avoids possible numerical instabilities.

3. Test functions

We have picked test functions to illustrate the technique just described that satisfy the following basic
requirements:

(a) (Hf )(x) does not diverge for allx, and
(b) (Hf )(x) can be evaluated in analytic form.
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Table 1
A comparison of numerical quadrature values for the Hilbert transform versus exact evaluation for several oscillatory functions. The values
x = 2, a = 5, andb = 3 have been employed

f (x) 1
π P

∫ ∞
−∞

f (s)ds
x−s Numerical quadrature From the exact

(exact result) result result

sinax −sgna cosax 0.839071529076452 0.839071529076452
cosax sgna sinax −0.544021110889369 −0.544021110889369
sin2(ax)

x2
sgna{2ax−sin 2ax}

2x2 2.385881843659046 2.385881843659046

cosπx e−x2
e−x2

Im
{
eiπxerf

(
π
2 + ix

)}
0.013915590535066 0.013915590535066

sincx 1−cosπx
πx 6.27595× 10−34 0

sinax2 −sgnx{S(√2a/π |x|)[cosax2 + sinax2] −0.3168301 −0.316829655318096
(a > 0) +C(

√
2a/π |x|)[cosax2 − sinax2]}

sin2abx
sinbx

2sin2(abx)
sin(bx) −6.98717 −6.987489931661428

(a > 0,
b > 0)

cosx−1 −sinx−1 −0.479369 −0.479425538604203

Condition (b) has been selected for the obvious reason that it allows an important check to be made on the
quality of the results from the numerical evaluations.

When Hilbert transforms of the formH {fg}(x) are encountered, wheref exhibits oscillatory behavior andg
is a continuous function with a suitable asymptotic behavior asx → ±∞, then a viable computational approach
is to try the technique described above onHf . This assumes thatHf does not diverge, and further assumes that it
is possible to evaluateHf analytically, so the quality of the numerical result can be evaluated. Then, depending on
the smoothness properties ofg, a reasonable assumption is that ifHf can be successfully evaluated numerically,
the same would probably be true forH {fg}(x). We note that whenf exhibits oscillatory behavior, there are a very
large number of examples that can be worked out in analytic form, however the inclusion of the functiong for even
some fairly simple choices, can very quickly make the solution ofH {fg}(x) in terms of standard special functions
a very difficult if not impossible assignment. Series techniques may be a feasible evaluation strategy in such cases.

The specific test functions selected fall into the following categories:

(i) Simple oscillatory behavior as exemplified by the sine and cosine functions.
(ii) Simple oscillatory behavior multiplied by a slowly decaying algebraic function, for example,x−1 sinx and

x−2 sin2 x.
(iii) Simple oscillatory behavior superimposed on an exponential decaying function, for example, cosxe−x2

.
(iv) Functions with more complex oscillatory behavior, for example, sinx2 and(sinbx)−1 sin2abx, for a andb

constants.
(v) Functions with extreme oscillatory behavior, for example, cosx−1 and cos(cotx).

For some of these choices it is obviously necessary to pay particular attention to the behavior of the function in
the vicinity of the origin, to avoid divergent Hilbert transforms. For example, the choicef (x)= x−1 cosx leads to
a Dirac delta distribution function contribution forHf , and such cases have been excluded in the present treatment.

4. Results

A selection of results are presented in Table 1. In the table entries the evaluation pointx0 has been simplified
to x. As indicated above, we set the working precision at four times the requested precision required for the final
answer. This particular scaling of the working precision could be decreased for most of the examples we examined,
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as the precision obtained for the numerical results exceeded what we have reported in Table 1. The following
notation has been employed in the table. The Fresnel cosine and sine integrals are defined, respectively, by

C(z)=
z∫

0

cos

(
πt2

2

)
dt, (12)

and

S(z)=
z∫

0

sin

(
πt2

2

)
dt . (13)

Im denotes the imaginary part, erf designates the error function, defined by

erf(z)= 2√
π

z∫
0

e−s2
ds, (14)

sgn denotes the signum function (sign function) given by

sgnx =
{1 for x > 0,

0 for x = 0,
−1 for x < 0

(15)

and the sinc function is defined by

sincx = sinπx

πx
. (16)

Two functions that we have studied in detail aref (x) = cos(x−1) andf (x) = cos(cotx). We comment in the
following section on the probable reasons for the limited precision obtained for functions of this type.

5. Discussion

In Figs. 1 and 2 we show plots for the integrands(sin2 5x)/(πx2(2 − x)) and(sin 5x)/(π(2− x)). The former
function has a maximum magnitude of oscillatory behavior at the origin, with decreasing oscillatory behavior near
the singular point atx0 = 2, where there is a switch over in the sign for the oscillatory behavior. The technique
described in Section 2 handles functions with this type of behavior rather well. For the second function, there is
major oscillatory behavior in the vicinity of the singular point, and the oscillations die off fairly uniformly on both
sides of the singularity. Again, our technique handles this situation well. The alternating sign that arises with this
example is not a problem, for the reason we have addressed in Section 2.

A more difficult case is represented by the choice of functions(sin 2abx)/(sinbx). A plot of (sin2abx)/(π(2−
x)sinbx) for a = 5 andb = 3 is shown in Fig. 3. In this example we have major oscillations centered around the
singular point, but as Fig. 3 clearly illustrates, there is a non-monotonic decay of the oscillatory behavior away from
the singular point. The technique we employed handles this situation, but the precision obtained is not as high as that
determined for the other examples reported in Table 1. Further refinements in the partitioning technique employed
coupled with a different selection of convergence accelerator techniques will likely lead to improved precision.
This may well be at the expense of keeping to a single robust algorithm. For the case sinax2 we increased the
working precision by a factor of four, resulting in only a very modest improvement in the accuracy obtained.

