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Resolution of some mathematical problems arising
in the relativistic treatment of the S states
of three-electron systems
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Some of the mathematical difficulties that arise in the evaluation of the Breit–Pauli
relativistic energy corrections for theS states of three-electron systems are re-
solved. Evaluation of the expectation value of the Breit–Pauli Hamiltonian using
explicitly correlated wave functions leads to sets of integrals that diverge individu-
ally. By appropriately combining these integrals, and using some judicious series
expansions, all the integration problems are resolved in terms of well-known aux-
iliary functions. © 1998 American Institute of Physics.@S0022-2488~98!02512-2#

I. INTRODUCTION

There has been considerable progress over the past ten years on the calculation o
precision properties of the lithium atom and other members of the Li isoelectronic series~for a
recent summary of this progress see Refs. 1 and 2!. A large part of this effort has been achieve
using Hylleraas~or configuration interaction~CI!-Hylleraas! type wave functions.

One important property that has received limited theoretical attention is the high-prec
calculation of the relativistic correction to the energy,DEREL . This is a key contribution in
determining a precise theoretical estimate of the first ionization potential. At present, the
calculations of the relativistic correction to the ground state energy for the lithium atom are d
Chung,3 who used the CI technique, the very recent paper of Yan and Drake using the Hyl
technique,4 and the work of Kinget al.,5 who also employed the Hylleraas method. Chun
calculation required a significant core correction, determined by first computing the relati
correction for Li1, and then comparing with precise calculations for Li1 using Hylleraas-type
wave functions.6,7 This core correction was then applied directly to the Li calculation. A v
effective approach to obtaining high-precision estimates ofDEREL is to make use of large-scal
Hylleraas-type expansions. Progress in this area has been hampered by the mathematical
ties which arise for the operators
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where a is the fine structure constant andr i j is the interelectronic separation. For the thre
electron problem, evaluation of the matrix elements ofHmassor Hoo @in the form displayed in Eqs
~1a! and ~1b!# using a general Hylleraas expansion can be shown to involve the following
grals:

I ~ i , j ,k,l ,m,n,a,b,g![E r 1
i r 2

j r 3
kr 23

l r 31
mr 12

n e2ar 12br 22gr 3 dr1 dr2 dr3 , ~2!

wherei , j ,k>22, l>22, m>22, andn>21;
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I 1~ i , j ,k,l ,m,a,b,g![E r 1
i r 2

j r 3
kS r 1

22r 2
2

r 12
3 D r 23

l r 31
me2ar 12br 22gr 3 dr1 dr2 dr3 , ~3!

I 2~ i , j ,k,l ,m,a,b,g![E r 1
i r 2

j r 3
kS r 31

2 2r 23
2

r 12
3 D r 23

l r 31
me2ar 12br 22gr 3 dr1 dr2 dr3 , ~4!

and

I 3~ i , j ,k,l ,m,a,b,g![E r 1
i r 2

j r 3
kS r 1

22r 2
2

r 12
2 D r 23

l r 31
me2ar 12br 22gr 3 dr1 dr2 dr3 , ~5!

where i , j ,k>22, l>21, andm>1. The combination of terms displayed in Eqs.~3! and ~4! is
essential, if a finite value of the expectation value of the Breit–Pauli Hamiltonian is to be obt
using a first-order perturbation theory approach. For Eq.~2! and some related generalization
several evaluation approaches exist in the literature for the case wherel, m, andn are>21,8–18

and for the more difficult cases involvingl 522 ~and m522).19–24 Some of the published
techniques could be applied to evaluateI 3 .

The purpose of this paper is to present an efficient method for the evaluation of the int
I 1 , I 2 , and I 3 . The integrals are evaluated for the casesi , j ,k>22, l>21, andm>21. The
obvious reduction of theI 1 andI 2 integrals into a difference ofI integrals is not possible, becaus
the separateI integrals both diverge. This is discussed further in Appendix A. WhileI 3 could be
calculated by taking a difference ofI integrals, a computationally superior approach is discus
in Sec. IV. The solution method is to reduce each of the integrals to a series of well-k
auxiliary functions.

