Resolution of some mathematical problems arising in the relativistic treatment of the S states of three-electron systems

D. Matthew Feldmann, Paul J. Pelzl, and Frederick W. King Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702

(Received 16 April 1998; accepted for publication 27 August 1998)
Some of the mathematical difficulties that arise in the evaluation of the Breit-Pauli relativistic energy corrections for the S states of three-electron systems are resolved. Evaluation of the expectation value of the Breit-Pauli Hamiltonian using explicitly correlated wave functions leads to sets of integrals that diverge individually. By appropriately combining these integrals, and using some judicious series expansions, all the integration problems are resolved in terms of well-known auxiliary functions. © 1998 American Institute of Physics. [S0022-2488(98)02512-2]

I. INTRODUCTION

There has been considerable progress over the past ten years on the calculation of highprecision properties of the lithium atom and other members of the Li isoelectronic series (for a recent summary of this progress see Refs. 1 and 2). A large part of this effort has been achieved using Hylleraas (or configuration interaction (CI)-Hylleraas) type wave functions.

One important property that has received limited theoretical attention is the high-precision calculation of the relativistic correction to the energy, $\Delta E_{\text {REL }}$. This is a key contribution in determining a precise theoretical estimate of the first ionization potential. At present, the only calculations of the relativistic correction to the ground state energy for the lithium atom are due to Chung, ${ }^{3}$ who used the CI technique, the very recent paper of Yan and Drake using the Hylleraas technique, ${ }^{4}$ and the work of King et al., ${ }^{5}$ who also employed the Hylleraas method. Chung's calculation required a significant core correction, determined by first computing the relativistic correction for Li^{+}, and then comparing with precise calculations for Li^{+}using Hylleraas-type wave functions. ${ }^{6,7}$ This core correction was then applied directly to the Li calculation. A very effective approach to obtaining high-precision estimates of $\Delta E_{\text {REL }}$ is to make use of large-scale Hylleraas-type expansions. Progress in this area has been hampered by the mathematical difficulties which arise for the operators

$$
\begin{gather*}
H_{\mathrm{mass}}=-\frac{\alpha^{2}}{8} \sum_{i=1}^{3} \nabla_{i}^{4}, \tag{1a}\\
H_{\mathrm{oo}}=\frac{\alpha^{2}}{2} \sum_{i=1}^{3} \sum_{j>i}^{3} \frac{1}{r_{i j}}\left(\nabla_{i} \cdot \nabla_{j}+\frac{\mathbf{r}_{i j} \cdot\left(\mathbf{r}_{i j} \cdot \nabla_{i}\right) \nabla_{j}}{r_{i j}^{2}}\right), \tag{1b}
\end{gather*}
$$

where α is the fine structure constant and $r_{i j}$ is the interelectronic separation. For the threeelectron problem, evaluation of the matrix elements of $H_{\text {mass }}$ or H_{oo} [in the form displayed in Eqs. (1a) and (1b)] using a general Hylleraas expansion can be shown to involve the following integrals:

$$
\begin{equation*}
I(i, j, k, l, m, n, \alpha, \beta, \gamma) \equiv \int r_{1}^{i} r_{2}^{j} r_{3}^{k} r_{23}^{l} r_{31}^{m} r_{12}^{n} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}} d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{3} \tag{2}
\end{equation*}
$$

where $i, j, k \geqslant-2, l \geqslant-2, m \geqslant-2$, and $n \geqslant-1$;

$$
\begin{align*}
& I_{1}(i, j, k, l, m, \alpha, \beta, \gamma) \equiv \int r_{1}^{i} r_{2}^{j} r_{3}^{k}\left(\frac{r_{1}^{2}-r_{2}^{2}}{r_{12}^{3}}\right) r_{23}^{l} r_{31}^{m} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}} d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{3} \tag{3}\\
& I_{2}(i, j, k, l, m, \alpha, \beta, \gamma) \equiv \int r_{1}^{i} r_{2}^{j} r_{3}^{k}\left(\frac{r_{31}^{2}-r_{23}^{2}}{r_{12}^{3}}\right) r_{23}^{l} r_{31}^{m} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}} d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{3}, \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
I_{3}(i, j, k, l, m, \alpha, \beta, \gamma) \equiv \int r_{1}^{i} r_{2}^{j} r_{3}^{k}\left(\frac{r_{1}^{2}-r_{2}^{2}}{r_{12}^{2}}\right) r_{23}^{l} r_{31}^{m} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}} d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{3} \tag{5}
\end{equation*}
$$

where $i, j, k \geqslant-2, l \geqslant-1$, and $m \geqslant 1$. The combination of terms displayed in Eqs. (3) and (4) is essential, if a finite value of the expectation value of the Breit-Pauli Hamiltonian is to be obtained using a first-order perturbation theory approach. For Eq. (2) and some related generalizations, several evaluation approaches exist in the literature for the case where l, m, and n are $\geqslant-1,{ }^{8-18}$ and for the more difficult cases involving $l=-2$ (and $m=-2$). ${ }^{19-24}$ Some of the published techniques could be applied to evaluate I_{3}.

The purpose of this paper is to present an efficient method for the evaluation of the integrals I_{1}, I_{2}, and I_{3}. The integrals are evaluated for the cases $i, j, k \geqslant-2, l \geqslant-1$, and $m \geqslant-1$. The obvious reduction of the I_{1} and I_{2} integrals into a difference of I integrals is not possible, because the separate I integrals both diverge. This is discussed further in Appendix A. While I_{3} could be calculated by taking a difference of I integrals, a computationally superior approach is discussed in Sec. IV. The solution method is to reduce each of the integrals to a series of well-known auxiliary functions.

