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I. Introduction 

Over the past decade there has been considerable progress on high-precision cal- 
culations for the lithium atom. In this chapter, a summary is presented of some of 
the progress, for selected properties of the ground and excited states of Li. The 
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lithium atom has long served as a test case for newly developed computational 
methods. This system has also been intensively investigated for its own intrinsic 
interest. It is a few-body system, so we might expect that calculations of very high 
precision are possible for the lithium atom. The helium atom and members of its 
isoelectronic series have been extremely popular targets for computationalists. 
Very high levels of precision are available for a number of calculated properties 
of two-electron systems. For example, the nonrelativistic ground state energy of 
the helium atom is known to around eighteen digits of precision (Goldman, 1998). 
The lithium atom, with one additional electron, turns out to be a much more com- 
plicated system to study. A number of new mathematical difficulties arise, and 
some of these have hampered progress on the calculation of several properties. 

The lithium atom in its ground state represents the simplest atomic system for 
which it is possible to study valence, core, and valence-core electronic effects. It 
is an ideal target system for investigating the nature of the Coulomb and Fermi 
hole structure of highly correlated wave functions. 

There has been recent renewed interest in the experimental determination of 
high-precision values of a number of properties of atomic lithium. These advances 
have provided additional stimulus for theoretical progress. 

Two conventions will be employed in this chapter. Error estimates will be 
shown in parentheses, so that 23.4 2 3.2 will be written as 23.4(32). Expectation 
values will employ an implied summation convention, so that < rjj > is equivalent 
to (C$, C&r,.). Absolute atomic units will be used for energies, with the conver- 
sion to cm-I being 1 a.u. (absolute) = 219474.6313688(62) cm-I. 

11. Computational Approaches 

A variety of computational techniques have been applied to calculate various 
properties of the lithium atom. These include the Hylleraas approach (HY), the 
configuration interaction method (CI), the hybrid CI-Hylleraas technique (CI- 
HY), many-body perturbation theory (MBFT), multiconfiguration Hartree-Fock 
methods (MCHF), and others. The CI, MBPT, and MCHF approaches have the 
advantage that they can be applied to systems beyond the few-electron level. The 
HY and CI-HY techniques are presently constrained to few-electron systems, but 
these techniques lead to the highest levels of precision when applied to the lithium 
atom. The CI-HY method has shown considerable recent promise in yielding 
results of very high precision. It may be feasible to extend this approach (with 
some restrictions on the basis functions) to atomic systems with more than four 
electrons. 

The highest precision results for several properties have been obtained using 
the Hylleraas technique, and a large part of the focus of this chapter will be on 
this technique. The Hylleraas expansion for the 2S,,, ground state of Li takes 
the form 
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N 

1I' = SQ c c, 4, x, 
,= I 

where SQ is the three-electron antisymmetrizer, C, are the variationally deter- 
mined expansion coefficients, and N designates the number of basis functions em- 
ployed. The basis functions +, are expanded in terms of the electron-nuclear (r;) 
and electron-electron ( rQ)  coordinates, and are defined in the following way: 

+,(r,, r2 ,  r 3 ,  r23 ,  r3 , ,  r12) = r ~ ~ ~ r 3 C I r ~ r T ; f i l r ~ e - n p r l - P c r , - v , r ,  (2) 

The indices { i, , j,, k, , /,, m, , n, } take integer values and are 2 0, and the orbital 
exponents a,, p, and y, are > 0. In Eq. (I), x, represents the possible spin 
eigenfunctions, which take one of the following two forms for the doublet states: 

(3) 

k I  

x = a( 1 ~ ~ 3 )  - p(1 ) m 4 3 )  

or 

x = 2 4 1 ) 4 2 ) ~ ( 3 )  - p ( o m 4 3 )  - 4 1 ) ~ ( 2 ) 4 3 )  (4) 

The wave function in Eq. (1)  is an eigenfunction of the spin operators S2 and S,. 
The importance of including both spin eigenfunctions in the wave function has 

been discussed in a number of papers, particularly in regard to determining precise 
values of properties such as the energy, and especially, precise hyperfine coupling 
constants (Larsson, 1968; King and Shoup, 1986; King, 1988, 1989). The ma- 
jority of Hylleraas calculations on three-electron systems are carried out using just 
the spin eigenfunction given in Eq. (3). Omission of the second spin eigenfunction 
(Eq. (4)) can be compensated for by using larger basis sets with only the first spin 
function (Eq. (3)) included. Spin-dependent expectation values (for example, the 
Fermi contact term) appear to be more sensitive to the omission of the second spin 
eigenfunction. 

The general topic of the spatial-spin form of the ground state wave function for 
the Li atom has been discussed by a number of authors. The interested reader 
might start with the articles by Slater (1970), White and Stillinger (1970) and 
Smolenskii and Zefirov (1993). Studies on this topic have been fruitful. The well- 
known determinantal wave function structure so widely employed in atomic and 
molecular calculations emerged from a consideration of the form of the wave 
function for the lithium atom (Slater, 1970). 

For excited bound states, Eq. (2) is supplemented by the inclusion of appropri- 
ate spherical harmonics to account for any angular dependence of the basis terms. 
If excited quartet states are of interest, the spin function is taken to be 

x = a( l )a(2)43)  ( 5 )  

There are several strategies that can be followed for the selection of the indices 
{ i,, j,, k,, I,, m, , n, } . The earliest approach employed a selection of terms that 
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in effect minimized the mathematical problems (James and Coolidge, 1936). 
Given the computer technology available at the time, this was undoubtedly the 
method of choice. A second procedure was to pick indices based on the expected 
impact in producing a good energy (Larsson 1968; King and Shoup, 1986). This 
procedure has been particularly successful at producing some rather precise re- 
sults for the ground state energy of Li. There are two drawbacks to this approach. 
The first is that it depends on the experience of the theorist in choosing important 
terms. It is possible, because of a predisposed bias, to omit basis functions that 
might singly, or collectively with other terms, lead to important contributions to 
the energy. A second issue is that the convergence behavior of the calculation 
can be very difficult (if not impossible) to determine. This eliminates the possi- 
bility of trying to determine an extrapolated estimate for the energy (or other ex- 
pectation values) for a basis set of infinite size. A third approach is to define an 
index, w :  

(6) 

and then add basis functions in order of increasing values of o; w = 0, 1, 2, . . . 
(King and Shoup, 1986; McKenzie and Drake, 1991; Liichow and Kleindienst, 
1993; Yan and Drake, 1995a; Barrois et al., 1997a, 1997b, 1997c; King, 1998b). 
This approach avoids any bias in the selection of the basis terms. It does not pro- 
vide the fastest possible convergence for the energy, but does in general lead to a 
reasonable monotonic convergence pattern for the energy. This has the advantage 
that attempts at determining extrapolated estimates of the energy are more likely 
to be reliable. The total number of basis functions grows significantly as w in- 
creases. A table of the maximum number of basis functions for values of w up to 
1 1 is given by King and Shoup (1986). 

All the Hylleraas-type calculations on three-electron systems that have been 
published have restricted the basis functions to integer values for the indices 
{ i,, j,, k,, 1, , m,, n, } . There are reasons to expect that improved wave functions 
can be constructed using noninteger values for the set { i,, j ,  , k, , f,, m,, n, } . 
These indices can be selected as arbitrary floating point values to optimize the 
energy. This idea has been tried by the author and Feldmann for some preliminary 
calculations on two-electron systems, with fairly encouraging results. For two- 
electron systems, there is essentially no increase in the level of difficulty for the 
integrals required to evaluate the energy and a variety of expectation values. The 
main change that occurs is that gamma functions of noninteger argument arise, 
but these can be readily evaluated. For three-electron systems, the switch from 
integer to noninteger exponent indices leads to a significantly more involved in- 
tegration problem, when the required matrix elements are evaluated. 

The orbital exponent parameters m,, p, and y, are usually selected in one of 
the following ways. The simplest choice has been to use fixed values of the orbital 
exponents, that is, 

w = i, + j ,  + k, + 1, + m, + n, 
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a, = a 

Y ,  = Y 
(7) 

The values of a and y can be determined in one of several ways, such as using the 
appropriate screened nuclear charge to fix these values, or by optimizing these 
values by using small to modest size wave functions, and then employing the 
optimized exponents for larger basis sets. A significant advantage of using Eq. (7) 
is that it is feasible to store all the calculated integrals. Using modern desktop 
workstations, with relatively inexpensive memory, it is possible to store almost all 
the required integrals (about one to two hundred megabytes) needed for the con- 
struction of a wave function of considerable size (one to two thousand terms). The 
same integral file can be employed in the evaluation of a large range of expectation 
values. 

An alternative approach is to optimize the orbital exponents to obtain the mini- 
mum energy. This can be done either on a term-by-term basis or by optimizing 
blocks of terms. The lowest energies have been obtained using approaches involv- 
ing orbital exponent optimization. In the term-by-term optimization approach, the 
fraction of matrix elements being reevaluated at each step scales as 2(N + l)-' of 
the total number of matrix elements. With present computer technology, it is not 
feasible to optimize simultaneously all the nonlinear parameters of a large number 
of basis functions. 

There are two drawbacks to schemes involving optimization procedures. There 
is effectively very little gained by attempting to carry out any type of integral store 
and retrieve strategy. The cpu requirements also increase very significantly in this 
approach. An additional factor that the reader needs to be aware of is that the 
energy surface in the multidimensional parameter space {a,, p,, y, } typically 
has a number of local minima at any stage of the construction of the wave func- 
tion. Getting the best energy can then be dependent on making skillful choices for 
the starting values for {a,, p,, y p } ,  with the hope that these lead to an energy 
close to the global minimum. An alternative approach that the author has em- 
ployed is to use a stochastic global optimization algorithm. The advantage of this 
approach is that there is minimal bias in locating the best starting set of exponents 
to determine the energy minimum. The drawback is the significant cpu resources 
required by this method. 

It is possible to supplement the basis functions shown in Eq. (2) with a factor 
of the form exp(-a,,r12 - a23r23 - a , 3 r 1 3 ) ,  where a Z 3 ,  and a13 are con- 
stants that may be separately optimized for each term. This leads to extra flexi- 
bility in the basis functions, but at the cost of introducing additional complexity 
into the integrals that must be evaluated. Methods have been developed to evaluate 
the integrals that emerge (Fromm and Hill, 1987), but no results appear to have 
been published for any three-electron species based on these more elaborate basis 
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functions. For two-electron atomic systems, incorporation of logarithmic func- 
tions of the electronic coordinates allows relatively compact wave functions of 
rather high quality (in the energetic sense) to be constructed. Basis functions of 
this type have not been employed for calculations on three-electron systems. The 
integration problems that emerge when logarithmic functions are employed to 
treat three-electron systems are rather severe, and there are no published proce- 
dures to solve the integrals that are required. 

A. CONVERGENCE CONSIDERATIONS 

All the theoretical methods that have been applied to carry our high-precision 
calculations on the lithium atom, converge rather slowly as the size of the basis 
set is increased. A central issue is how well the basis sets employed describe the 
electron cusps in the wave function. Because the exact analytic structure of the 
N-electron ( N  2 2) nonrelativistic wave function is unknown, the theorist must 
resort to educated guesswork to select basis functions that will mimic both the 
shape characteristics of the exact wave function, as well as the form of the wave 
function at the coalescence points, which occur where the electron-nuclear sepa- 
ration or the interelectronic distances are zero. 

There have been a number of studies on the general convergence characteristics 
of variational calculations (Schwartz, 1962, 1963; Lakin, 1965; Klahn and Bingel, 
1977; Klahn and Morgan, 1984; Hill, 1985, 1995; Kutzelnigg, 1985; Klahn, 1985; 
Kutzelnigg and Klopper, 1991 ; Kutzelnigg and Morgan, 1992). From these works 
it is possible to gain insight into the expected rates of convergence of some of 
the computational techniques currently employed, and to anticipate why the rij- 
dependent basis sets lead to particularly good convergence when the nonrelativ- 
istic energy is calculated. There has also been some effort expended on investi- 
gating the behavior of the electronic wave function in the neighborhood of the 
coalescence points (Kato, 1957; Hoffmann-Ostenhof and Seiler, 198 1; Johnson, 
1981; Hoffmann-Ostenhof er al., 1992). With the notable exception of the work 
of White and Stillinger ( 1970, 197 I ) ,  very little attention has been directed toward 
finding the analytic structure of three-electron wave functions near the singular 
points of the potential. White and Stillinger (1971) find a logarithmic dependence 
on the three electronic coordinates, reminiscent of what had been discovered ear- 
lier by Fock (1954) for two-electron atoms. 

The conventional CI approach does rather poorly at describing the electron- 
electron cusps in the wave function. The convergence of the CI calculations for 
the nonrelativistic ground state energy (ENR) of Li is very slow (Chung, 1991), 
and it is necessary to resort to a careful evaluation of the errors arising from basis 
set truncation. Armed with these estimates, an extrapolated value for EN, can be 
obtained. A serious drawback in this extrapolation approach is that the final result 
is no longer guaranteed to be a strict upper bound estimate for EN,. There are 
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several recently published results for the ground and several excited states of Li, 
where the reported energies are below the expected “exact” results for EN,. The 
conventional CI approach is clearly not the method of choice to obtain the highest 
precision results for the Li atom. When fairly high precision is not required for the 
calculation of a property, the CI approach is a very viable computational tech- 
nique. The principal advantage of the CI approach, in contrast to some of the other 
methods discussed in this section, is that it can be readily extended to treat larger 
electronic systems. For a recent review of MCHF and CI calculations of atomic 
properties, see Godefroid et al. (1996). 

The hybrid CI-Hylleraas technique (Sims and Hagstrom, 197 la) explicitly in- 
corporates r”o-dependent terms in the basis set. Early users of this technique re- 
stricted the basis functions to a maximum of one rnii factor per term. Recent ap- 
plications of the technique to the Li atom (Liichow and Kleindienst, 1992b, 1994) 
have removed this restriction, at a greater cost in terms of the integral complexity 
of the calculations. A very significant improvement in the rate of convergence for 
the calculation of EN, is found using the CI-HY technique, relative to what is 
known from standard CI calculations. 

The Hylleraas technique (Hylleraas, 1929), which incorporates factors of rii 
into the basis terms, shows the fastest convergence rate for the calculation of ENR. 
This improved convergence is tied in part to the better description of the electron- 
electron cusps of the exact wave function. The faster convergence is also due to a 
superior description of the wave function over a more extended region of configu- 
ration space (Gilbert, 1963). These gains are counterbalanced by two other fea- 
tures of the general approach. The first is that the Hylleraas technique has not been 
extended to systems with more than four electrons. Even for four-electron atomic 
systems, there are significant unresolved integration problems when Hylleraas ba- 
sis sets are employed (see, for example, King, 1993). For three-electron systems, 
there are several expectation values-for example, the relativistic kinetic energy 
correction and the electron-electron orbital correction-that require integrals that 
are very difficult to deal with, when a general Hylleraas expansion is employed. 
Despite these rather severe drawbacks of the Hylleraas approach, the technique 
has proved to be of considerable value, and has yielded the highest precision and 
fastest convergence for a number of properties of the lithium atom. Several of 
these properties are discussed in later sections. 