II. EVALUATION OF I1

To evaluateI 1 , the following expansions are employed:25–27

r 23
l 5 (

w250

`

Rlw2
~r 2 ,r 3!Pw2

~cosu23!, ~6!

r 31
m 5 (

w350

`

Rmw3
~r 1 ,r 3!Pw3

~cosu31!, ~7!

and

1

r 12
3 5

1

r 12.
2 2r 12,

2 (
w150

`

~2w111!
r 12,

w1

r 12.

w111 Pw1
~cosu12!. ~8!

Equations~6! and ~7! are the Sack expansions for the interelectron coordinates.25 Equation~8! is
discussed in Appendix B. Herer 12, denotes the lesser of (r 1 ,r 2), r 12. represents the greater o
(r 1 ,r 2), andPn(x) designates a Legendre polynomial throughout this work.

Substituting Eqs.~6!, ~7!, and~8! into Eq. ~3! gives

I 15 (
w150

`

(
w250

`

(
w350

`

~2w111!I R~w1 ,w2 ,w3!I V~w1 ,w2 ,w3!, ~9!

whereI R is the integral over the radial coordinates,

I R~w1 ,w2 ,w3!5E r 1
i 12r 2

j 12r 3
k12r 12,

w1 r 12.

2w121S r 1
22r 2

2

r 12.
2 2r 12,

2 DRlw2
~r 2 ,r 3!

3Rmw3
~r 1 ,r 3!e2ar 12br 22gr 3 dr1 dr2 dr3 , ~10!

and I V is the integral over the angular variables,
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I V~w1 ,w2 ,w3!5E Pw1
~cosu12!Pw2

~cosu23!Pw3
~cosu31!dV1 dV2 dV3 . ~11!

The functional dependence ofI R on $ i , j ,k,l ,m,a,b,g% is suppressed to simplify the notation
Expanding the Legendre polynomials in terms of spherical harmonics, the angular integra
plifies to

I V~w1 ,w2 ,w3!5
64p3

~2w111!2 dw1w2
dw2w3

, ~12!

whered i j denotes a Kronecker delta. Equation~9! now becomes

I 1564p3 (
w150

`
I R~w1!

~2w111!
, ~13!

whereI R(w1)[I R(w1 ,w1 ,w1).
To evaluate the radial integral the formulas for the Sack radial functions are employed25

Rlw1
~r 2 ,r 3!5 (

p50

`

aw1lpr 23,

w112pr 23.

l 2w122p
~14!

and

Rmw1
~r 1 ,r 3!5 (

q50

`

aw1mqr 31,

w112qr 31.

m2w122q , ~15!

where

atuv5
~2u/2! t~ t2u/2!v~21/22u/2!v

~1/2! tv! ~ t13/2!v
~16!

and (z)n denotes a Pochhammer symbol. Inserting Eqs.~14! and ~15! into Eq. ~10! gives

I R~w1!5 (
p50

`

(
q50

`

aw1lpaw1mqE r 1
i 12r 2

j 12r 3
k12r 12,

w1 r 12.

2w121S r 1
22r 2

2

r 12.
2 2r 12,

2 D
3r 23,

w112pr 23.

l 2w122pr 31,

w112qr 31.

m2w122qe2ar 12br 22gr 3 dr1 dr2 dr3 . ~17!

If the integration in Eq.~17! is broken up into the six regionsr i<r j<r k , thenI 1 can be written
as

I 1~ i , j ,k,l ,m,a,b,g!564p3 (
w50

`
1

~2w11! (
p50

`

(
q50

`

awlpawmq

3$W~k1212p12q12w, j 121 l 22p,i 1m1122q22w,g,b,a!

1W~ j 1212w12p,k1212q1 l 22p,i 1m1122q22w,b,g,a!

1W~ j 1212w12p,i 1112q,k1m1 l 1222w22p22q,b,a,g!

2W~ i 1212w12q, j 1112p,k1m1 l 1222w22p22q,a,b,g!

2W~ i 1212w12q,k121m22q12p, j 111 l 22w22p,a,g,b!

2W~k1212p12q12w,i 121m22q, j 111 l 22w22p,g,a,b!%,

~18!

where
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W~L,M ,N,a,b,c!5E
0

`

xLe2ax dxE
x

`

yMe2by dyE
y

`

zNe2cz dz. ~19!

TheW integrals have been well studied in the literature,8,9,13,16,28–30and efficient algorithms exis
for the evaluation of these auxiliary functions.