We now turn to a pair of considerably more difficult examples. The first isf (x) = cos(ax−1) wherea is a
constant, for which(Hf )(x)= −sgna sin(ax−1). The function(cos(x−1))/(π(2− x)) is displayed in the vicinity
of the origin in Fig. 4. Inspection of this figure immediately reveals the expected difficulties to be associated with
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Fig. 1. Plot of the function{πx2(2− x)}−1 sin2 5x in the vicinity of the singular point atx = 2.

Fig. 2. Plot of the function{π(2− x)}−1 sin 5x in the vicinity of the singular point atx = 2.
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Fig. 3. Plot of the function{π(2− x)sin 3x}−1 sin 30x in the vicinity of the singular point atx = 2.

Fig. 4. Plot of the function{π(2− x)}−1 cos(x−1) in the vicinity of the origin.
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this example. The extreme oscillation asx → 0 makes this case rather recalcitrant to solve with a general robust
type of algorithm. We applied a modified approach to deal with this example. For convenience we assume the
singularity is located in(1,∞). The integration range was split into(−∞,−1), (−1,1), (1, x0−ε), (x0−ε, x0+ε),
and(x + ε,∞), and the first, third, fourth and fifth intervals treated as described in Section 2. The procedure of
Section 2 was also applied to the second interval, but the origin was approached fromboth the points−1 and 1.
As the center of the pocket of extreme oscillation is approached the number of roots spirals so significantly, that
a cutoff in the number of determined roots must obviously be made. This approach yielded a modest level of
precision as evidenced by the values reported for cosx−1 in Table 1. If the singularity is located in(−∞,−1) or
in (−1,1), but not too close to the origin, then the scheme just outlined can be applied in a similar fashion. If the
singular point is located very close to the origin, numerical difficulties are to be expected, since minute changes in
thex-ordinate lead to significant changes in the value of the oscillatory component of the integrand.

The next choice considered isf (x) = cos(α cotx) whereα is a constant andα > 0, for which (Hf )(x) =
−sin(α cotx). Fig. 5 illustrates a plot of(cos(α cotx))/(π(2 − x)) for α = 1, and it is clear that it will be
extremely difficult to handle the packets of extreme oscillations that occur periodically beyond the singular point.
A modification of the procedure used to deal with the case cosx−1 should work on functions that have periodically
placed pockets of extreme oscillation, provided that the overall decay characteristics of the function are not too
slow. Oscillatory functions with non-periodically placed pockets of extreme oscillation would be significantly
more difficult to deal with using a general robust type of algorithm. Integrals with the singularity embedded in
a region of extreme oscillation, for example, if the singular point in the present example is located very close to
x = nπ , for integern, lead to a significant increase in the complexity of the problem. Such integrals are probably
best dealt with on a case-by-case basis.

For all the examples presented in Table 1, an attempt was made to evaluate the integrals directly using the
Mathematica object CauchyPrincipalValue. For the cases sinax, cosax, and sinax2 the calculation returned
totally inaccurate values, with a warning indicating precision loss. For the functions sincx, (sin2(ax))/x2, and

Fig. 5. Plot of the function{π(2− x)}−1 cos(cotx) in the vicinity of the of the singular point atx = 2.
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(sin 2abx)/(sinbx) the calculation aborted without returning a value, citing infinite and indeterminate expressions
encountered. Apparently, the algorithm embedded inCauchyPrincipalValue is not sufficiently robust to handle
general oscillatory behavior of the type exhibited by the functions discussed in this work. TheMathematica option
to deal with oscillatory integrands is rather restrictive, and in any case, did not prove to be effective.

Not surprisingly, the one example thatMathematica could deal with successfully was cosπx e−x2
. The reason

for this is not difficult to see. The Gaussian component of the function dies off so quickly (and smoothly) for
large values ofx that the oscillatory behavior is only significant around the origin, but in this region the degree of
oscillation is small, and does not lead to any significant loss of precision in the calculation. We would therefore
expect a reasonably robust numerical integration routine to have little difficulty obtaining an accurate result for this
particular example.

We note that the integration approach discussed in Section 2 can break down for wildly oscillatory integrands or
for integrands whose asymptotic nature is not well approximated as a slowly convergent infinite series. Examples
of the former were discussed above. Trouble in the latter case occurs because the partitionedh(x) can provide a
set of integrals that give rise to a sequence of terms that is not necessarily monotonically decreasing. This does
not mean that the approach fails in such cases, but rather that the expected precision of the result will drop off.
An alternative approach that may be more successful would attempt to isolate any asymptotic characteristics that
are suggestive of two or more slowly convergent series. If this is the case, the principal series may be broken up
into multiple infinite series and convergence accelerated individually. Here it may be possible to use the larger
oscillations in a separate series from the smaller oscillations. An example where this might give improved results
is the function(sinx)−1 sin 2αx for α a constant. However, questions of robustness of the algorithm must also be
kept in mind, as we would not want changes in this new approach to curtail the high quality results already gained
using the proposed algorithm.

The technique discussed in Section 2 can be utilized with very little change to cover the case of non-oscillatory
continuous functions with suitable decay characteristics. We have not pursued this line of investigation in the
current work, since there are many techniques available to cover this case.
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