111. Some Mathematical Issues 

The essential feature of any high-precision calculation of atomic properties is the 
interplay between the choice of the mathematical form of the basis functions that 
are expected to give a good description of the electronic distribution, and the trac- 
table nature of the integrals arising in the evaluation of the required expectation 
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values. Because we have only very limited knowledge about the functional form 
of the atomic wave function for an N-electron ( N  > 2) system in the nonrelativistic 
approximation, the construction of quality wave functions is still, to a large de- 
gree, a matter of trial and error (trial and success!). Brute force procedures are 
prevalent. 

The significance of explicitly incorporating factors of the interelectronic coor- 
dinates has long been recognized. The importance of the rg factors for improving 
the cusp characteristics of the wave function has been discussed in numerous pa- 
pers (see, for example, Morgan, 1989). The inclusion of rd-dependent terms in  
basis sets is becoming increasingly common for atomic and molecular calcula- 
tions, which in turn leads to a number of interesting integration problems. 

A. INTEGRATION PROBLEMS 

For basis functions of the form given in Eq. (2) (which are appropriate for an 
S-state of a three-electron atomic system), it is straightforward to show that all the 
integrals required for the determination of the energy and a number of other ex- 
pectation values reduce to the form 

I ( i ,  j ,  k, 4,  m, n, a, b, c)  = rir~r:r~3r~lrr12e-urI-hr2-cr,  dr,dr,dr, ( 8 )  

For an energy determination, only integral cases with e, m, n Z - 1 arise. Various 
cases of Eq. (8) have been discussed extensively in the literature (Huang, 1946; 
Szhsz, 1961; Ohrn and Nordling, 1963; Hinze and Pitzer, 1964; Bonham, 1965; 
Burke, 1965; Byron and Joachain, 1966; Roberts, 1966a, 1966b; Larsson, 1968; 
Perkins, 1968, 1969; Ho and Page, 1975; Berk etal., 1986; King, 1991~;  Remiddi, 
1991; King et al., 1992; Liichow and Kleindienst, 1993; Porras and King, 1994; 
Drake and Yan, 1995; Yan and Drake, 1997a; King, 1998a; Pelzl and King, 1998). 
The integrals appearing in Eq. (8) can be simplified by using the Sack expansion 
(Sack, 1964) for the interelectronic coordinate to obtain the auxiliary function 

I 

These auxiliary functions have been well studied in the literature (James and 
Coolidge, 1936; Ohrn and Nordling, 1963; McKoy, 1965; Burke, 1965; Larsson, 
1968; Berk et al., 1986; Drake and Yan, 1995; Frolov and Smith, 1997). 

The most difficult I-integral cases that arise occur when e, m, and n are all odd. 
This case is typically evaluated by truncation of an infinite summation, which 
behaves roughly like Z;=.=, kk6 (the convergence of the sum depends explicitly on 
the values o f t ,  m, and n, but the worst case convergence of any Z-integral in an 
energy calculation is as indicated). As remarked in Section 11, when fixed expo- 
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nents are employed (Eq. (7)), an integral store and retrieve strategy becomes very 
effective for dealing with the I-integrals, but this is not practical (or useful) when 
the exponent parameters are optimized. Ideally, it would be highly desirable if the 
I-integrals could be expressed in the form 

I ( i ,  j ,  k, 4, m, n, a, b, c) 3 c f,(a b, c)g,(i j ,  k, 4, m, n)  (10) 
U 

The advantage of this simplification is that the function g, can be calculated and 
stored as a large array. This is feasible given the relatively inexpensive cost of 
memory on currently available workstations. The amount of computational ac- 
tivity is thereby significantly reduced when orbital exponent optimization is car- 
ried out. The closest form to Eq. (10) that the author has found is 

I ( i ,  j ,  k, t ,  m, n, a, b, c) = 2 f;,(a, b, c )  gJi, j ,  k, t, m, n) (1 1) 

This expression is obviously less suitable because the g-function has an additional 
index dependence. 

An extended form of the I-integrals given in Eq. (8) has been investigated 
where the additionalfactorexp(-a,,r,, - ( ~ 2 3 r 2 3  - ~~,~r~~)isincluded,anda,~, 
a 1 3 ,  and a23 are constants (Fromm and Hill, 1987; Remiddi, 1991; Harris, 1997). 
Solution of these integrals allows for increased flexibility in the choice of basis 
functions, by the inclusion of additional exponential factors like exp( -a r , 2 ) .  
Including this type of exponential term in the basis set may offer the advantage of 
ensuring that the wave function approximately satisfies the electron-electron cusp 
condition. 

We note parenthetically that for four-electron atomic systems, the generaliza- 
tion of Eq. (8) now includes up to six interelectronic coordinates. Although there 
has been some effort directed at solving these four-electron integrals (Sims and 
Hagstrom, 1971b; King, 1993; Kleindienst et al., 1995), there are a number of 
important cases still unresolved. There are clearly formidable mathematical prob- 
lems to be overcome if Hylleraas-type expansions are to be routinely employed 
beyond three-electron atomic systems. 

For three-electron systems, there are two important problems where more com- 
plex I-integrals arise. The first is the evaluation of ('PlHNR21'P), where H,, is the 
nonrelativistic Hamiltonian. This expectation value is required for the determina- 
tion of lower bounds to the nonrelativistic energies. The second problem is the 
evaluation of certain relativistic corrections to the energy. For these expectation 
values, I-integrals arise with at least one of the indices e, m, n = -2. For both of 
these problems, it is possible to select the basis functions in such a way that these 
very difficult integral cases are avoided. However, the resulting wave functions 
turn out to be of rather poor quality, particular in the near-nuclear region of con- 
figuration space. The I-integrals with one (or two) factors of rV-, are much harder 

U V 
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to evaluate, and these integrals have received considerably less attention in the 
literature (King, 1991~; King el al., 1992; Luchow and Kleindienst, 1993; Porras 
and King, 1994; Yan and Drake, 1997a; King, 1998a). The increased complexity 
can be appreciated by observing the form for rii-2 (Pauli and Kleindienst, 1984; 
King, 1991~;  Luchow and Kleindienst, 1992a; Porras and King, 1994), which can 
be expressed as (King, 1991c) 

j = O  \ K -  

where P, denotes a Legendre polynomial and (g) is a binomial coefficient. This 
expansion can be contrasted with the familiar expansion of rI2- l  in terms of 
Legendre polynomials. The expansion terms for r12-2  involve a logarithmic func- 
tion of the coordinates r ,  and r2 ,  which adds significantly to the complexities of 
the integral evaluations. The author (King, 1991c) has succeeded in reducing a 
large number of integrals of the form f ( i ,  j ,  k, -2 ,  m, n, a, b, c) to two-electron 
integrals, which can be computed relatively quickly. 

A particularly difficult case to evaluate is e = -2, and m and n both odd. The 
methods that are currently available for this case lead to limited precision (about 
12-1 6 digits) for the integral evaluations, which in turn becomes a factor control- 
ling the precision of the required expectation values, when very large basis set 
expansions are employed. If a general Hylleraas expansion is employed, then the 
considerably more complicated case t = -2, m = -2 arises. Although methods 
are available to deal with these integrals (Luchow and Kleindienst, 1993; Porras 
and King, 1994), the precision available is limited. For practical calculations, it 
appears possible to delete basis functions that lead to these e = -2, m = -2 
cases, without any appreciable loss of quality for the overall wave function. 

When excited states of Li are under investigation, the additional angular factors 
in the basis functions lead to more tedious integration problems. A number of the 
required integrals involving additional angular factors have been evaluated. For a 
detailed account see, for example, Barrois et al. (1997b, 1997~)  and Yan and 
Drake (1997a). 

There are three additional mathematical issues that emerge, particularly when 
large basis sets are employed. As the size of the basis set grows, significant prob- 
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lems associated with linear dependence in the basis set arise. These are numerical 
problems that are difficult to circumvent, because increasing the precision level of 
the calculation can be a very expensive proposition. Using double-precision arith- 
metic with a 64-bit word or quadruple precision with a 32-bit word will generally 
allow well over a thousand terms to be incorporated in a Hylleraas-type expansion, 
though the actual maximum size will obviously depend on the particular basis 
functions employed. To proceed to several thousand terms would most likely re- 
quire that extended precision arithmetic be employed. Although Fortran source 
codes have been developed to deal with this, the high cpu costs would make the 
routine use of such codes prohibitive. 

For large basis sets, particularly when w (Eq.(6)) reaches double-digit values, 
the precision level of calculated expectation values can significantly decline. This 
can be easily monitored by separately evaluating the positive and negative contri- 
butions to the expectation value of interest. For large values of w, individual ma- 
trix elements can be very large, and consequently a sum of several hundred thou- 
sand contributions can lead to a value of considerable size. When the positive and 
negative components of an expectation value are very large, and the value of the 
particular expectation value is not, then very significant loss of precision occurs. 
If the positive and negative components are not tracked separately, then this pre- 
cision loss can be easily overlooked, particularly if the convergence of the expec- 
tation value is nonmonotonic. 

Large Hylleraas expansions often lead to many local energy minima in the 
{a,, , p,,, y,, } parameter space. There can be significant differences between these 
minima, so an effective optimization scheme needs to be able to handle a global 
strategy in a cost-effective manner. Global strategies that perform some type of 
stochastic sampling require the evaluation of a significant number of matrix ele- 
ments, so the bottleneck in the calculation of the wave function becomes the 
evaluation of the three-electron I-integrals (Eq.(8)). Because the all-odd (4,  rn, n }  
!-integral case is significantly slower than the other cases, developing new mathe- 
matical approaches for the evaluation of these integrals would have an important 
impact on progress in the area of high-precision calculations on three-electron 
atomic systems. 

IV. Nonrelativistic Energies 

The nonrelativistic Hamiltonian conventionally employed is (in atomic units) 
3 / .  -\ 3 3 .  

where Z is the nuclear charge (= 3 for Li). The specific mass shift (mass polariza- 
tion correction) is not included in Eq. (13). Several high-precision calculations 
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have been carried out with this factor incorporated in HNR (King, 1986; Luchow 
and Kleindienst, 1994; Yan and Drake, 1995a), but it is more common to evaluate 
the specific mass shift using first-order perturbation theory. 

For the S states of a three-electron atom, it is possible to work with the Hamil- 
tonian in the form 

In Eq. (14), POk signifies that the summation is over the six permutations (,! f :), 
and the notational simplifications u I = r23, u2 = r31 , and u3 = r,? are employed. 
The form of HNR in Eq. (14) is very convenient to use, because of the structure of 
the basis functions employed in the Hylleraas expansion (see Eq. (2)). It is also 
straightforward to show, using this simplified form of H,,, that the matrix ele- 
ments required for the determination of the energy reduce to integrals of the form 
given in Eq. (8). 

A. THE GROUND STATE 

A considerable amount of attention has been directed at the problem of determin- 
ing high precision estimates for the nonrelativistic energies of the lithium atom, 
and much of this activity has focused on the ground state (King and Shoup, 1986; 
King, 1989, 1995; Kleindienst and Beutner, 1989; King and Bergsbaken, 1990; 
Jitrik and Bunge, 1991; Chung, 1991; McKenzie and Drake, 1991; Pipin and 
Bishop, 1992; Luchow and Kleindienst, 1992b, 1994; Tong et al., 1993; Yan and 
Drake, 1995a; Jitrik and Bunge, 1997). Recent work with the Monte Carlo tech- 
nique is discussed by Alexander and Coldwell (1997). A summary of some of the 
highest precision values is presented in Table 1. An extensive tabulation of earlier 
calculations of the ground state EN, for Li is given by King (1997). Not surpris- 
ingly, progress in obtaining higher precision values of EN, has largely mirrored 
advances in computer technology. 

In Table I ,  the last digits for each energy that have been determined by ei- 
ther extrapolation procedures or by estimation of basis set truncation errors are 
shown in italics. The reader needs to note that neither of these procedures neces- 
sarily leads to a strict upper bound for EN,. Except for the CI calculations of 
Chung (1991), all the EN, values for the ground state presented in Table 1 are 
based on wave functions involving explicit dependence on the interelectronic co- 
ordinates. Chung’s result includes a sizeable basis set truncation correction of 
134.6 phartree. Calculations based on the CI-HY technique (Pipin and Bishop, 
1992; Luchow and Kleindienst, 1992b, 1994) lead to rather precise values for 
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TABLE 1 
HIGH-PRECISION ESTIMATES OF THE NONRELATIVISTIC ENERGIES OF THE 

LOW-LYING DOUBLET STATES OF Li. 