We now examine the summation limits of thew, p, andq sums of Eq.~18!. Because of the
following property of the Pochhammer symbol,

~2k! l50, l .k for positive integerk, ~20!

the p summation terminates at (l 11)/2 for odd l, and (l /2)2w for even l. Similarly, the q
summation terminates at (m11)/2 for oddm, and (m/2)2w for evenm. These conditions follow
from the definition ofatuv given in Eq.~16!. This leads to the following termination conditions fo
the w sum:

m

2
, m even andn odd,

n

2
, n even andm odd,

minH m

2
,

n

2J , m and n both even.

For m andn both odd, thew sum is nonterminating.
In addition to the individual constraints oni, j, k, l, andm mentioned in the Introduction, it is

also necessary that

i 1 j 1k1 l 1m>27. ~21!

This follows directly from a known constraint on the arguments of theW integrals, namely

L1M1N>22. ~22!

Yan and Drake23 give a reduction formula@see their Eq.~128!# for a radial integral which is
related toI 1 . This radial integral is part of a nested sum, which for the general case would inv
a double infinite sum.

III. EVALUATION OF I2

For this integral, the coordinate system of choice is a three-dimensional analog of the on
by Hylleraas,31 where the directions of the vectorsr1 andr2 are given relative tor3 . This method
has been previously employed to consider other three-electron integration problems.10 In this
coordinate system the volume element becomes

dr1 dr2 dr35r 1
2r 2

2r 3
2 dr1 dr2 dr3 sin u3 du3 df3 sin u23 du23 df23 sin u31 du31 df31.

~23!

If r 31
2 2r 23

2 is written as

r 31
2 2r 23

2 5r 1
22r 2

222r 1r 3 cosu3112r 2r 3 cosu23, ~24!

then I 2 may be expressed as

I 2~ i , j ,k,l ,m,a,b,g!5I 1~ i , j ,k,l ,m,a,b,g!22J1~ i , j ,k,l ,m,a,b,g!, ~25!

where
2013 to 150.214.205.30. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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J1~ i , j ,k,l ,m,a,b,g!5E r 1
i r 2

j r 3
k11S r 1 cosu312r 2 cosu23

r 12
3 D r 23

l r 31
me2ar 12br 22gr 3 dr1 dr2 dr3 .

~26!

J1 is simplified by substituting Eqs.~6!, ~7!, ~8!, ~14!, and~15! into Eq. ~26! and integrating over
u3 andf3 to obtain

J154p (
w150

`

~2w111! (
w250

`

(
w350

`

(
p50

`

(
q50

`

aw2lpaw3mqE r 1
i 12r 2

j 12r 3
k13r 23,

w212pr 23.

l 2w222p

3r 31,

w312qr 31.

m2w322qr 12,

w1 r 12.

2w121S r 1F12r 2F2

r 12.
2 2r 12,

2 De2ar 12br 22gr 3 dr1 dr2 dr3 , ~27!

where

F15E
0

2p

df23E
0

2p

df31E
0

p

du31 sin u31E
0

p

du23 sin u23 cosu31

3Pw1
~cosu12!Pw2

~cosu23!Pw3
~cosu31! ~28!

and

F25E
0

2p

df23E
0

2p

df31E
0

p

du31 sin u31E
0

p

du23 sin u23 cosu23

3Pw1
~cosu12!Pw2

~cosu23!Pw3
~cosu31!. ~29!

Evaluation of the integralsF1 andF2 leads to

F15
16p2dw1w2

2w111 H w2

4w2
221

dw2 ,w3111
w3

4w3
221

dw3 ,w211J ~30!

and

F25
16p2dw1w3

2w111 H w2

4w2
221

dw2 ,w3111
w3

4w3
221

dw3 ,w211J . ~31!

The solution of these integrals is discussed in Appendix C. Substituting Eqs.~30! and~31! into Eq.
~27! leads to

J1564p3 (
w250

`

(
w350

`

(
p50

`

(
q50

`

aw2lpaw3mqE r 1
i 12r 2

j 12r 3
k13r 23,

w212pr 23.

l 2w222pr 31,

w312q

3r 31.

m2w322qe2ar 12br 22gr 3S r 1r 12,

w2 r 12.

2w221
2r 2r 12,

w3 r 12.

2w321

r 12.
2 2r 12,

2 D
3F w2

4w2
221

dw2 ,w3111
w3

4w3
221

dw3 ,w211Gdr1 dr2 dr3 . ~32!

Using the fact that

a~ t11!uv5S 2t13

2t11D S 2t12v2u

2t12v13Datuv ~33!

allows I 2 to be simplified to
2013 to 150.214.205.30. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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I 2~ i , j ,k,l ,m,a,b,g!5I 1~ i , j ,k,l ,m,a,b,g!

1128p3 (
w50

`
~w11!

~2w11!2 (
q50

`

(
p50

`

awmqawlpF S 2w12p2 l

2w12p13D
3$W~ i 1212w12q, j 1112p,k1m1 l 1222w22p22q,a,b,g!

1W~ i 1212w12q,k1m1412p22q, j 1 l 2122w22p,a,g,b!

1W~k1412w12p12q,i 1m1222q, j 1 l 2122w22p,g,a,b!%

2S 2w12q2m

2w12q13 D $W~ j 1212w12p,i 1112q,k1m

1 l 1222w22p22q,b,a,g!

1W~ j 1212w12p,k141 l 22p12q,i 1m2122w22q,b,g,a!

1W~k1412w12p12q, j 121 l 22p,i 1m2122w22q,g,b,a!%G .
~34!

Equation~34! represents the solution toI 2 . The summation limits of thew, p, andq sums are the
same as those for theI 1 integral. The constraint given in Eq.~21! also applies for Eq.~34!.

VI. EVALUATION OF I3

The generating function for the Chebyshev polynomials of the first kind is

12r 2

122rx1r 2 5112 (
w151

`

r w1Tw1
~x!. ~35!

Letting r 5r 12, /r 12. andx5cosu12 in Eq. ~35! yields

1

r 12
2 5

1

r 12.
2 2r 12,

2 F112 (
w151

` S r 12,

r 12.
D w1

Tw1
~cosu12!G . ~36!

Substituting Eqs.~6!, ~7!, and~36! into Eq. ~5! leads to the result

I 35F~ i , j ,k,l ,m,a,b,g!12 (
w151

`

(
w250

`

(
w350

`

I V~w1 ,w2 ,w3!I R~w1 ,w2 ,w3!, ~37!

where

F~ i , j ,k,l ,m,a,b,g!5 (
w250

`

(
w350

` E r 1
i r 2

j r 3
kS r 1

22r 2
2

r 12.
2 2r 12,

2 DRlw2
~r 2 ,r 3!Rmw3

~r 3 ,r 1!

3Pw2
~cosu23!Pw3

~cosu31!dr1 dr2 dr3 , ~38!

I V5E Tw1
~cosu12!Pw2

~cosu23!Pw3
~cosu31!dV1 dV2 dV3 ~39!

and

I R5E r 1
i 12r 2

j 12r 3
k12r 12,

w1 r 12.

2w1S r 1
22r 2

2

r 12.
2 2r 12,

2 DRlw2
~r 2 ,r 3!Rmw3

~r 3 ,r 1!dr1 dr2 dr3 . ~40!

Employing Eqs.~14! and ~15!, and expanding the Legendre polynomials in terms of spher
harmonics, Eq.~38! may be easily evaluated to yield
2013 to 150.214.205.30. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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F~ i , j ,k,l ,m,a,b,g!564p3(
p50

`

(
q50

`

a0lpa0mq

3$W~k1212p12q, j 121 l 22p,i 1m1222q,g,b,a!

1W~ j 1212p,k121 l 22p12q,i 1m1222q,b,g,a!

1W~ j 1212p,i 1212q,k1m1 l 1222p22q,b,a,g!

2W~ i 1212q, j 1212p,k1m1 l 1222p22q,a,b,g!

2W~ i 1212q,k1m1212p22q, j 1 l 1222p,a,g,b!

2W~k1212p12q,i 1m1222q, j 1 l 1222p,g,a,b!%. ~41!

Due to the property of the Pochhammer symbol given in Eq.~20!, thep summation in Eq.~41!
will terminate atl /2 for evenl, and (l 11)/2 for oddl. Similarly, theq summation will terminate
at m/2 for evenm, and (m11)/2 for oddm.

The integralI V can be evaluated to give

I V5
32p3

2w211
dw2w3

35
ApG~w111!

2G~w11 3
2!

, w15w2 ,

2w1

~w12w2!~w11w211!