State EN, (a.u.) Reference 

2 2s 
( I s'2.s) 

3 ' S  
( 1 ~ ~ 3 s )  

4 ' S  
( ls24.s) 

5 ' S  
(ls25s) 

6 ?S 
( 1  ~ '6s)  

2 ' P  
(ls22p) 

3 2P 
( ls23p) 

-7.478058 
-7.478059 
-7.4780595 
-7.4780597 
-7.478060326 
-7.478060 I 
-7.478060252 
-7.4780603208 
-7.478060 
- 7.4780603231 0 

[ -7.47806033 12)] 
-7.354030 
- 7.354076 
-7.3540978 
- 7.3540980 
-7.354098369 
-7.354098 

[ -7.354098 1(2)] 
-7.3 18491 
-7.3 18525 
-7.3 185303 
-7.3 18530665 
-7.318529 

[ -7.3 185306(2)] 
-7.303439 
-7.303547 
- 7.3035508 
-7.303546 

[ -7.30355 15(2)] 
-7.29583 
-7.295846 

[-7.295859( I)]  
-7.410106 
-7.4101 554 
- 7.4 101 541 
- 7.4 10 156521 8 
-7.41015652 
- 7.4 1015653 1763 

[-7.41015645(11)] 
-7.337059 
-7.3371503 
-7.337 15 I70 

[ -7.3371 5 16(2)] 

King and Shoup (1986) 
King (1989) 
King and Bergsbaken (1990) 
Chung (1991) 
McKenzie and Drake (1991) 
Pipin and Bishop (1992) 
Luchow and Kleindienst (1992b) 
Luchow and Kleindienst (1994) 
King (1995) 
Yan and Drake (1995a) 
This chapter 
Pipin and Woznicki (1983) 
King (1991) 
Luchow and Kleindienst (1992b) 
Wang, Zhu, and Chung (1992a) 
Luchow and Kleindienst (1994) 
King (1998~) 
This chapter 
King (1992) 
Luchow and Kleindienst (1992b) 
Wang, Zhu, and Chung (1992a) 
Luchow and Kleindienst (1994) 
King ( 1998~) 
This chapter 
King ( 199 I )  
Luchow and Kleindienst (1992b) 
Wang, Zhu, and Chung (1992a) 
King (1998~) 
This chapter 
Luchow and Kleindienst (1992b) 
King (1998~) 
This chapter 
Pipin and Woznicki (1983) 
Pipin and Bishop (1992) 
Wang, Zhu, and Chung (1993) 
Yan and Drake (1995a) 
Barrois, Kleindienst, and Liichow (1997b) 
Yan and Drake (1997b) 
This chapter 
Pipin and Woinicki (1983) 
Wang, Zhu, and Chung (1993) 
Barrois, Kleindienst, and Luchow (1997b) 
This chapter 
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TABLE I (Continued) 

State EN, (a.u.) Reference 

4 ’ P  -7.31 1736 Sims and Hagstrom (1975) 
(ls24p) -7.31 18R8I Wang, Zhu, and Chung (1993) 

-7.31 18888 Barrois, Kleindienst, and Luchow (1997h) 
(-7.31 18887(2)] This chapter 

5 ‘P -7.300142 Sims and Hagstrom (1975) 
(ls?Sp) -7.3002875 Wang, Zhu, and Chung (1993) 

[-7.3002883(2)] This chapter 
3 ’D -7.335523 I Pipin and Bishop (1992) 
(ls’3d) -7.3355239 Wang, Zhu, and Chung (1992h) 

[ -7.3355234(2)] This chapter 
4 ?D -7.31 1 I87 Pipin and Bishop (1992) 
( ls24d) -7.31 1190 Wang, Zhu, and Chung (1992b) 

This chapter 
5 ‘D -7.299928 Wang, Zhu, and Chung (1992b) 
(ls’5d) [ -7.2999277(2)] This chapter 
4 ’F -7.3111687 Wang, Zhu, and Chung ( 1  992b) 
( 1 s’4.f) (-7.3111668(2)] This chapter 
5 ’ F  -7.2999171 Wang, Zhu, and Chung (1992b) 
( ls25f)  [ - 7.2999 159(2)] This chapter 

-7.335523541 10 Yan and Drake ( 19953) 

[ -7.3 1 1 1896(2)] 

Digits based on extrapolation or estimates of the hasis set truncation errors are indicated in ital- 
ics. Estimates of the nonrelativistic energies are shown in [ 1. 

EN, .  All the other ground state values of E N ,  shown in Table 1 were determined 
using Hylleraas-type expansions. 

1. Lower Bound Estimates f o r  EN, 

When the convergence of the variational calculation of E N ,  is slow, it is particu- 
larly advantageous to have access to precise lower bounds for the nonrelativistic 
energies. The lower bounds supplement the upper bound estimates obtained via 
the standard variational approach. Relatively little work has been published on 
finding lower bounds for the energies of the lithium atom. The principal reason 
for this is the extremely difficult nature of the integration problems that arise. In 
fact, almost all of the progress that has been made on finding lower bounds for 
EN, has been restricted to one- and two-electron atomic and molecular systems. 
The problem of determining a lower bound for the ground state E N ,  has been 
approached using two rather different methods. The first, based on intermediate 
Hamiltonian techniques (Bazley, 1959, 1960; Bazley and Fox, 1961) has been 
applied to the lithium atom (Reid, 1972, 1974; Fox and Sigillito, 1972a, b, c; Fox, 
1972; Russell and Greenlee, 1985). This approach has not led to precise estimates 
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for any lower bounds to the nonrelativistic energies of the lithium atom. The sec- 
ond method is based on the more familiar classical lower bound formulas derived 
by Temple (1928), 

by Weinstein (1934). 

E,  L E ,  = (*lHI'P) - a"' (16) 

and by Stevenson (1938) and Stevenson and Crawford (1938), 

(17) 

In Eqs. (15-17), E,  denotes the exact nonrelativistic ground state energy, and E,, 
E,, and E, designate, respectively, the Temple, Weinstein, and Stevenson lower 
bound estimates to E,.  The variance, a, is defined by 

(18) 

As * approaches the exact solution of the Schrodinger equation, (+ + 0. These 
lower bound formulas have been discussed extensively in the literature (Kato, 1949; 
Caldow and Coulson, 1961; Froman and Hall, 1961; Wilson, 1965; Switkes, 
1967; Schmid and Schwagner, 1968; Delves, 1972; Coulson and Haskins, 1973; 
Cohen and Feldmann. 1979; Scrinzi, 1992). Further references on application of 
these formulas to one- and two-electron systems can be found in King (1995). 

There are two high-precision estimates of a lower bound for EN, (Luchow 
and Kleindienst, 1994; King, 1995) and an earlier more approximate estimate 
(Conroy, 1964). The high-precision estimates are 

E ,  2 E ,  = - (a2 - 2a(plZ-Zl~) + ('PlH21*))1'2 

= a - [a + (a - (*'HpP))*]'/2 

a = (*'H2'*) - ( * p f ' * ) 2  

-7.478176 a.u. < E, (19) 

obtained using a 920-term CI-HY wave function (Luchow and Kleindienst, 
1994) and 

-7.47830 a.u. < E ,  (20) 

using a 600-term Hylleraas wave function (King, 1995). These estimates are ap- 
proximately .I2 and .24 millihartrees too low, based on the extrapolated value 
given for E ,  in Table 1. 

The lower bound calculations converge at a significantly slower rate than the 
corresponding variational calculations of the upper bound estimates of E,.  The 
key expectation value required in the lower bound evaluation, ( H 2 ) ,  samples the 
region of configuration space close to the nucleus. This region is less well de- 
scribed in the standard variational approach. To significantly improve upon the 
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results indicated in Eqs. (19, 20), the strategy most likely to be successful is to 
build a wave function that has been optimized to minimize u (Eq. (18)) directly, 
or as an auxiliary constraint in the standard variational approach. This idea has 
been in the literature for a considerable time (see, for example, Preuss, 1961). 

2. Distribution Functions 

The radial electronic density function for the ground state of Li has been evaluated 
in closed form, starting from a Hylleraas-type wave function (King and Dressel, 
1989). To obtain the density in a compact analytic form, it is necessary to make 
some restrictions on the basis functions employed in the Hylleraas expansion. For 
example, terms with three odd powers of the interelectronic coordinates must be 
excluded, otherwise a finite expansion for the density does not appear possible. 
The moments ( r ; ) ,  for n = - 2  to 6, generated from the calculated radial density, 
are found to be in good agreement with other calculations using much larger basis 
sets (King, 1995). For the excited states of Li, there has been relatively little work 
devoted to determining precise densities. King (199 I b) has evaluated radial den- 
sities for some excited S states using Hylleraas basis sets of modest size. 

Whereas the spin density at the nucleus has received a considerable amount of 
attention, the radial dependence of the spin density has received almost no atten- 
tion. The most precise results available for the radial dependence of the spin den- 
sity are due to Esquivel et al. (1991), who used large-scale CI calculations to study 
this function. 

Starting from a Hylleraas-type basis set, Dressel and King (1994) have man- 
aged to determine a compact analytic expression for the electron-electron distri- 
bution function. Once again, it was necessary to make some simplifications on the 
possible terms in the basis set, otherwise a compact and finite series expansion 
could not be obtained. Extension of this work to allow for more general basis set 
expansions would be desirable, as the electron-electron distribution function plays 
an important role in discussions of the Coulomb hole. 

B. EXCITED STATES 

The calculation of nonrelativistic energies for the excited states of lithium has 
received considerable attention. Progress in this area can be summarized most 
easily in terms of the following four groups: single valence-electron excited dou- 
blet states, low-lying quartet states, core-excited doublet states, and doubly core- 
excited quartet states. The next four subsections discuss each of these states. 

1. The Low-Lying Excited Doublet States 

The calculation of EN, for the low-lying 2S states has been carried out with a 
variety of computational techniques (Larsson, 1972; Perkins, 1972; Sims and 
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Hagstrom, 1975; Sims et al., 1976a; Pipin and Woinicki, 1983; Hijikata et al., 
1987; King, 1991a, 1998c; Luchow and Kleindienst, 1992b; Wang et al., 1992a; 
Yan and Drake, 1995a). The determination of the nonrelativistic energies for 
the low-lying *P states has also attracted considerable attention (Ahlenius and 
Larsson, 1973, 1978; Sims and Hagstrom, 1975; Sims et al., 1976a; Muszyriska 
et ul., 1980; Pipin and Woinicki, 1983; Hijikata et al., 1987; Pipin and Bishop, 
1992; Chung and Zhu, 1993; Wang et al., 1993; Yan and Drake, 1995a; Yan and 
Drake, 1997b). The low-lying ’0 and *F states have received far less attention, 
but there has been some very recent progress on the calculation of EN, for some 
of these states (Wang et al., 1992b; Pipin and Bishop, 1992; Yan and Drake, 
1995a). A selection of the highest precision results for the nonrelativistic energies 
of these states is presented in Table 1. Also included in Table I is an estimate of 
the nonrelativistic energy, which was derived using 

EN,(2X) = ENR(Li+) + AEREL + AEMAss + AEQED - I ,  + AE(2X)(21) 

where 

and I, designates the first ionization potential of the ground state of Li, and 
AE(’X) is the transition energy from the ground state to the ’X state of interest. 
REL, MASS, and QED refer to the relativistic correction, nuclear mass dependent 
correction, and quantum electrodynamic shift, respectively. The excitation ener- 
gies have been taken from Radziemski et al. (1  995) or Sansonetti et al. (1995). 
All the relativistic corrections are taken from the work of Wang et al. (1992a, 
1992b, 1993), except the result for the 2 ’S state, which is taken from King (1997). 
The latter result is a combination of individual relativistic corrections taken from 
Chung (1991), King (1995) and Yan and Drake (1995a). The mass correction 
includes both the Bohr mass shift and the specific mass shift. The specific mass 
shifts used to evaluate AEMASs were taken from Yan and Drake (1995a) and Wang 
et al. (1992a, 19992b, 1993). For the 2 ’S state, the value of AE,,, based on the 
work of Feldman and Fulton ( 1  995) was employed, and for the 3 ’S state, AE,,, 
was taken from Wang et al. (1992a). For the other doublet states, AE,,, has been 
set to zero, which should be a satisfactory approximation, at least for the higher 
lying states, based on the values calculated from the standard one-electron formula 
for AE,,, (which is given later in Section VII). The results for Li+ that enter Eqs. 
(21-24) are taken from Yan and Drake (1995a), Pekeris (1958, 1962), Johnson 
and Soff (1985) and Drake (1988). The semiempirical estimates for EN, are in 
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particularly good agreement with the results obtained from variational calcula- 
tions. The error estimates are only rough, as the uncertainties for the EREL(?X) 
values are not available, and have been estimated at two in the last quoted digit of 
the published calculations. Also, the error associated with BE,,, is rather difficult 
to gauge. 

2. The Low-Lying Quartet States 

There has been renewed interest in high precision calculations on the low-lying 
quartet states of the lithium atom (Fischer, 1990; Hsu et al., 1991, 1994; Luchow 
et al., 1993; Barrois et al., 1996, 1997a; King, 1998d). Efforts to improve model- 
potential calculations for these states have also attracted recent attention (Chen, 
1996). A summary of some of the higher precision calculations is presented in 
Table 2. All the states presented in Table 2 lie below the ls2s 3S state of Li+.  There 
has been extensive experimental work on these states (see Feldman and Novick, 
1967; and for reviews, Berry, 1975; Mannervik, 1989). 

A semiempirical estimate of the nonrelativistic energy of a number of the " X  
states can be determined using 

(25) 
E,,(,X) = E,,(Li+, 1x2s 3 S )  + AEMA,s(4X) 

+ AE,,,("X) + AE,,,(,X) - l4 + AE(,X) 

where AE(4X) is the transition energy from the ls2s2p "P state, and 

AE,Ass(4X) = EMASs(ls2s, ' S  Li+)  - EM,ss(4X) (26) 

AEREL(4X) = EmL(1.Y2.S, 's Li') - E,EL(,X) (27) 

AE,ED(4X) = EQ,,(ls2s, 3S L i + )  - EQED(,X) (28) 

Experimental values of AE( 4X) have been taken from the work of Mannervik and 
Cederquist (1983). In Eq. (25),  I ,  designates the ionization potential of the ls2s2p 

state (to yield Li+ (ls2s) 'S). This 4P state is the lowest in energy of the quartet 
states, and is metastable against both radiative decay and autoionization. The val- 
ues of EN,, ESMS (a part of EMASS) and ERE, for Li+ (Is2s3S) are taken from 
Pekeris (1962). There are several estimates available for the ionization potential 
of ls2s2p 4P. These include an experimental determination of 56473(5) cni- ' 
(Mannervik and Cederquist, 1983) and five theoretically derived estimates of 
56460.6 cm-I (Bunge, 1981a), 56459.6(5)cm-I, and 56460.1(2)cm-I (Hsu eta!., 
1991), 56461.7 cm-' (Barrois et al., 1997a) and 56462.2(2) cm-l (King, 1998d). 
The experimental result appears too high; it leads to estimates of ENR(,X) that are 
significantly different from the results of some recent well-converged calculations. 
The estimates of Hsu et al. are based on nonrelativistic energies of the states 
ls2s2p 4P and 1 ~ 2 . ~ 3 ~  ,S, which are too high by approximately 2.0 cm-I. The 
value of EN, for the 1 ~ 2 ~ 3 s  state used by Bunge is too high by about 1.6 cm I .  
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TABLE 2 
NONRELATIVISTIC ENERGIES OF THE LOW-LYING QUARTET STATES OF Li. 