GS w12w221

2 DGS w11w2

2 D
GS w12w2

2 DGS w11w211

2 D , w1>w212, w11w2 even,

0, elsewhere,

~42!

whereG(n) denotes the Gamma function. The evaluation of this integral is discussed in App
D. SinceI V is independent of$ i , j ,k,l ,m,a,b,g%, it can be stored in table form to increase t
computational speed of the integral evaluation. Equation~37! may now be written

I 35F~ i , j ,k,l ,m,a,b,g!12 (
w151

`

(
w250

w1

I V~w1 ,w2!I R~w1 ,w2!, ~43!

where

I V~w1 ,w2![I V~w1 ,w2 ,w2! ~44!

and

I R~w1 ,w2![I R~w1 ,w2 ,w2!. ~45!

Inserting Eqs.~14! and ~15! into Eq. ~43!, then breaking up the region of integration asr i<r j

<r k , allows us to write Eq.~43! as
2013 to 150.214.205.30. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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I 3~ i , j ,k,l ,m,a,b,g!

5F~ i , j ,k,l ,m,a,b,g!12 (
w151

`

(
w250

w1

~w11w2 even!

I V~w1 ,w2! (
p50

`

(
q50

`

aw2lpaw2mq

3$W~ j 121w11w212p,i 122w11w212q,k121 l 1m22w222p22q,b,a,g!

1W~ j 121w11w212p,k121 l 22p12q,i 122w11m2w222q,b,g,a!

1W~k1212w212p12q, j 121 l 1w122p2w2 ,i 121m2w12w222q,g,b,a!

2W~k1212w212p12q,i 121w11m2w222q, j 122w11 l 2w222p,g,a,b!

2W~ i 121w11w212q, j 122w11w212p,k121 l 1m22w222p22q,a,b,g!

2W~ i 121w11w212q,k121m22q12p, j 122w12w21 l 22p,a,g,b!%. ~46!

Due to properties of the Pochhammer symbol, thep summation in Eq.~46! will terminate at
l /2 for evenl, and (l 11)/2 for oddl. Similarly, theq summation will terminate atm/2 for even
m, and (m11)/2 for oddm. Also, due to the Pochhammer symbols in Eq.~46! and the restriction
on w2 given in Eq.~42!, thew2 sum has the following termination conditions:

minH w1 ,
l

2J , l even andm odd,

minH w1 ,
m

2 J , m even and l odd,

minH w1 ,
l

2
,

m

2 J , l and m both even,

w1 , l and m both odd.

The w1 sum is always nonterminating.
In addition to the individual constraints oni, j, k, l, andm mentioned in the Introduction, Eq

~46! requires that

i 1 j 1k1 l 1m>28, ~47!

which follows from Eq.~22!.

V. NUMERICAL EVALUATION

For evenl or m, the evaluation ofI 1 andI 2 reduces to a finite sum of terms. Forl andm both
odd, it is useful to examine the asymptotic behavior of the series.I 1 is considered first.

The asymptotic behavior of a singleW integral appearing in Eq.~18! is32

W;
1

w2 . ~48!

However, if theW integrals are taken in the appropriate pairs, it can be shown that the set
W integrals in Eq.~18! behaves like

set of six W;
1

w3 , ~49!

due to the difference in signs. The product of theatuv coefficients in Eq.~17! exhibits the
asymptotic behavior32
2013 to 150.214.205.30. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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~2m/2!w~2 l /2!w

@~ 1
2!w#2

;
1

w~ l 1m12!/2 . ~50!

Combining Eqs.~49! and ~50! with the factor 1/(2w11) from Eq.~18! leads to

I 1;(
w

1

w~ l 1m110!/2 . ~51!

The worst case that arises in the evaluation of the matrix elements ofHoo is l 521 andm51,
where

I 1;(
w

1

w5 , ~52!

which is suitable for direct numerical evaluation.
The asymptotic form forI 2 can be determined in a similar manner to that described forI 1 .

The result is

I 2;(
w

1

w~ l 1m110!/2 . ~53!

The worst case asymptotic behavior forI 2 is the same as that ofI 1 .
While the series representations ofI 1 andI 2 are suitable for direct summation, such a proce

is rather time consuming for the most slowly converging cases. An improved approach is to
the techniques discussed in Ref. 18. By first converting these monotonic series into equ
alternating series, then applying convergence accelerators to the transformed series,
precision evaluation scheme is produced which is far more rapid for the most slowly conve
integrals.

The sign differences on the coefficients of theW integrals in Eqs.~18! and ~34! might be
suggestive of possible numerical precision problems. However, both equations have been
and found to be numerically stable. Tables I and II present some representative values forI 1

and I 2 integrals, respectively.
A useful check forI 1 and I 2 can be derived by considering the integral

TABLE I. Values of I 1( i , j ,k,l ,m,n,a,b,g).

i j k l m a b g I 1( i , j ,k,l ,m,n,a,b,g)

0 0 0 21 1 2.7 2.9 0.65 8.947 959 925 047 512 835 052 492
2 21 1 3 21 2.7 2.9 0.65 3.066 249 710 874 801 140 638 6113104

1 2 3 1 3 2.7 2.9 0.65 27.127 529 951 937 274 842 240 9353107

0 2 0 2 1 2.7 2.9 0.65 21.155 955 548 991 711 453 287 6473104

21 3 2 0 4 2.7 2.9 0.65 24.898 965 561 162 249 945 560 0933107

1 2 21 3 4 2.7 2.9 0.65 25.595 918 656 196 395 007 062 7513106

TABLE II. Values of I 2( i , j ,k,l ,m,n,a,b,g).

i j k l m a b g I 2( i , j ,k,l ,m,n,a,b,g)

0 2 0 21 21 2.7 2.9 0.65 22.943 608 978 543 536 288 422 283
1 4 3 21 3 2.7 2.9 0.65 2.755 380 752 419 424 787 112 1003106

2 1 1 1 21 2.7 2.9 0.65 21.874 264 201 450 095 466 617 0953102

1 3 2 0 2 2.7 2.9 0.65 6.929 145 321 870 892 125 904 8543103

0 4 0 2 21 2.7 2.9 0.65 22.953 164 176 902 131 531 016 5923103

3 2 21 3 2 2.7 2.9 0.65 2.411 321 913 805 718 749 043 8673105
2013 to 150.214.205.30. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



o

n the

The

6271J. Math. Phys., Vol. 39, No. 12, December 1998 Feldmann, Pelzl, and King

Downloaded 02 Jun 
I 4~ i , j ,k,l ,m,a,b,g!5E r 1
i r 2

j r 3
k

~r 1
22r 2

2!~r 31
2 2r 23

2 !

r 12
3 r 23

l r 31
me2ar 12br 22gr 3 dr1 dr2 dr3 .

~54!

Equation~54! can be evaluated using eitherI 1 or I 2 , resulting in the following relationship:

I 1~ i , j ,k,l ,m12,a,b,g!2I 1~ i , j ,k,l 12,m,a,b,g!

5I 2~ i 12,j ,k,l ,m,a,b,g!2I 2~ i , j 12,k,l ,m,a,b,g!. ~55!

Hence, Eqs.~18! and ~34! may checked against each other. Also, ifl 5m50 in Eq. ~26!, J150,
and therefore

I 1~ i , j ,k,0,0,a,b,g!5I 2~ i , j ,k,0,0,a,b,g!. ~56!

The asymptotic behavior ofI 3 is the most difficult to estimate, due to the nestedw2 sum in
Eq. ~46!. Let us defineK to be the infinite series portion of theI 3 integral. The technique used t
analyze the asymptotic behavior ofK will be to divide thew1 , w2 plane into three regions:

w250,

0,w2,w1 ,

w25w1 .

Making these simplifications, it is possible to arrive at upper and lower bound estimates o
convergence rate for thew1 summation.

First we examine the region wherew250. From Eq.~42!, it can easily be shown that

I V;
1

w1
2 . ~57!

If taken in the appropriate pairs, the sum of theW integrals in Eq.~46! behaves like

set of six W;
1

w1
2 . ~58!

For the casew250, theatuv coefficients in Eq.~46! lead to

~2m/2!0~2 l /2!0

@~ 1
2!0#2

;1. ~59!

Combining Eqs.~57!, ~58!, and~59! gives the result

K;(
w1

1

w1
4 . ~60!

The asymptotic behavior ofK in the other two regions may be obtained by similar methods.
results are

K;(
w1

1

w1
4 to (

w1

1

w1
~ l 1m114!/2 ~61!

and

K;(
w1

1

w1
~ l 1m111!/2 , ~62!
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respectively. The second of the two results given in Eq.~61! was obtained usingw25w1/2. If
instead we employw2'w1 ~with w2,w1), the same asymptotic behavior given in Eq.~62! would
be obtained.