State EN, (a.u.) Reference 

( 1 ~ 2 ~ 3 s )  4S 

(ls2s4.s) 4S 

( ls2s5.s) 4S 

( 1 s2s6s) 4S 

(ls2s2p) 4p' 

(ls2s3p) 4P' 

(I s2s4p) 4P 

( ls2s5p) 4P 

( I  s2p3s) "P' 

( 1 s2s3d) 40 

( 1 s2s4f) 4F 

-5.212396 
-5.2 I259 
-5.212737 
-5.2 1274 1 
-7.2 12739 
-5.212748246 
-5.2 I2748 

[ -5.2 12748( I ) ]  
-5.15823 
-5.15839345 
-5. I58391 

[ - 5.1 5844( 2)] 
-5.13816 
-5.1384624 
-5.138460 

[ -5.13845(2)] 
-5. I2829 
-5.128880 
-5.128872 

[-5.12893(4)] 
-5.367948 
-5.36783 
-5.3679 17 
- 5.368oO1 
-5.3680059 
-5.36801014 

[ -5.368013(2)] 
-5. I86742 
-5.18687 
-5.187278 
- 5. I 872793 
-5. I8728815 

[ -5.18731(2)] 
-5.14338 
-5. I49722 
-5. I497361 
- 5.  I 34454 
-5.1344767 
-5. I 195222 

[-5.119533(6)] 
-5.1730806 

[ -5.173086( 2)) 
-5.1428 18 

Larsson (1972) 
Larsson, Crossley, and Ahlenius ( 1979) 
Bunge and Bunge (1978a) 
Bunge (1981a) 
Hsu, Chung, and Huang (1991) 
Barrois, Liichow, and Kleindienst (1996) 
King (1998d) 
This chapter 
Larsson and Crossley (1982) 
Barrois, Liichow, and Kleindienst (1996) 
King (1998d) 
This chapter 
Larsson and Crossley (1982) 
Liichow, Barrois, and Kleindienst (1993) 
King (1998d) 
This chapter 
Larsson and Crossley (1982) 
Liichow, Barrois, and Kleindienst (1993) 
Kmg (1998d) 
This chapter 
Bunge and Bunge (1978b) 
Larsson and Crossley ( 1982) 
Fischer (1990) 
Hsu, Chung, and Huang (1991) 
Hsu, Chung, and Huang (1994) 
Barrois, Bekavac, and Kleindienst (1997a) 
This chapter 
Glass (1978) 
Larsson and Crossley ( 1982) 
Bunge (1981b) 
Hsu, Chung, and Huang (1994) 
Barrois, Bekavac, and Kleindienst (1997a) 
This chapter 
Larsson and Crossley (1982) 
Bunge (1981b) 
Hsu, Chung, and Huang (1994) 
Bunge (1981b) 
Hsu, Chung, and Huang (1994)" 
Hsu, Chung, and Huang (1994) 
This chapter 
Hsu, Chung, and Huang (1994) 
This chapter 
CalAn and Bunge ( I98 1) 

"Additional higher states in the quartet P series were studied by these authors. 
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An accurate way to determine the ionization potential of the ls2s2p 4P state is to 
use the relationship 

I ,  = E(ls2s ' S  Li+) - E( 1 . ~ 2 ~ 3 ~  4S) + AE(ls2s3s + 1 ~ 2 . ~ 2 ~ )  (29) 

where AE( ls2s3s + 1 ~ 2 . ~ 2 ~ )  is the energy for the transition ls2s3s 4S + ls2s2p 
4P, and E( ls2s, 'S Li+)  and E( 1 ~ 2 . ~ 3 ~  4S) are the energies for the lowest 3S Li+ 
state and the lowest 4S state, respectively. The transition energy AE( 1 ~ 2 . ~ 3 ~  + 
ls2s2p) was reported (as a then unassigned line) by Herzberg and Moore (1959) 
in their study of the spectrum of Li+. It was later suggested that several of the 
unassigned lines in the observed spectrum of Lit were actually transitions be- 
tween quartet levels of Li I (Feldman and Novick, 1963; Garcia and Mack, 1965). 
The series of lines at approximately 2934 A observed by Herzberg and Moore 
were assigned to be the ls2s3s 4S + 1 . ~ 2 ~ 2 ~  transition by Holaien and Geltman 
(1967) on the basis of calculations, and confirmed by Feldman et al. (1968) and 
Levitt and Feldman (1969). The latter authors gave for this transition energy the 
value AE(ls2s3s + 1 . ~ 2 ~ 2 ~ )  = 34071.91(5) cm-I. If this value for AE is em- 
ployed in Eq. (29) along with E(ls2s, ' S  Li+) = I121722.13(1) cm-' (Accad 
et al., 1971) and the calculated values for EN, (King, 1998d) and ERE, (Hsu etaf., 
1991) for the ls2s3s 4S state, then 1, = 56462.25 (22) cm-I. The error estimate is 
determined primarily by the uncertainty in the value of ERE,. This is the value of 
Z4 that has been employed in Eq. (25). Other values of ERE, (,X) were taken from 
Hsu etal., (1991, 1994). 

The semiempirical estimates of E N ,  reported in Table 2 are in satisfactory 
agreement with the results from recent high-precision calculations. The error es- 
timates are rather large, particularly in comparison with those given in Table 1. 
The experimental transition energies between quartet levels are not known with 
the same high precision as the transition energies between the low-lying doublet 
states. There are significant uncertainties in the relativistic corrections for some 
quartet states, and there are difficulties associated with pinning down precise es- 
timates of AEQE,J4X). 

There has been considerable interest in the modes of decay of some of the low- 
lying quartet states. The reader can pursue this avenue of research starting with 
the following works: Manson (1971), Nicolaides and Aspromallis (1986, 1988), 
Mannervik and Cederquist (1986), Davis and Chung (1987, 1988), and Sonnek 
and Mannervik (1990). 

3. The Core-Excited Doublet States 

Core-excited doublet states of the Li atom have received considerable attention. 
These states play an important role in electron scattering and various collision 
experiments, as well as certain photoabsorption processes. The core-excited dou- 
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blet states have energies above the first ionization energy of the neutral atom. They 
are not discrete states in the same sense as the bound excited doublet states. These 
core-excited states are in most cases coupled to the l s 2 d  continua via interelec- 
tron Coulomb interactions. The standard variational method cannot be directly 
applied to treat these autoionizing states, the exceptions being states like ls2p2 
’Pe  (or more generally, ls2p EQ *L ( L  = e) ) ,  which are bound metastable core- 
excited states. 

A variety of theoretical techniques have been employed to treat a number of 
the core-excited resonances (see for example, Ho, 1983; Chung and Davis, 1985). 
Most of the standard techniques available have been applied to various core- 
excited states of the lithium atom (Bhatia, 1978; Bunge, 1979; Wakid er al., 1980; 
Chung, 1981a, 1981b, 1982; JBuregui and Bunge, 1981; Woinicki et af., 1983; 
Davis and Chung, 1984, 1985, 1990b; Jask6lska and Woinicki, 1989a, 1989b; 
Chung and Gou, 1995; Barrois el af., 1997c; Chung, 1997a, 1997b). The majority 
of these calculations deal only with the nonrelativistic energy contribution. The 
only workers that have attempted any evaluation of the relativistic contributions 
to the energy are Chung and coworkers. Much of this work has employed the CI 
technique. There has been experimental interest in these states for many years 
(see, for example, Ederer et af., 1970; Berry et af., 1972; Pegg et al., 1975; Ziem 
et al., 1975; Canth et af., 1977; Rassi et af., 1977; McIlrath and Lucatorto, 1977; 
Rodbro et uf., 1979; Cederquist and Mannervik, 1985; Mannervik and Cederquist, 
1985; Mannervik et af., 1986; Meyer et af., 1987; Kiernan ef af., 1996). Most 
recently, interest has focused on “hollow” atomic states of Li. These states of Li 
have an empty K shell. The reader interested in this avenue of work might start 
with the work of Journel et al. (1996). 

The ’P‘ states have attracted attention from several authors (Bunge, 1979; 
Chung, 1982; Woinicki etal., 1983 and Barrois etal., 1997~). For the lowest three 
‘Pe  terms, Barrois et af. (1997~) have used large scale CI-HY wave functions to 
obtain high-precision estimates of ENk The ENR values reported by these authors 
have converged to better than 1 phartree. Barrois et al. have also evaluated the 
expectation value (y * V,), which allows the specific mass shift correction to the 
energy levels to be calculated. 

Some of the theoretical energies for the core-excited states are collected in 
Table 3. For most of the other core excited doublets that have been investigated 
theoretically, the nonrelativistic energies have not been determined to the same 
level of precision as the best results for the 2Pe terms. The precision available for 
the experimental energies for the core-excited states is around 10 cm-’ (or better) 
(Mannervik, 1989), and clearly does not rival the results available, particularly the 
most recent ones, for the bound low-lying excited doublet states. Generally, the 
agreement between the theoretically determined energies and experimental results 
is satisfactory. 
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TABLE 3 
ENERGIES FOR THE LOW-LYING CORE EXCITED DOUBLET STATES OF Li. 

State EN, ( a x )  E,,,, (a.u.) Reference 

[( ls2s) ' S  3p] 'P" 

[( ls2s) ' S  4p] *Po 

I( ls2.s) 'S 5p1 ?P" 

[( ls2p) 'S 6p] ?Po 

I( ls2p) ' P  3p] zPe 

[( ls2p) ' P  4pl zPc  

[( ls2.s) 'S 3d] ?D' 

I( ls2s) ' S  4d] 2Dc 

[ I s2p) ' P  3dj %" 

[(ls2p)'P4dI2Do 

[( ls2p) ' P  3d] 2Do 

-5.4052 19 
-5.19964 1 
-5.3 I2761 
-5.3 12936 
-5.313212 
-5.256864 
-5.257499 
-5.25835 1 
-5.2 1365 
-5.2 13702 
-5.21373920 
-5. I83387 
-5. I83842 
- 5.1 84006 
-5.149599 
- 5.149695 
-5.134334 
- 5.134940 
-5.126683 
-5.127315 
-5.10429 
-5.104364 
-5.104381 76 
-5.0701 2 
-5.070284 
-5.0703 159 
- 5.062 14 
-5.06 184 I 
-5.233703 
-5.233789 
-5.234138 
-5. I66023 
-5.1661 87 
- 5.166434 
-5.141919 
- 5.142 194 
-5.08929 
-5.089285 
-5.06 163 
- 5.06 I 584 
-5.05367 
-5.053853 

-5.405833 
- 5.200237 
-5.313056 

-5.313312 
- 5.257464 

-5.258471 

- 5.213734 

- 5.183993 

-5,184057 

-5.149725 

- 5.104374 

-5.070305 

- 5.234200 

-5.234236 
- 5.1666 19 

-5.166475 

-5.142220 

-5.089293 

-5.061594 

-5.053884 

Davis and Chung (1984) 
Davis and Chung (1985) 
Davis and Chung (1985) 
Jaskolska and Wotnicki (1989a) 
Chen and Chung (1994) 
Davis and Chung (1985) 
Jaskolska and Woinicki (1989a) 
Chen and Chung ( 1  994) 
Bunge (1979) 
Chen and Chung (1994) 
Barrois, Liichow, and Kleindienst (1997~) 
Davis and Chung (1985) 
Jaskolska and Woknicki (198%) 
Chen and Chung (1994) 
Jaskdlska and Wofnicki (1989a) 
Chen and Chung (1994) 
Chung (1981a) 
Jaskdlska and Wofnicki (1989a) 
Chung (1981a) 
Jaskdlska and Woinicki (198%) 
Bunge 
Chen and Chung (1994) 
Barrois, Liichow, and Kleindienst (1997~) 
Bunge (1979) 
Chen and Chung (1994) 
Barrois, Liichow, and Kleindienst (1997~) 
Bunge (1979) 
Jaskolska and Woinicki (1989a) 
Davis and Chung ( 1985) 
Jaskolska and WoiNcki (1989h) 
Chen and Chung (1994) 
Davis and Chung (1985) 
Jaskdlska and Woinicki (1989h) 
Chen and Chung (1994) 
Jaskolska and Woinicki (1989h) 
Chen and Chung (1994) 
Jiuregui and Bunge (1981) 
Chen and Chung (1994) 
Jiuregui and Bunge (1981) 
Chen and Chung (1994) 
Jiuregui and Bunge (1981) 
Chen and Chung (1994) 
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For the CI results shown in Table 3 ( Chung and coworkers, Bunge, and others), 
the estimates of basis set truncation errors are typically ten or more phartrees. The 
work of Barrois et al. (1997c), using the CI-HY technique, provides a valuable 
check on the reliability of these estimates of the CI basis set truncation errors. 

Not all the term designations in Table 3 are straightforward. For example, 
2Pe(4), denoted in Table 3 as [(ls2p) IP 3p] 2Pe has a significant admixture of 
[( ls2p) 3f 4p] 2Pe, with CI coefficients of magnitude 0.71 for the latter configu- 
ration, and 0.66 for the former configuration (Bunge, 1979). Bunge (1979) reports 
that the *PC(3)  state has similar principal CI configurations and coefficients. 

4. Highly Excited Quartet States 

The higher lying quartet states of Li have attracted some theoretical attention (see, 
for example, Davis and Chung, 1990a, 1990b; Chung and Gou, 1995). For a 
number of the triply excited states, interelectron correction effects would be ex- 
pected to be of importance. Theoretical results for the energies for some of the 
high-lying states are presented in Table 4. These results are all based on large- 
scale CI calculations. No Hylleraas-type calculations appear to have been carried 
out on these states. 

The 2p3 4S0 state is particularly interesting. This is a bound metastable state; it 
has an energy lying below the 2p2 'P threshold of Li+. There has been theoretical 
interest in this state of Li going back many years (Wu and Shen, 1944). The 2p3 4S 
state does not couple to the ls2s~s 4S continuum, but can decay via radiative au- 
toionization to the ls2p jPP" continuum. For the decay process 2p3 4S0 + ls2p2 
4P, the theoretically determined wave length was found to be 145.009 A, which is 
in close agreement with the experimental result of 145.02(5) A (Agentoft et al., 
1984). A more recent experimental result yields 145.016(6) (Mannervik et al., 
1989), and a subsequent theoretical reevaluation gives 145.019 A (Davis and 
Chung, 1990b), which is in very close agreement with the aforementioned experi- 
mental measurement. 

TABLE 4 
ENERGIES FOR SOME DOUBLY A N D  TRIPLY CORE-EXCITED QUARTET STATES OF Li. 

State EN, ETlJTAL Reference 

(ls3s3p) IP"  -4.878651 -4.8792 I4 Davis and Chung (1990a) 
( 1 . ~ 3 ~ 3 ~ )  4Pe -4.84671 1 -4.84726 1 Davis and Chung (1990a) 
2s2p2p 4P -2.239379 -2.239559 Chung and Gou (1995) 
2s2p3p I P  -1.961782 -1.961972 Chung and Gou (1995) 
2P3 'S" -2.103588 - 2.103684 Davis and Chung (1990b) 
2p23p 4S0 - 1.873415 - 1.8735 I6 Davis and Chung (1990b) 
2p24p IS" - 1.83548 1 - 1.835583 Davis and Chung (1990b) 
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The 2p3 4S0 state is of special interest for the isoelectronic species H e - .  It is 
one of the few bound (metastable) states of this anion, and as a result has been 
subject to a fair amount of attention (Beck and Nicolaides, 1978; Chung, 1979; 
Nicolaides e t  al., 1981; Nicolaides and Komninos, 1981). 

V. Relativistic Corrections to the Energies 

The standard approach by which the relativistic corrections to the energy are in- 
corporated is to use a first-order perturbation theoretic procedure using the relativ- 
istic Breit-Pauli Hamiltonian 

(30) Hrel = Hmass + HcnD + HeeD + H s s ,  + Hoe, 
where the various terms in Eq. (30) are (in atomic units) 

3 
1 

2 ;= I 
HenD = - a 2 Z r  c 6(ri) 

3 3  

The fine structure constant is denoted by a, S(r) is a Dirac delta function, and si is 
an electron spin operator, H,,,, represents the kinetic energy mass correction, 
HenD is the electron-nuclear Darwin term, HeeD denotes the electron-electron 
Darwin term, Hss,  is the spin-spin contact interaction, and H,, designates the 
electron-electron orbit interaction. Only the nonfine-structure contributions have 
been shown in Eq. (30). In addition to these terms, there are fine-structure contri- 
butions that include spin-orbit, spin-other-orbit, and spin-spin interactions. 

Almost all the estimates of the relativistic corrections for the energies of the 
ground and excited states of the lithium atom have been calculated by Chung and 
coworkers using the CI approach (see Tables 2,3,4,  and 5 for specific references). 
Some Hylleraas calculations have been carried out for parts of H,, for the ground 
state of Li and a few excited states. A summary of some of the relativistic results 
is presented in Table 5 .  For the ground state of Li, Hylleraas-type calculations of 
the Breit-Pauli terms given in Eqs. (31-35) have just been completed by King 



TABLE 5 
RELATIVISTIC CORRECTIONS FOR SOME LOW-LYING DOUBLET STATES OF Li in Atomic UtZitS. 

State (H,,,,) R " D )  ( H m a s  + H e n D )  (Heel l  (H-D + H,,,)  (H, )  Reference 

2 2s 

3 2s 

4 2s 

5 2s 

2 2P 

3 2P 
4 2P 

5 2P 

3 2D 

4 *D 
5 2D 

-4.18317 X lo-' 
-4.18769 X 

3.4734 x 10-3 
3.47348 X lo-) 
3.47370 X lo-) 
3.473663 X 10.' 

3.4457 x 1 0 - 3  

3.4397 x 10-3 

3.4378 X 

3.431887 X 

3.438817 X 

-7.0748 X 

-7.0942 X 

-6.968 X 10.' 

-6.947 X 

-6.940 x 10-4 

-6.933 x 10-4 

-6.935 x W4 
-6.939 X 

-6.934 X 

-6.956 x 
-6.954 x 
-6.954 x 10-4  

-9.10630 X lo-' 
9.5340 X 

9.1154 X 

9.43 x 10-5 

9.40 x 10-5 

9.40 x 10-5 

9.36 x 10-5 
9.38 x 10-5 
9.39 x 10-5 
9.39 x 10-5 

8.93 x 10-5 
8.93 x 10-5 
8.93 x 10-5 

-s.90484 x 10-5 

-8.92896 x 

-2.3331 X 

-2.3201 X 

-2.30 x 10-5 

-2.30 x 10-5 

-2.30 x 10-5 

-2.13 x 10-5 
-2.24 x 10-3 
-2.27 x 10-5 
-2.28 x 10-5 

-2.28 x 10-5 
-2.28 x 10-5 
-2.28 x 10-5 

King ( 1995) 
Esquivel et af. (1992) 
King and Shoup (1986) 
King (1  989) 
King and Bergsbaken (1990) 
Yan and Drake ( 199%) 
Chung (1991Y 
Chung (1991)" 
King (1991a) 
Wang et al. (1992a)" 
King (1991a) 
Wang et al. (l992a) 
King (1991a) 
Wang ef af. (1992a) 
Yan and Drake (1995a) 
Wang et al. (1993) 
Wang et al. (1993) 
Wang et al. (1993) 
Wang et al. (1993) 
Yan and Drake ( 1995a) 
Wang et al. (1992b) 
Wang et al. (1992b) 
Wang et al. (1992b) 

aChung and Wang er al. report only (H,,,, + Heno)  and (HeD + Hssc).  
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et al. (1998e). The limited number of Hylleraas results available provides a useful 
check on some of the CI calculations. 

There has been limited application of the Hylleraas technique to calculating 
relativistic corrections for the three-electron systems, primarily because of the 
difficult nature of the integrals that arise. Along with cases 4 = - 2 ( or the more 
difficult case, e = -2, m = -2) in Eq. (8), integrals such as 

J l ( i j  j ,  k, e, m, n, a, b, C )  

and 

J2(i ,  j ,  k, t ,  m, n, u, b, c) 

also arise. The I ,  and l2 integrals cannot be separated into the obvious two parts, 
because the separate contributions are divergent. These integrals have recently 
been studied by Feldmann et al. (1998). 

For the ground state of Li, a comparison of theoretical methods is possible for 
the principal part of the relativistic correction to the energy, that is, the contribu- 
tion (H,,,, + Hen,,). Chung (1991) calculates (H,,,, + Hen,,) = -7.0748 x 
a.u., and he also evaluates this quantity for the 1s’ IS state of Li+.  He finds a 
difference with the results of Pekeris ( I  958, 1962) for Li+,  and accordingly adopts 
a core correction procedure. When this core correction is included for the Li 
ground state, Chung finds (H,,,,, + Hen,,) = -7.0942 X a.u. If the Hylleraas 
results for (H,,,,) (King, 1995) and (Hen,,) (Yan and Drake, 1995a) are combined, 
the value found for (H,,,, + Hen,,) is -7.0951 X a.u., which is in fairly close 
agreement with Chung’s result. This close comparison does validate Chung’s core 
correction approach, at least for (H,,,, + Hen,,). The most complicated contribu- 
tion to evaluate is H,, and there are no published Hylleraas results available to 
check the CI results of Chung and coworkers. 

The level of precision of the relativistic corrections calculated using the CI 
technique is generally adequate to aid in the assignment of spectral lines arising 
from a wide variety of states. However, when a high-precision theoretical calcu- 
lation of the ionization potential is the target, for example for the Li ground state, 
six-digit accuracy is required for the relativistic corrections in order to match up 
with the currently available experimental result, for which eight digits of precision 
are available. As higher precision spectroscopic work continues for Li, there will 
be increased interest in knowledge of higher precision values for the relativistic 
corrections. 
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VI. Specific Mass Shift Correction to the Energy Levels 

The extension of Eq. (13) to incorporate the effect of finite nuclear mass is 

1 
y . 7  + 2 2 - 

3 3  3 3  
1 1 

[--V': - '1 - -  2 H ,  = (38) 
i = l  2E.L r, M i = l  j , i  i = I  j > i  rij 

where y is the reduced mass, 

and M and m, denote the nuclear mass and the electron mass, respectively. The 
effect of finite nuclear mass involves two principal contributions. The normal 
mass shift (also referred to as the Bohr mass shift) can be determined using 

where "E is the state energy computed in the infinite nuclear mass approximation. 
The second contribution is specific mass shift, AE,,, (also referred to as the mass 
polarization correction). Two methods have been used to evaluate AESms. The 
most commonly employed approach is to evaluate AE,,, using the first-order per- 
turbation theory formula 

where W is the approximate solution of the infinite nuclear mass Schrodinger 
equation. An alternative operator form is available (Vinti, 1932, 1940), which 
gives 

The result given in Eq. (42) has been less frequently employed, but for an appli- 
cation to Li, see Tong et al. (1993). 

A different approach that has been investigated for Li is to evaluate AE,,, using 
the result 

where W, is the nuclear mass-dependent approximate solution of the Schrodinger 
equation using H ,  (Eq. (38)). High-precision calculations using this procedure 



84 Frederick U! King 

have been carried out by King (1986), Luchow and Kleindienst (1994). and Yan 
and Drake (19954. 

A selection of high-precision results for AE,,, for various low-lying states of 
Li is given in Table 6. These results are all based on the use of Eq. (41), and the 
valuesp/M = 7.8202022(6) X for7Li, andp/M = 9.1216762(8) X for 
" L i  have been employed. These values of ,dM are calculated from the nuclear 
masses of 7.0143584(5) amu for 7Li, and 6.0134766(5) amu for 6Li (Audi and 
Wapstra, 1993, 1995). For the most precise results for the 2 ' S  ground state, using 
the full H ,  approach, a significant fraction of the uncertainty in AE,,, comes 
from the error in determining the nuclear masses of 6Li and 7Li. 

There are two smaller mass-dependent contributions to the energy. The first are 
the nuclear mass-dependent relativistic corrections. No high-precision calcula- 
tions of these contributions have been carried out for the lithium atom. A second 
correction is the field shift contribution (also called the volume shift) (King, 
1984). This correction arises from the electric field generated by the nuclear 
charge distribution. For light atoms, this contribution is usually regarded as neg- 
ligible. However, the accuracy of recent isotope shift measurements (Sansonetti 
et d., 1995) suggests that a high-precision calculation of this field shift correction 
would be of value. There is relatively little published work on this correction for 
the lithium atom. Veseth (1985) has determined values of 0.02168 cm-' for the 
ground state of 7Li, 0.02143 cm-1 for the 2 *P state of 7Li and 0.02147 cm-l for 
7Li+( Is'). There is, not unexpectedly, a significant cancellation of these contri- 
butions when transitions such as 7Li(2s) + 7Li(2p) and 7Li( ls22s) + 7Li+( Is') + 
e-  are considered. Improvements in the experimental precision of isotope shift 
measurements will provide some significant challenges for theorists in this area. 

A. TRANSITION ISOTOPE SHIFTS 

The transition isotope shift (TIS) for a transition from state X to state Y for iso- 
topes with mass numbers A , and A ,  (A, > A2) is 

(44) 
AETIs = [E("lY)  - E("iX)]  - [E(AzY) - E("2X)I 

= E(AlY) - E("2Y) - [E(AIX) - E(AZX)] 

where E ( A ~  Y) is the energy of state Y for the isotope of mass A ,  . If this energy is 
factored into a value that is computed in the infinite nuclear mass approximation 
and a mass correction shift to the energy, 

(45) E(AiY) = "E(Y)  + AEMAss(AiY) 

then the mass-dependent form of AE,,, is 

AET,S,mass = AEn,abs(A~ Y) - AEm,,,("2Y) - [AE,a,s(A~X) - AE,as,(A2X)I (46) 



TABLE 6 
SPECIFIC MASS SHIFTS FOR THE GROUND AND SELECTED EXCITED STATES OF Li. 

State 

(absolute a x )  hLi 7Li Reference 

2 ’S 

3 2s 

4 2s 

5 2s 

6 2S 
2 2P 

3 2P 
3 2D 
ls2s3s 4s 
ls2s4s 4s 
ls2s5s 4s 
ls2s6s 4S 
ls2s2p4P 
ls2s3p 4P 
ls2p2p 2Pe 
ls2p3p 2Pe 

-0.30 185 
-0.3018467 
-0.301 8436 
-0.301 80 
- 0.30 1842799” 
-0.301 842809” 
-0.29212 
- 0.292039995 a 

-0.29033 
-0.2901575” 
-0.28969 
-0.289540 
-0.28942 
-0.2467378Ia 
-0.24674181 
-0.27589098 
-0.288928837” 
-0.019098739 
-0.0186 19609 
-0.0 179 1668 
-0.0 175922 

0.1975568 
0.02001852 

-0.15493607 
0.23991 361 

27.531 
27.53097 
27.53068 
27.527 
27.53061 1 
27.530612 
26.644 
26.6365 13 
26.48 1 
26.4648 1 
26.422 
26.4085 
26.398 
22.50457 
22.50494 
25.16357 
26.352749 

1.741966 
1.698266 
1.634151 
1 .W56 

- 18.01885 
- 1.825858 
14.13 148 

-21.88215 

23.603 
23.603 18 
23.60293 
23.600 
23.602871 
23.602872 
22.843 
22.836332 
22.703 
22.689 13 
22.653 
22.6408 
22.631 
19.29389 
19.29420 
21.57355 
22.59305 

1.493443 
1.455977 
1.401011 
1.37564 

-15.44813 
- 1.565366 
12.1 1537 

- 18.76026 

King ( 1986) 
King ( 1989) 
King and Bergsbaken (1990) 
Chung (1991) 
Liichow and Kleindienst (1994) 
Yan and Drake (1995a) 
King (1991a) 
Liichow and Kleindienst ( 1994) 
King(1991a) 
Luchow and Kleindienst (1992b) 
King (1991a) 
Liichow and Kleindienst (1992b) 
Liichow and Kleindienst (1992b) 
Yan and Drake (1 995a) 
Barrois er al. (1997b) 
Barrois er al. (1997b) 
Yan and Drake ( 1995a) 
Barrois et al. (1 996) 
Barrois er al. (1996) 
Liichow er 01. (1993) 
Liichow er al. (1993) 
Barrois et al. (1997a) 
Barrois et al. (1997a) 
Barrois et al. ( 1997c) 
Barrois et nl. (1997~) 

“A more precise value calculated using the finite mass Hamiltonian is available for this state (see Liichow and Kleindienst, 1994: and Yan and 
Drake, 1995a). 
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26.422 
26.4085 
26.398 
22.50457 
22.50494 
25.16357 
26.352749 

1.741966 
1.698266 
1.634151 
1 .W56 

- 18.01885 
- 1.825858 
14.13 148 

-21.88215 

23.603 
23.603 18 
23.60293 
23.600 
23.602871 
23.602872 
22.843 
22.836332 
22.703 
22.689 13 
22.653 
22.6408 
22.631 
19.29389 
19.29420 
21.57355 
22.59305 

1.493443 
1.455977 
1.401011 
1.37564 

-15.44813 
- 1.565366 
12.1 1537 

- 18.76026 

King ( 1986) 
King ( 1989) 
King and Bergsbaken (1990) 
Chung (1991) 
Liichow and Kleindienst (1994) 
Yan and Drake (1995a) 
King (1991a) 
Liichow and Kleindienst ( 1994) 
King(1991a) 
Luchow and Kleindienst (1992b) 
King (1991a) 
Liichow and Kleindienst (1992b) 
Liichow and Kleindienst (1992b) 
Yan and Drake (1 995a) 
Barrois er al. (1997b) 
Barrois er al. (1997b) 
Yan and Drake ( 1995a) 
Barrois et al. (1 996) 
Barrois er al. (1996) 
Liichow er 01. (1993) 
Liichow er al. (1993) 
Barrois et al. (1997a) 
Barrois et al. (1997a) 
Barrois et al. ( 1997c) 
Barrois et nl. (1997~) 

“A more precise value calculated using the finite mass Hamiltonian is available for this state (see Liichow and Kleindienst, 1994: and Yan and 
Drake, 1995a). 
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There are two principal components to AE,,, . The Bohr mass shift (put MASS = 

Bohr in Eq. (46)) is straightforward to calculate (see Eq (40)). Of greater interest 
to theorists, is the specific mass shift contribution to the transition isotope shift, 

AETIS.sms = AE sms Y )  - AE,m,(A2Y) - [AE,ms(A~X) -1 AEsms(A2X)] (47) 

This quantity is a sensitive measure of the adequate description of correlation 
effects (it is zero in the Hartree-Fock approximation), and can be compared di- 
rectly with experimental results. 