The convergence of the entire sum will be determined by the most slowly converging po
of that sum, which was found atw250. So the entire sum behaves asymptotically like

K;(
w1

1

w1
4 . ~63!

It should be clear from this result that a large number of terms are needed to obta
accurate result forK. Rather than directly summing the series, a convergence acceleration
nique was applied to the infinite series portion of Eq.~46!. The acceleration method employed w
the Richardson extrapolation,33 which has been used previously in the evaluation of other th
electron integration problems.22 The Richardson extrapolation is given by

S05 (
k50

N
Sn1k~n1k!N~21!k1N

k! ~N2k!!
, ~64!

whereS0 is an approximation to the total sum in Eq.~46!. A well-known difficulty associated with
the application of Eq.~64! is that it is subject to numerical precision loss for higher values oN.

Careful examination of Eq.~46! shows it to be composed of two monotonically decreas
series, one forw1 even and one forw1 odd. Because the individual terms of the two series dif
significantly in magnitude, a direct application of the Richardson extrapolation produces
poor results. However, if Eq.~64! is applied individually to these two series, then a significa
improvement in convergence is obtained. For both of these series, choosingn51, the optimal
value ofN appears to be at aboutN523. At this value, approximately 17 digits of precision m
be obtained using 30 digit arithmetic. As was found forI 1 and I 2 , the sign differences on the
coefficients of theW integrals in Eq.~46! do not appear to be problematic. Some representa
values ofI 3 are presented in Table III.

For the casel andm both odd, evaluation of Eq.~5! via the approach developed in Sec. I
requires about half the computational time of previously published methods. For a number
cases investigated, several more significant digits were obtained using the present approa
increased speed of evaluation is directly tied to the much simpler formula that results
present work, in comparison with what is obtained by breaking the integral into two separate
For l andm not both odd, evaluation methods may be employed which are both computatio
faster and produce higher-precision results.19

VI. DISCUSSION

In this work, some key integrals are solved which are needed for the evaluation ofDEREL ~the
non-fine-structure contributions! for the 2S states of three-electron systems. The basic appro
employed in this work is to treat each of the integrand factors (r 1

22r 2
2)r 12

23, (r 31
2 2r 23

2 )r 12
23, and

(r 1
22r 2

2)r 12
22 as single expansions. For theI 1 and I 2 integrals investigated, the option of splittin

these factors into separate parts does not exist, as each of the separate integrals div
recursive scheme for an integral related toI 1 is developed by Yan and Drake.23

TABLE III. Values of I 3( i , j ,k,l ,m,a,b,g).

i j k l m a b g I 3( i , j ,k,l ,m,a,b,g)

1 21 0 21 1 2.7 2.9 0.65 1.356 087 352 189 092 173102

1 2 2 1 1 2.7 2.9 0.65 26.371 117 492 583 7563104

3 1 2 3 1 2.7 2.9 0.65 4.870 134 178 451 231 63107

2 2 3 21 3 2.7 2.9 0.65 6.471 807 181 649 9453105

4 1 2 3 3 2.7 2.9 0.65 3.203 917 521 846 703 131010

3 1 21 1 5 2.7 2.9 0.65 5.849 805 492 834 822 333106
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With the evaluation ofI 1 , I 2 , and I 3 , the difficulties associated with the evaluation of t
matrix elements of the Breit–Pauli relativistic operators now lie elsewhere. Integrals of the
shown in Eq.~2! with l 522 also arise in the evaluation ofHoo andHmass, and these have known
computational difficulties.19 While several methods exist for their evaluation,19–24 they are rela-
tively slow for some choices of the arguments and are subject to precision loss. Developm
better methods for handling integrals of this form would be useful.
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APPENDIX A: DIVERGENCE OF I INTEGRAL WHEN n 523

This appendix illustrates that Eq.~2! diverges for at least one ofl, m and n523. Conse-
quently, Eqs.~3! and ~4! cannot be broken into separate integrals of the form of Eq.~2!.

Let

I ~ i , j ,k,l ,m,23,a,b,g![E r 1
i r 2

j r 3
kr 23

l r 31
mr 12

23e2ar 12br 22gr 3 dr1 dr2 dr3 . ~A1!