For transitions of the type Li(*X) + Li+(ls2) + e - ,  there has been consider- 
able theoretical interest (Prasad and Stewart, 1966; Mhtensson and Salomonson, 
1982; Chambaud et al. 1984; King, 1986, 1989; King and Bergsbaken, 1990; 
Luchow and Kleindienst, 1994; Yan and Drake, 1995a; Barrois ef al. 1997b). 
These authors either explicitly calculate A ETIS or provide the necessary expecta- 
tion values to determine it. There has also been a good deal of experimental inter- 
est in AET,S,sms for the same process (Hughes, 1955; Mariella, 1979; Lorenzen 
and Niemax, 1982; Goy et al., 1986; Vadla et al., 1987; Sansonetti et al., 1995; 
Radziemski et al., 1995). A summary of some of the higher precision theoretical 
results is presented in Table 7. In most cases, the theoretical results fall within the 
error limits of the experimental results. Unfortunately, the error limits are rather 
large in a number of cases where the theoretical precision is high. The precision 
of the best theoretical results for AETIS.sms is limited by the present uncertainties 
in the nuclear masses of 6Li and 7Li. 

A small but notable discrepancy between theory and experiment occurs for the 
2 *P state of Li. Radziemski et al. (1995) report values of -3.6100(6) GHz for 
2 and -3.6103(5) GHz for 2 2P,,2. Two high-precision theoretical estimates 
are -3.61635 GHz and -3.61601 GH, (Yan and Drake, 199%; Barrois et ul., 
1997b); which are both smaller than the aforementioned experimental results. The 
specific mass shift contribution to the 2 *P, level is given by 

AETIS.sms(2pj) = AETIS.sms(2S) - AETIS,sms(2S j 2pj) (48) 

Using the value of the 2s + 2p TIS from Sansonetti et al. (1 995), the Bohr shift 
contribution as 5.813 GHz, and the shift for the ground state of 1.109(8) GHz 
(Vadla er al.. 1987), leads to a shift for the 2 *P state of -3.612(8) GHz. If the 
alternative value of 1.11 l(6) GHz for the specific mass shift of the 2 ?S state (Lor- 
enzen and Niemax, 1982) is used, then the shift for the 2 *P state is -3.609(6) 
GHz. The error bars are too large to distinguish any difference between the 2 2P,,2 
and 2 2P,,2 states. The first estimate, -3.612(8) GHz, is close to the results of 
high-precision calculations, and the second estimate, - 3.609(6) GHz, almost 
overlaps the theoretical results. The error bars on these two values are too large 
for these results to provide a tight check on the theoretical calculations. 

The specific mass shift contribution for a transition between any pair of levels 



TABLE 7 
SPECIFIC MASS SHIFT CONTRIBUTION TO THE TRANSITION ISOTOPE SHIFTS (ns) FOR THE 

GROUND AND SELECTED EXCITED STATES OF Li 

Specific mass 
shift contribu- Experimental 

Shift for 6Li-7Li tion to the TIS specific mass Reference for theoretical 
State (GHz) (GHz)" shift (GHz) calculation 

2 2s 

3 2s 

4 2s 

5 2s 

6 2S 

2 2P 

3 2P 

4 2P 
5 2P 
3 2D 

4 'D 

25.844 
25.8436 
25.84336 
25.84329(3) 
25.84329(3) 
25.01 1 
25.00399 

24.858 
24.8428 1 

24.803 
24.7899 

24.780 
21.12529 
21.12563 

1.102 
1.1020 
1.10172 
1.10 165(4) 
1.10165(4) 
0.269 
0.26235 
0.088 
0.1 16 
0.101 17 
0.042 
0.061 
0.0483 
0.024 
0.038 

-3.61635 
-3.61601 

- 1.034 

-0.442 
-0.227 
-0.00205 

24.73762 -0.00402 
-0.00058 

23.62134 -1.12030 

1.108(8)b 
1.111(6)c 

0.276(26)b 
0.260(30)d 
0.1 1 I (  12)' 
0.094(30)d 

0.053 b.e 

0.027(30)d 

0.029 b.e 

-O.O46( 120)d 
- 3.596(26) 
-3.608(8)' 
-3.61 I(6)g 
- 3.6 1 OO(6) h ~ i  

-3.6103(5)h*J 
- 3.603( 1 5)d.' 

- 1.105(8)b 
- 1.1 16(30)d 
-0.504(45)d 
-0.308(60)d 
-0.01 1(45)d 

-0.024(45)d 

- 3.603( 15)d.J 

King ( 1986) 
King (1989) 
King and Bergsbaken (1990) 
Liichow and Kleindienst (1994) 
Yan and Drake (1995a) 
King (1991a) 
Liichow and Kleindienst (1994) 
MArtensson and Salomonson (1982) 
King (1991a) 
Liichow and Kleindienst (1994) 
M h n s s o n  and Salomonson (1982) 
King (1991a) 
Liichow and Kleindienst (1992b) 
Mhtensson and Salomonson (1982) 
Liichow and Kleindienst (1992b) 
Yan and Drake ( 1995a) 
Barrois et al. (1997b) 

Mhensson and Salomonson (1982) 
Barrois et al. (1997b) 
MArtensson and Salomonson (1982) 
MArtensson and Salomonson (1982) 
MArtensson and Salomonson (1982) 
Yan and Drake (1995a) 
Mhensson and Salomonson (1982) 

"The shift for ls2 
from the available value of (q. 7) (Liichow and Kleindienst, 1994; Yan and Drake, 1995a) and 
the conversion factor 1 a.u. = 85.61837(7) GHz. 
bResults from Vadla er al. (1987). 

'Result from Lorenzen and Niemax (1982). 

dResults from Radziemski et al. (1995). 

=These experimental results are derived by extrapolation using scaling formulas. 
'Result from Mariella (1979). 

gResult from Fuchs and Rubahn (1986). 

hResults from Radziemski et al. (1995) based on measurements of Sansonetti et al. (1995). 

Result for 2 2P;;2, 
J Result for 2 2P;n. 

- Is2 'Li+ has been taken as 24.74164(3) GHz, which has been computed 
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can be evaluated using the level shift information for the various states given in 
Table 7, and the result 

Precise experimental results for a number of transitions for Li can be found in 
Mariella ( 1  979), Fuchs and Rubahn (1986), Vadla et al. (1 987), Windholz et al. 
(1990), and Sansonetti et al. (1995). 

VII. Quantum Electrodynamic Corrections 

A high-precision calculation of transition energies or ionization potentials re- 
quires a determination of the Lamb shift correction, AEQED. For the lithium atom 
there has been limited work in this area. One approach to calculating AE,,, for a 
transition from the ls22s ground state of Li, is to ignore the 1s' core, effectively 
reducing the problem to a one-electron correction. AEQED can then be calculated 
using (Bethe and Salpeter, 1977) 

- +g]} 3 cej 

8 ( 2 t  + 1) 
+ -  

and the dependence of ctj on the quantum numbers e and j is given by 

cej = (t + aj.e+I,z - 4-1aj,e-l,2 (51) 

In Eq. (51), R, denotes the infinite nuclear mass Rydberg constant, Z,, is the 
effective nuclear charge, and Sm,n is a Kronecker delta. Values of the Bethe loga- 
rithm k'n[k,(ne)/R, J have been tabulated as a function of the quantum numbers n 
and k' (Drake and Swainson, 1990). 

The principal problem with the use of Eq. (50) for transitions from the Li 
ground state is that Z,,  is not known with any precision. Using a value of Z,,  that 
would be characteristic of a Z = 3 nucleus screened by a pair of Is electrons 
leads to the value AEQE, (2, 0) = -0.08 cm-'. This value is about one-third the 
size of estimates based on more refined calculations (McKenzie and Drake, 199 1 ; 
Feldman and Fulton, 1995). The other drawback of the application of Eq. (50) is 
that the many-electron nature of the correction is lost. 

For transitions from higher excited doublet states, AEQED(n, k') makes a negli- 
gible contribution to the transition energy, based on the current levels of precision 
available experimentally. For such transitions, the QED effects for the ls2 core 
effectively cancel for the two states in question. 
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For a precise theoretical determination of the first ionization energy of Li, an 
improved estimate of AEoED based on the three-electron nature of the problem is 
required. This can be determined using 

AEQED = E , ( l s 2 )  - E,(ls22s) 

where EL( ls2) can be calculated from 

19 
30 

- 2 h  - &(ko/R,) + - + 2.2962.rrc~z 

and 

where 

and y is Euler’s constant. Similarly, EL( ls22s) can be determined from 

E,,,(ls22s) = z c u 3  

and 

In Eq. (56), F( ls22s) denotes a combination of one-electron functions F( Is) and 
F(2s), which can be written as a sum of one-electron quantum electrodynamic 
corrections (Drake, 1993; Johnson and Soff, 1985), and u is a screening constant. 
Feldman and Fulton (1995) find a different result in place of Eq. (57); the factor 
164115 is found as (129/15) - (3d2). 

The correction to the ionization energy of Li using Eqs. (52-57) is - 0.22(2) 
cm-’ (McKenzie and Drake, 1991) or -0.24 cm-1 (Feldman and Fulton, 1995). 
The uncertainty in this correction is a major component in the error associated 
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with the theoretical determination of the first ionization potential of Li. Further 
progress in this area will be needed as higher precision experimental data becomes 
available for the Li atom. 

The previous discussion has focused on transitions involving the low-lying 
doublet states. Complications arise when more excited states are considered. No 
detailed calculations appear to have been published. For a state like [( ls2p) 3P,3d] 
'o", an estimate of the QED contribution to the term energy can be made by 
combining the AEQED contributions to the ionization potentials of the Is' Li+, 
ls22s Li and Is2p 3P Li+ states (Chen and Chung, 1994). Implicit in this type of 
calculation is the assumption that the contribution from the 3d electron is negli- 
gible. This can be verified to be a reasonable assumption using the one-electron 
formula, Eq. (50). A more problematic situation arises for states like ls2s2p 4P. It 
would probably be an inadequate approximation to estimate the QED contribution 
to the term energy of this state, using a combination of the AEQED contributions 
to the ionization potentials of the 1s' Li+, ls22s Li and ls2s 3S Li+ states. The 
estimate could be improved by trying to determine the QED contribution of the 
2p electron using the one-electron formula, but this would be a rather rough 
approximation in this case. For states such as ls2s2p 4P, where there would 
be expected to be significant correlation effects in the valence shell, the QED 
contribution should therefore be evaluated using the many-electron expression for 
AEQED. 

VIII. The First Ionization Potential 

The calculation of the first ionization potential of Li has attracted considerable 
attention over many years. The ionization potential has been a benchmark prop- 
erty to test different computational techniques, some of which include many-body 
perturbation theory (Lindgren, 1985; Johnson et al., 1987, 1988; Blundell et al., 
1989), Cl (Chung, 1991; Weiss, 1992; Morrison et al., 1996), Cl-HY (Pipin and 
Bishop, 1992), MCHF (Tong et al., 1993), and HY (Yan and Drake, 1995a; King 
et al., 1998e). 

The first ionization potential, I , ,  can be determined from the formula 

I, = E,,(Li+) - ENR(Li) + AEEL + AE,,,, + A E p D  (58) 

where the various terms in Eq. (58) have been defined previously in Eq. (22-24). 
A breakdown of the component contributions has been given recently by King 
(1997) and King et al. (1998e). The theoretical value of I ,  (in absolute a.u.) is 
0.1981420( 1) (43487.14(2) cm-I), which compares closely with the experimental 
value of 0.19814203(2) a.u. (43487.150(5) cm-l) (Johansson, 1959). The major 
sources of error in the theoretical determination of I ,  lie with AE,, and AEQED. 
A combined experimental-theoretical approach has been suggested by Yan and 
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Drake (1995a) to evaluate I,. Because the experimental 2 2S-2 2P and 2 2P-3 *D 
transition energies are known to high precision, combining these values with the 
theoretical ionization energy of the 3 2D state leads to the precise value I, = 
43487.167(4) cm-' (Yan and Drake, 1995a). A recalculation using more recent 
experimental results (Sansonetti et al., 1995; Radziemski et al., 1995) yields the 
value I, = 43487.163(5) cm-' (King, 1997). An essential advantage of this ap- 
proach is that AE,,, for the 3 2D state is negligibly small. 

A. TRANSITION ENERGIES 

In Table 8, precise theoretical estimates are presented for the term energies of the 
lower-lying doublet states relative to the Li ground state. The term energies (rela- 
tive to the ground state energy) are obtained theoretically using 

7'(2X) = EN,(2X) - E N R ( ~ S ~ ~ S )  + AEREL + AEMASs + AEQ,, (59) 

with 

AE,,, = E,,,(2X) - E,,(ls22s) 

AEMAss = EMA,s(2X) - E,Ass(ls22s) 

AEQE, = EQED(2X) - EQE,(ls22s) 

(60) 

(61) 

( 6 2 )  

An alternative approach is to use a rearranged form of Eq. (21) ,  

T ( 2 X )  = I ,  + E,,(2X) - ENR(Li+)  - AEMASs - AEmL - AE,,, ( 6 3 )  

with AEMAss,  AEREL and AEQ,, defined in Eqs. (22-24) .  Equation ( 6 3 )  has the 
advantage that the relativistic and quantum electrodynamic corrections need to be 
explicitly evaluated for only one three-electron state, rather than the two required 
for Eq. (59). This is partially offset by the need for a high-precision value of I,. If 
the experimental result for I, is employed, we have a combined experimental- 
theoretical determination of T( 2 X ) ,  with the error resulting principally from the 
uncertainties in AE,,, and AE,,,. For a higher lying doublet state, AE,,, and 
A EQFD can be evaluated from one-electron formulas, with a corresponding reduc- 
tion in the estimated uncertainty for T ( 2 X )  when Eq. (63)  is used. 

The EN, values used to construct the theoretical entries in Table 8 are taken 
from Table 1 (the least-upper-bound result for each term energy was used). The 
relativistic corrections were taken from the references cited in Section V and the 
mass corrections (the E,,, component) were taken from Table 6. The QED cor- 
rections were estimated from the one-electron formula, Eq. (50), with Z,, deter- 
mined from 



TABLE 8 
LEVEL ENERGIES ABOVE THE GROUND STATE FOR THE 

LOW-LYING DOUBLET STATES OF 7Li. 

Team energy (cm-I) 

State TheoreticalC 

3P 2p,12 

3P 2p3/2 

4P 2p,12 

5P 2pl12 

4p 2p3/2 

'P "312 

6P 2pl12 

6P "312 

3d 2D312 

3d 2D512 

4d 2D312 

4d 2D,, 

5d 2D3/2 

5d 2D512 

6d 2D312,512 

4f 'F512 

4f 2F7/2 

5f 2Fs12 
5f 2F7n 

O.oo00 
27206.0952( 10) 
35012.0326( 10) 
35012.0337(7)d 
38299.4627( 10) 
39987.586( 3) 
149O3.648130( 14)' 
14903.983468( 14)= 

[14903.871689(20)] 
[3O925.5530( 10) 
30925.6494( 10) 

[30925.6 173( I4)] 
36469.7542( 15) 
36469.7943( 15) 

[36469.7809(2 I)] 
390 15.6988(20) 
39015.7 199(20) 

[39015.7 129(28)] 
40391.283( 10) 
40391.295( 10) 
[40391.291( 14)] 
3 1283.0505( 10) 
3 1283.0496(7)d 
31283.0866(10) 
3 1283.0856(7)d 

[3 1283.0722( 14)] 
36623.3360( 10) 
36623.3444(7)d 
36623.351 l(10) 
36623.3596(7)d 

[36623.3451( 14)] 
39O94.861( 10) 
39094.869( 10) 

[ 39094.866( 14)] 
4O437.220( 20) 
36628.329(3) 
36628.336(3) 

[36628.333(4)] 
39097.499( 15) 
39097.503( 15) 

[39097.501(21)] 
40438.90(5) 

27206.09(5) 
35012.05(5) 

38299.6(2) 
39994(7) 

14903.86( 11) 

30925.60(1 I )  

36469.76( 12) 

39015.89(25) 

31283.05( 11)  

36623.2(2) 

39094.8(2) 

36627.9(7) 