Because the integrand is everywhere positive,

I>E
~r 32«!>r p

r 1
i r 2

j r 3
kr 23

l r 31
mr 12

23e2ar 12br 22gr 3 dr1 dr2 dr3 , ~A2!

where (r 32«).0 andp51,2.
Furthermore,

I> min
R9

~r 32«!>r p

$r 23
l % min

R9

~r 32«!>r p

$r 31
m %E

~r 32«!>r p

r 1
i r 2

j r 3
kr 12

23e2ar 12br 22gr 3 dr1 dr2 dr3 . ~A3!

Due to the restrictions placed on the region of integration,

min
R9

~r 32«!>r p

$r 23
l % min

R9

~r 32«!>r l

$r 31
m %5« l 1m. ~A4!

Substituting Eq.~A4! into Eq. ~A3! yields,

I>« l 1m3E
~r 32«!>r p

r 1
i r 2

j r 3
kr 12

23e2ar 12br 22gr 3 dr1 dr2 dr3 . ~A5!

Integration overr3 produces a finite sum of positive terms involving integrals of the form

E r 1
sr 2

t r 12
23e2ar12br2 dr1 dr2 . ~A6!

Choosing perimetric coordinates6 it can easily be shown that Eq.~A6! diverges irrespective of the
values ofs, t, a, andb. Therefore Eq.~A5! must be divergent, and so Eq.~A1! must also diverge.

The extension toN-electron systems is obvious.
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APPENDIX B: EXPANSION FOR r 12
23

The generating function for the Legendre polynomials is34

1

A122rx1r 2
5 (

n50

`

r nPn~x!. ~B1!

If the operatorÔ[112r ]/]r is applied to both sides of Eq.~B1!26 one obtains

12r 2

~122rx1r 2!3/25 (
n50

`

~2n11!r nPn~x!. ~B2!

Making the substitutionsr 5r 12, /r 12. , x5cosu12, andn5w1 in Eq. ~B2! results in Eq.~8!.

APPENDIX C: SOLUTION OF ANGULAR INTEGRALS FOR I2

This appendix discusses the evaluation of the angular integralsF1 andF2 which arise in Eq.
~27!. If the addition theorem for Legendre polynomials,26

Pw1
~cosu12!5Pw1

~cosu23!Pw1
~cosu31!

12(
n51

w1 ~w12n!!

~w11n!!
Pw1

n ~cosu23!Pw1

n ~cosu31!cos„n~f232f31!…, ~C1!

is applied toPw1
(cosu12) in Eq. ~28!, and the integration overf23 andf31 is performed, then the

finite sum in Eq.~C1! vanishes. ThusF1 simplifies to

F154p2E
21

1

xPw1
~x!Pw3

~x!dxE
21

1

Pw1
~x!Pw2

~x!dx. ~C2!

Using the standard recurrence relationship

~2v11!xPv~x!5~v11!Pv11~x!1vPv21~x!, ~C3!

and the orthogonality property of the Legendre polynomials, allows Eq.~C2! to be simplified to
Eq. ~30!. The result forF2 can be obtained by symmetry@switch 1↔2 andw2↔w3 in Eq. ~28!,
thereby obtaining Eq.~31!#.

APPENDIX D: SOLUTION OF ANGULAR INTEGRAL FOR I3

This appendix discusses the evaluation of the angular integralI V , Eq. ~39!, which occurs in
I 3 . We choose our coordinate system such that

dV1 dV2 dV35sin u12 du12 df12 sin u31 du31 df31 sin u1 du1 df1 . ~D1!

ExpandingPw2
(cosu23) by the addition theorem for Legendre polynomials, then integrating o

u1 , f1 , f12, f31, andu31, yields

I V~w1 ,w2 ,w3!5
32p3

2w211
dw2w3

E
0

p

Tw1
~cosu12!Pw2

~cosu12!sin u12 du12. ~D2!

ExpandingPw2
(cosu12) in a Fourier sine series,34 and using the identity

Tw1
~cosu12!5cos~w1u12!, ~D3!

produces
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I V5
64p5/2

2w211
dw2w3 (

k50

` ~ 1
2!kG~w21k11!

k!G~w21k1 3
2!

E
0

p

cos~w1u12!sin@~w212k11!u12#sin u12 du12.

~D4!

Evaluation of this integral, followed by some straightforward simplification, leads to Eq.~42!.
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