39097.2(7) 

~~~~~~~~~ ~ ~ ~ ~ ~~ 

"Experimental data from Radziemski ef al. (1995), except where noted. 

bLevel values are determined from the center of gravity of the hyperfine stmcture of 
the ground state. Center of gravity estimates are given in [ 1. 
'Theoretical values are calculated from Eq. (59) or Eq. (63). 

dFrom Lorenzen and Niemax (1983). 

eFrom Sansonetti el al. (1995). 
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For the P, D, and F states, the quantity to compare with the theoretical result is 
the center of gravity of the two level energies, that is 

2 

c ( 2 J j  + l ) E j  
j =  I 

ECG = 2 

C(2Jj + 1) 
j =  I 

The agreement between theory and the recent experimental results (Windholz and 
Umfer, 1994; Sansonetti et al., 1995; Radziemski et al., 1995) is, in general, rather 
good. Because there are often no published uncertainties for EkEL(2X) ,  we have 
made rough estimates of the errors, based on the numbers of digits the authors 
have quoted. The uncertainties for AEQED for the lowest lying *X states are also 
very difficult to gauge, and an error estimate based on the difference between the 
result calculated using a one-electron approximation and more precise results for 
the 2S ground state has been employed. The uncertainties for the other quantities 
that determine T ( 2 X )  are much less important, and do not have an impact on the 
final error estimates. The final error estimates reported in Table 8 are believed to 
be generous, but do involve some rough estimation. 

Using Table 8, the theoretically determined transition energies between differ- 
ent levels-actually, between center of gravity estimates-are found to be in very 
close agreement with experimental results. To progress beyond the current preci- 
sion levels will require a high-precision determination of ERE, for the states in- 
volved. Progress on this front has been limited by mathematical difficulties, a 
topic addressed earlier in Section V. Further progres: on the calculation of AEQED 
for systems beyond the two-electron level will also be required. 

IX. Hyperfine Coupling Constants 

The lithium atom has long served as a benchmark for testing various theoreti- 
cal methodologies for calculating precise hyperfine coupling constants. High- 
precision experimental data are available for the coupling constants of the ground 
states of both 6Li and 'Li, and this serves as a valuable comparison point for the 
theoretical work. 

The principal part of the magnetic Hamiltonian describing hyperfine interac- 
tions is 

(66) H , ,  = H ,  + H ,  + H ,  + H ,  = Hmhfs + H ,  

where 
3 

87r 
H = - g  J g l p B p N  I ' 

, 3  i= I 
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H, = -c 2 ( r z r , ~ ~ ) P ~ ( c o s  0,) 
p = l  i = l  

In Eqs. (67-70), g, is the electronic g-factor, g, is the nuclear g-factor, p B  is the 
Bohr magneton, pN is the nuclear magneton, I is the nuclear spin operator, si is 
the electron spin operator for electron i, S(ri) is a Dirac delta function, ti, is the 
orbital angular momentum operator for electron i, P,, is a Legendre polynomial, 
and the p-summation is over protons. Equations (67-70) represent the Fermi con- 
tact hyperfine interaction, the spin dipolar hyperfine term, the orbital contribution, 
and the electric quadrupole interaction, respectively. 

For a given J, it is possible to write effective operator forms: 

H, = a,I J 

H, = a,I - J 

H, = a,I . J (73) 

with an effective magnetic hyperfine operator defined by 

H, = A,I * J (74) 

where 

A j  = a, + a, + a, (75) 

To match up with theoretical calculations, the following connections to the 
various expectation values are employed: 

f =  (. 
d = ( .  

i= 1 

(76) 

(77) 
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with 

and 

In Eq. (83), h is Planck’s constant, a, is the Bohr radius, I is the nuclear 
spin, and p, is the nuclear magnetic moment. The expectation values in Eqs. (76- 
78) are also sometimes identified notationally with a,, ad,  and ao, respectively. In 
Eq. (76), uzi is the Pauli spin operator and satisfies aZia(i) = a(i) and azi/?(i) = 

-PW. 
For the ,S,,, states of Li 

It is convenient to simplify the notation by dropping the J dependence of a,, , and 
express A ,,, and A,,, in terms of a,,,,,. For the state 2P3,2 

(85) A,,, = a, + a, + ad 

and for the ,PI,, state 

A,,, = -a, + 2a, - load (86) 

The connection between aA3,2 and aA,,, can be obtained directly from Eqs. (80- 
82). A third hyperfine coupling parameter, A,,,,,,, , arises as an off-diagonal 
component, 

Aj.j-1 = (JI,  MjIIH,,I(J - 1)1, M j I ) ,  (87) 

leading to 

Slightly different definitions of a, can be found in the literature (see, for example, 
Lindgren and RosCn, 1974), with the result that Eqs. (85, 86, 88) will also appear 
in a slightly different form. 
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The electric quadrupole constant is defined by 

6,  = (LSI, LSI(H,ILSI, LSI) (89) 

The determination of the hyperfine constant for the 2S,,2 state of Li has at- 
tracted extensive theoretical attention (Larsson, 1968; Lindgren, 1985; King and 
Shoup, 1986; King, 1989; Panigrahy er al. 1989; Blundell et al., 1989; King 
and Bergsbaken, 1990; Mktensson-Pendrill and Ynnerman, 1990; Sundholm and 
Olsen, 1990; Esquivel et al., 1991; Carlsson et al., 1992; Tong et al., 1993; 
Shabaev et al., 1995; Bieroh et al., 1996; Yan et al., 1996b; King, 1998b). A 
collection of references to earlier work on the Li ground state is given by King 
(1997). For the excited S states of ti, the most precise theoretical values avail- 
able have been determined by Blundell et al. (1989), King (1991), Jonsson et al. 
(1995), and Yan et al. (1996b). There has been considerable interest in the 
theoretical determination of the hyperfine coupling constants of the 2P,,2 and 
2P,,2 states (Ahlenius and Larsson, 1973, 1978; Garpman et al., 1975, 1976; 
Glass and Hibbert, 1976; Lindgren, 1985; Johnson er al., 1987; Blundell er a/., 
1989; Mirtensson-Pendrill and Ynnerman, 1990; Sundholm and Olsen, 1990; 
Carlsson et al., 1992; Tong et al., 1993; Bieron et al., 1996; Yan et al., 1996b). 
Other excited states of Li have received far less attention; with only more ap- 
proximate results being available (Goddard, 1968; Ladner and Goddard, 1969; 
Lunell, 1973). 

The availability of a number of experimental hyperfine coupling constants has 
undoubtedly been a stimulus for theoretical developments. A good review of the 
earlier experimental work has been given by Arimondo et ul. (1977). Experimen- 
tal results are available for the 2 2S, ,2 ,  3 2S, ,2 ,  and 4 2S,,2 states (Beckmann et al., 
1974, Vadla et al., 1987; Stevens et al., 1995; Kowalski et al., 1978), and the 
2 2P,,2, 2 2P3,2, 3 2P,,2, 3 2P312, and 4 2P,,2 states (Ritter, 1965; Brog et al., 1967; 
Budick et al., 1966; Isler et al., 1969; Orth et al., 1975 ; Nagourney et al., 1978; 
Shimizu et al., 1987; Carlsson and Sturesson, 1989). The high precision measure- 
ment of A ,12  for the ground state of Li presents a significant computational chal- 
lenge. For the ground state of the isoelectronic ion Be+,  the experimental precision 
is higher still, and the difference between experiment (Wineland er al., 1983) and 
theory (King, 1988; Yan et al., 1996b) is even more pronounced. 

Table 9 presents a summary of some of the high-precision values of the Fermi 
contact term (Eq. (76)) and the hyperfine coupling constants for the 2S states 
of Li. These values are mostly based on nonrelativistic calculations in the infi- 
nite nuclear mass approximation. To determine the coupling constant A for the 
2S,,2 states, the following relationship is employed: 

= (=)(Y)f POPBPN 90 
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TABLE 9 

LOW-LYING zS STATES OF 'Li. 
EXPECTATION VALUES AND HYPERFINE COUPLING CONSTANTS FOR THE 

State fNR (a.u.) f ( a 4  A 112 (MHz) Reference 

2 2S 2.906 2.907 401.9 Larsson (1968) 
2.9041 2.905 401.6 King and Shoup (1986) 
2.9064 2.9072 401.91 King (1989) 
2.9071 2.9079 402.01 King and Begrsbaken (1990) 
2.9039 2.9047 401.56 Sundholm and Olsen ( 1990) 
2.9047 2.9055 40 I .67 Carlsson er al. (1992) 
2.905 1 2.9059 401.73 Tong et al. (1993) 

2.904 401.5 Shabaev et al. (1995) 
2.90578 401.7 I4 Bierod et al. (1996) 

2.905922(50) 2.90575(22) 401.71(3) Yan et al. (1996b) 
expt. 401.7520433(5) Beckmann er al. (1974) 

3 2s 93.24(2) Blundell er al. (1989) 
0.670 0.670 92.7 King (1991a) 
0.67335 0.67372 93.139 Jonsson et al. ( 1995) 
0.673405(50) 0.673368(86) 93.091(12) Yan et al. (1996b) 

expt. 94.68(22) Stevens et al. (1995) 

0.25327 0.25336 35.026 Jonsson er al. ( 1995) 
42S 0.254 0.254 35. King(1991a) 

expt. 36.4(40) Kowalski et al. (1978) 
5 2s 0.11 0.11 16 King (1991a) 

where 

= ct 2cR,(m,lm,,) 

= 95.410673(9) MHz 

In Eq. (91), mp is the proton mass, c is the speed of light, and po is the vacuum 
permeability. 

Using the most recent estimates for the fundamental constants (Cohen and 
Taylor, 1987), and the revised values for the nuclear moments of 6Li and 7Li (King, 
1997), Eqs. (80-82) can be expressed for the 2P3,2 state of 7Li as, 

a,  = 69.123175(44)f/J 

ad = 207.36953(13)d/J 

a,  = 207.13122(11)1/5 
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and for 2P3,, state of 6Li: 

Frederick W King 

a, = 26.174020(20) f / J  

ad = 78.522059(60)d/J 

a ,  = 78.431823(53)e/~ 

In Eqs. (92-97)J d, and 4 are in a.u. and a,, ad and a ,  are in MHz. 

for relativistic effects and for quantum electrodynamic corrections, that is 
To employ Eq. (90), the f value must be corrected for the finite nuclear mass, 

(98) 

The correction for finite nuclear mass is handled by multiplying fNR by (1 - p/ 
M ) 3 ,  leading to the result 

f = f N R  + 'fMASS + 'fREL + 'fQED 

For 7Li this correction is -0.000682 a.u. AfREL has been estimated in several 
ways. One approach involves a comparison of MCHF and MCDF calculations 
using different basis sets, and then estimating A fREL using an extrapolation pro- 
cedure (Tong et d., 1993). An alternative approach is based on a one-electron 
relativistic correction to Iq(0)l' (Yan et al., 1996b). For the 2S,,, ground state of 
Li, several estimates of A fREL lead to approximately 0.0017 a.u., with the error in 
the second significant digit being roughly estimated as 23 ,  based on the spread of 
the calculated values. Relatively little work is available on the determination of 
A fQED. Three rather different estimates for the ground state of Li are available: 
-0.0002 a.u. (Panigrahy et al., 1989). 0.00336 a.u. (Bieron et al., 1996). and 
- 0.0009 18(47) (Yan et al., 1996b). It should be clear from the preceding remarks 
on A fREL and A fQED that these two contributions are the principal factors that 
prevent a more precise theoretical determination of the hyperfine coupling con- 
stants from being made. 

A list of calculated A values for the ,S states of Li is presented in Table 9. 
For the 2S ground state, the corrections A fREL = 0.0017 a.u., A fQED = - 0.0002 
a.u., and the mass correction given above have been applied, unless the authors 
included values for these contributions. For the excited ,S states, the A faED cor- 
rection was ignored, and AfREL = 0.0006 a.u. (Yan et al., 1996b) was employed 
for the 3 ,S state and ignored for the 4 state. The precision of the experimental 
results for the excited ,S states is not sufficiently high to provide a test of the 
calculated relativistic and QED corrections to 5 Only modest agreement between 
theory and experiment is found for the hyperfine constants of the low-lying ex- 
cited doublet S states. 

In Table 10 a summary is presented for some of the higher precision theoretical 



TABLE 10 
EXPECTATION VALUES (ms. (76-79)) AND HYPERFINE COUPLING CONSTANTS FOR THE LOW-LYING 2 P S ~ ~ ~ ~ ~  OF 'Li 

A,,,.,,, 
State f(a.u.) d (a.u.) e (am)  9 (a.u.) A,,, (MHz)" A,,, (MHz)" (MHz)' Reference 

2 ,P -0.214619 -0.01 3525 
-0.2162 -0.0134 

-0.2086 -0.0135 

-0.22 10(3)b -0.01 3476(2)b 

-0.2158( 15) -0.01346(2) 
-0.2159( 15)b -0.0 1346(2) 

-0.2155 -0.01 346 
-0.2 1705 -0.01341 

-0.214860 
(extrapolated estimate) 
-0.214783(50) 

32P -0.0677 -0.00354 
-0.003988 

4,P -0.0289 -0.00149 
-0.001682 

0.063218 
0.0634 

0.0628 

0.06308( I)b 

0.06304(8) 
0.06303(8)b 

0.06305 
0.06308 

0.0177 
0.01868 

0.00746 
0.007858 

-0.022824 45.667 -2.992 
-0.0202 46.0 -3.07 

-0.0224 45.6 -2.81 

-0.022664(4)b 46.24 -3.337 
45.96(1) -3.03 

-0.02253(8) 45.96 -3.100 
-0.02253(8)b 45.96 -3.106 

45.789 -2.879 

-0.02255 45.95 -3.085 
-0.02 187 45.96 -3.145 

45.989= -3.1060' 
45.977b -3.058b 

expt. 45.914(25) -3.055(14) 
-0.00708 12.9 -1.16 
-0.006832 

expt. 13.5(2) -0.96( 13) 
expt. -0.965(20) 
expt. 13.7(12) - 1.036( 16) 

-0.00298 5.45 -0.51 
-0.002892 

expt. -0.4 l(2) 

1 1.965 
12.0 

11.6 

12.21 

11.97 
11.98 

11.96 
12.040 

Nesbet (1970) 
Ahlenius and Larsson 
(1973) 
Ahlenius and Larsson 
(1978) 
Lindgren (1985) 
Blundell er al. (1989) 
Sundholm and Olsen (1990) 
Sundholm and Olsen ( 1990) 
Maensson-Pendrill and 
Ynnerman (1990) 
Carlsson et al. (1992) 
Tong et al. (1993) 
Bierod et al. (1996) 
Godefroid et af. (1996) 
Yan et al. (1996b) 

Yan et al. (1996b) 
11.85(35) Orth et al. (1975) 
3.73 Lunell( 1973) 

Garpman et al. (1 975) 
Budick er al. (1966) 
Isler et 01. (1969) 
Nagoumey et al. (1978) 

Garpman et al. (1975) 
Isler et al. ( 1969) 

1.59 Lunell(l973) 

"Hypertine coupling constants have been recomputed using Eqs. (85,86,88,92-94). 
bIncludes relativistic and mass corrections. 

CIncludes QED, relativistic, and mass corrections. 
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results for the termsf, d, 4, and q, along with the hyperfine coupling constants 
A,,, A,,, computed from Eqs. (85, 86, 88) . The precision of the ex- 
perimental results for the P-states is currently not very high, and as a conse- 
quence, the relativistic and QED corrections to the hyperfine constants of these 
excited states have received less attention, relative to the efforts expended on the 
2S ground state. 

The quadrupole moment, Q, is related to the electric field gradient (4) at the 
nucleus. There is a scatter of the computed results derived from different theo- 
retical approaches: see Diercksen et al., (1988) for a tabulation of results. Pre- 
cise theoretical estimates for Q in barns (1 b = 1 X m2) are: Q(7Li) = 

-0.04055(80) b (Diercksen et al., 1988) and Q(6Li) = -0.00083 b (Sundholm 
et al., 1984). The result for 7Li is in good agreement with the experimental result 
Q(7Li) = -0.041(6) b (Orth et al., 1975). Unfortunately, the uncertainty in the 
experimental result is too large to provide a severe test for different computational 
approaches . 

X. Other Properties 

Space limitations do not allow us to discuss all the recent progress on calculating 
the different properties of the lithium atom. There are, however, three areas where 
very significant progress has been made, and these are discussed briefly next. 

A. POLARIZABILITIES 

The static dipole polarizability of the ground state of Li has been of theoretical 
interest for a long time. A summary of the more significant calculationsperformed 
over the past thirty years is given by King (1997). Several relatively recent calcu- 
lations (Pipin and Bishop, 1992; Wang and Chung, 1994; Yan etal., 1996a) settle 
on the value of 164.1 a.u. (Yan et al. 1996a quote a value 164.116(2) am). This 
result is in agreement with the best experimental value available, 164.0(34) a.u. 
(Molof er al., 1974); unfortunately, the error associated with this experimental 
work is too large to provide a severe test for the theoretical calculations. A signifi- 
cant reduction in the error of the experimental measurement will be needed to 
induce theoretical developments beyond the nonrelativistic level. 

There has been continuing interest in the calculation of the quadrupole po- 
larizability and the hyperpolarizability for the ground state of Li (for a recent 
summary of progress see King, 1997). Unfortunately, there are no experimental 
measurements for Li to compare with the results of calculations. The hyperpolar- 
izability is a particularly difficult property to determine. It is only recently (Pipin 
and Bishop, 1992; Kassimi and Thakkar, 1994; Jaszunski and Rizzo, 1996) that 
both the correct sign and the magnitude have been determined. 



HIGH-PRECISION CALCULATIONS OF THE LITHIUM ATOM 101 

There has been some theoretical attention directed at evaluating the polariza- 
bilities of some of the excited states of Li, including high-lying Rydberg states 
(Schmieder et al., 1971; Shestakov et al., 1972; Adelman and Szabo, 1973; Man- 
akov et al., 1975; Sims et al., 1976b; Beck and Nicolaides, 1977; Redmon and 
Browne, 1977; Davydkin and Zon, 1982; Davydkin and Ovsiannikov, 1986; 
Chung, 1992; Pipin and Bishop, 1993; Themelis and Nicolaides, 1992, 1995; 
Ponomarenko and Shestakov, 1993; Mtrawa et al., 1994). The principal experi- 
mental result available is a measurement of the Stark shift of the lithium D, 
line (ls22s 2S,,2 -ls22p 2P,12) (Hunter et al., 1991; Windholz et al., 1992), 
which is directly related to the difference in the scalar polarizabilities (ao) of the 
two states involved in the transition. This experimental result offers a valuable 
check on the theoretically determined ao(2P) .  The Stark shift of the D, line 
( ls22s 'S,,, -ls22p 2P3,2) has also been measured (Windholz et al., 1992) and this 
allows the tensor polarizability, a 2 ,  for the 2P312 state to be determined. The best 
calculations of a. and a2 (Pipin and Bishop, 1993) are found to be in very good 
agreement with the experimental results. 

B. OSCILLATOR STRENGTHS 

For an electric dipole transition, the oscillator strength is given by 

In Eqs. (100-102), AE denotes the transition energy between the initial and final 
states expressed in a.u., and gi is the statistical weight of the initial state. An im- 
plicit summation over degeneracies is assumed for both states involved in the 
transition. Equations (100 - 102) represent the dipole length, dipole velocity, and 
dipole acceleration forms, respectively. These relationships are all mathematically 
equivalent when exact eigenfunctions are employed. Refinements to Eqs. (100- 
102) are necessary when the effects of finite nuclear mass are considered (Yan and 
Drake, 1995b). When approximate wave functions are utilized, agreement be- 
tween the different forms is sometimes taken as a sign of a better calculation, but 
there are known risks associated with drawing this inference. The dipole accelera- 
tion form is infrequently evaluated. The transition moment involved in the evalua- 
tion of JJa is sensitive to the near-nuclear region of configuration space, and this 
is a region that is more difficult to account for theoretically in the standard varia- 
tional approach. 
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The other property commonly reported is the multiplet line strength, S. This is 
connected to the oscillator strength by the relationship 

2 
f i f =  -AE S, 

3gi 

where AE and S,are both expressed in a.u. 
The calculation of a precise value for the ls22s 2S,,2 -ls22p 2P,,2 oscillator 

strength has attracted considerable attention. Gaupp et al. (1982) reported a mea- 
surement of this oscillator strength, f = 0.7416( 12), with an uncertainty of 0.16%, 
making it one of the most precise measurements of its kind. A number of theo- 
retical results emerged shortly thereafter, using a diverse variety of techniques, 
including MBPT, CI, CI-HY, MCHF, HY (Fischer, 1988; Peach et al., 1988; 
Blundell et al., 1989; Mttensson-Pendrill and Ynnerman, 1990; Weiss, 1992; 
Pipin and Bishop, 1992; Tong et al., 1993; Chung, 1993; Liaw and Chiou, 1994; 
Brage et al., 1994; Yan and Drake, 1995b), together with some earlier results 
(Ahlenius and Larsson, 1973; Sims et al., 1976a), made it apparent that despite 
the quoted precision, the experimental result of Gaupp et al. was slightly low. 
Most of the theoretical results were in the range 0.7467-0.748, with the highest 
precision result being 0.7469572( 10) in the infinite nuclear mass approximation, 
and 0.7467871(10) for 7Li (Yan and Drake, 1995b). Two later measurements 
by Carlsson and Sturesson (1989) and McAlexander et al. (1995) gave results 
0.7439(55) and 0.7502(44), respectively. These were in closer agreement with the 
theoretical results, but the larger uncertainties left the issue unresolved. The most 
recent measurement of Volz and Schmoranzer (1996) gives the value 0.7467( 16). 
which is in excellent agreement with a number of the theoretical calculations. The 
outstanding work of Yan and Drake (1995b) and of the most recent experimental 
measurements will probably end discussion of this discrepancy between theory 
and experiment. 

Quantum Monte Carlo (QMC) calculations by Barnett et al. (1992, 1995) were 
found to support the experimental result of Gaupp et al. The most recent result of 
these authors was 0.7431(6). The current applications of the QMC method do not 
reach the precision levels obtainable by the HY technique, so it appears that the 
error limit is too optimistic in these QMC calculations. Because the QMC ap- 
proach is a useful computation technique, particularly for larger electronic sys- 
tems, there should be some interest in using the D, line oscillator strength of Li as 
a test property to refine the technique. 

Less attention has been directed at the calculation of oscillator strengths for 
other transitions of Li. The interested reader can pursue this topic with the follow- 
ing works (Lunell, 1975; Caves, 1975; Sims et al., 1976a; Martin and Wiese, 
1976; Pipin and Bishop, 1992; Yan and Drake, 1995b). 
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C. LIFETIMES 

Closely tied to the previous discussion is the topic of lifetimes. The radiative life- 
time of an excited level k is given by 

where A,,, is a transition probability and the summation is over all levels of the 
atom that have an energy less than E,. If only one decay channel is possible (say 
i), Eq. ( 104) simplifies to 

rk = A i l  (105) 

The transition probability can be calculated from 

where e is the absolute value of the electronic charge, h is the wavelength of the 
transition, and the other symbols have been introduced previously. Using values 
of the fundamental constants from Cohen and Taylor (1987), Eq. (106) can be 
simplified to 

Aki = 0.66702532(44)(AE)’ si fik 
gk 

where AE is the transition energy expressed in cm-’. 
A number of theoretical and experimental lifetimes for various excited levels 

of Li have been tabulated by Theodosiou and coworkers (1984, 1991). The life- 
time of the 2 ?P,,* level of Li has been well studied experimentally and theoreti- 
cally. The most precise theoretical result for the 2 2P term is 27.117301(36) ns 
(Yan and Drake, 1995b), which is in excellent agreement with the very recent 
experimental measurement of Volz and Schmoranzer (1996), who find a value of 
27.1 l(6) ns, and McAlexander et al. (1  996) who obtained 27.102(7) ns. The latter 
results improve the earlier experimental value of Gaupp et al. (1982), who ob- 
tained 27.29(4) ns. Relativistic effects were not accounted for in the calculations 
of Yan and Drake, but this appears not to be an important issue given the present 
accuracy levels of the most recent experimental work. 

XI. Outlook 

The lithium atom will continue to play the role of a benchmark system in testing 
new computational methodologies. For many properties, there are now available 
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a number of high-precision estimates, which can serve as valuable reference 
points for testing different theoretical approaches. The precision level of the cal- 
culations for certain properties has progressed to the point where the theoretical 
results can serve as both a guide and a calibration marker for some experimental 
measurements. 

The lithium atom will also continue to be studied for its own intrinsic interest. 
There are several areas where theoretical progress is desirable and likely to occur 
in the next few years. Improved precision determination of the relativistic correc- 
tions to the energy levels is a priority problem. Advances in this area will be 
directly tied to solving various recalcitrant integration problems. Resolution of 
these mathematical issues will improve the precision of a number of calculated 
ionization potentials, the accuracy of which is currently limited in part by the 
uncertainties associated with the relativistic corrections. 

Improved calculations of the hyperpolarizability will pose a significant chal- 
lenge. With the recent progress on high-precision calculations of the low-lying 
excited states, we might be optimistic that considerable progress can be made on 
the theoretical evaluation of several of the polarizabilities. There are a number of 
experimental opportunities available for these properties. An improved precision 
measurement of the static polarizability would provide an important check for 
some of the high-precision theoretical results of this property that have become 
available in the last few years. 

Recently, there has been a substantial increase in the precision level for the 
experimental determination of some of the low-lying energy levels for 6Li and 'Li. 
These measurements provide a stimulus for a theoretical examination of some of 
the smaller contributions to the term energies. Currently, a significant fraction of 
the uncertainty for the theoretical determination of the first ionization potential 
arises from the correction AEQED . There is a clear need for additional work by the 
QED theorists to improve the precision level of calculations of AE,,, for many- 
electron atoms. The nonrelativistic calculation of the low-lying energy levels has 
progressed significantly over the past ten years. There has been recent theoretical 
(Drachman and Bhatia, 1995; Bhatia and Drachman, 1997) and continuing ex- 
perimental advances ( Liang et al., 1986; Day et al., 1994; Rothery et al., 1995; 
Hoogenraad et al., 1995; Stevens et al., 1996; Storry et al., 1997) in the study of 
the Rydberg states of Li. The high-lying states will provide the next computational 
challenge. Brute force application of the standard variational technique is not 
likely to be very successful for the higher lying Rydberg levels. 

Improved calculations of the hyperfine coupling constants for the ground and 
excited states will require combined efforts on several fronts. The determination 
of precise Fermi contact contributions requires wave functions of high quality in 
the near nuclear region. Improved procedures to build wave functions that are 
highly accurate in this region, rather than just relying on the output from the stan- 
dard variational approach, appear to be needed. Improved ways to determine the 
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relativistic and QED contributions must be found. For the 2 *S,,, ground state of 
“ L i  and ’Li, the experimentalists have measured results of high precision; it is now 
up to the theorists to accept the challenge of calculating these constants to high 
precision. Two related properties, the hyperfine anomaly and the hyperfine pres- 
sure shift, have received very little theoretical attention for the lithium atom. A 
theoretical study of the hyperfine anomaly might provide an avenue for the deter- 
mination of useful nuclear structure information. 

Over the past twenty-five years there has been a close interplay between theo- 
retical and experimental studies of the properties of the ground and excited states 
of atomic lithium. This trend will likely be maintained in the foreseeable future. 
Advances in computer technology have played a pivotal role in recent theoretical 
progress, and continued technological progress will be an integral component of 
the theoretical advances that occur in the future. 
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