II. EVALUATION OF $\boldsymbol{I}_{\mathbf{1}}$

To evaluate I_{1}, the following expansions are employed: ${ }^{25-27}$

$$
\begin{align*}
& r_{23}^{l}=\sum_{w_{2}=0}^{\infty} R_{l w_{2}}\left(r_{2}, r_{3}\right) P_{w_{2}}\left(\cos \theta_{23}\right), \tag{6}\\
& r_{31}^{m}=\sum_{w_{3}=0}^{\infty} R_{m w_{3}}\left(r_{1}, r_{3}\right) P_{w_{3}}\left(\cos \theta_{31}\right), \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{r_{12}^{3}}=\frac{1}{r_{12>}^{2}-r_{12<}^{2}} \sum_{w_{1}=0}^{\infty}\left(2 w_{1}+1\right) \frac{r_{12<}^{w_{1}}}{r_{12>}^{w_{1}+1}} P_{w_{1}}\left(\cos \theta_{12}\right) \tag{8}
\end{equation*}
$$

Equations (6) and (7) are the Sack expansions for the interelectron coordinates. ${ }^{25}$ Equation (8) is discussed in Appendix B. Here $r_{12<}$ denotes the lesser of $\left(r_{1}, r_{2}\right), r_{12>}$ represents the greater of $\left(r_{1}, r_{2}\right)$, and $P_{n}(x)$ designates a Legendre polynomial throughout this work.

Substituting Eqs. (6), (7), and (8) into Eq. (3) gives

$$
\begin{equation*}
I_{1}=\sum_{w_{1}=0}^{\infty} \sum_{w_{2}=0}^{\infty} \sum_{w_{3}=0}^{\infty}\left(2 w_{1}+1\right) I_{R}\left(w_{1}, w_{2}, w_{3}\right) I_{\Omega}\left(w_{1}, w_{2}, w_{3}\right), \tag{9}
\end{equation*}
$$

where I_{R} is the integral over the radial coordinates,

$$
\begin{align*}
I_{R}\left(w_{1}, w_{2}, w_{3}\right)= & \int r_{1}^{i+2} r_{2}^{j+2} r_{3}^{k+2} r_{12<}^{w_{1}} r_{12>}^{-w_{1}-1}\left(\frac{r_{1}^{2}-r_{2}^{2}}{r_{12>}^{2}-r_{12<}^{2}}\right) R_{l w_{2}}\left(r_{2}, r_{3}\right) \\
& \times R_{m w_{3}}\left(r_{1}, r_{3}\right) e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}} d r_{1} d r_{2} d r_{3} \tag{10}
\end{align*}
$$

and I_{Ω} is the integral over the angular variables,

$$
\begin{equation*}
I_{\Omega}\left(w_{1}, w_{2}, w_{3}\right)=\int P_{w_{1}}\left(\cos \theta_{12}\right) P_{w_{2}}\left(\cos \theta_{23}\right) P_{w_{3}}\left(\cos \theta_{31}\right) d \Omega_{1} d \Omega_{2} d \Omega_{3} \tag{11}
\end{equation*}
$$

The functional dependence of I_{R} on $\{i, j, k, l, m, \alpha, \beta, \gamma\}$ is suppressed to simplify the notation. Expanding the Legendre polynomials in terms of spherical harmonics, the angular integral simplifies to

$$
\begin{equation*}
I_{\Omega}\left(w_{1}, w_{2}, w_{3}\right)=\frac{64 \pi^{3}}{\left(2 w_{1}+1\right)^{2}} \delta_{w_{1} w_{2}} \delta_{w_{2} w_{3}} \tag{12}
\end{equation*}
$$

where $\delta_{i j}$ denotes a Kronecker delta. Equation (9) now becomes

$$
\begin{equation*}
I_{1}=64 \pi^{3} \sum_{w_{1}=0}^{\infty} \frac{I_{R}\left(w_{1}\right)}{\left(2 w_{1}+1\right)}, \tag{13}
\end{equation*}
$$

where $I_{R}\left(w_{1}\right) \equiv I_{R}\left(w_{1}, w_{1}, w_{1}\right)$.
To evaluate the radial integral the formulas for the Sack radial functions are employed: ${ }^{25}$

$$
\begin{equation*}
R_{l w_{1}}\left(r_{2}, r_{3}\right)=\sum_{p=0}^{\infty} a_{w_{1} l p} r_{23<}^{w_{1}+2 p} r_{23>}^{l-w_{1}-2 p} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{m w_{1}}\left(r_{1}, r_{3}\right)=\sum_{q=0}^{\infty} a_{w_{1} m q} r_{31<}^{w_{1}+2 q} r_{31>}^{m-w_{1}-2 q}, \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{t u v}=\frac{(-u / 2)_{t}(t-u / 2)_{v}(-1 / 2-u / 2)_{v}}{(1 / 2)_{t} v!(t+3 / 2)_{v}} \tag{16}
\end{equation*}
$$

and $(z)_{n}$ denotes a Pochhammer symbol. Inserting Eqs. (14) and (15) into Eq. (10) gives

$$
\begin{align*}
I_{R}\left(w_{1}\right)= & \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_{w_{1} l p} a_{w_{1} m q} \int r_{1}^{i+2} r_{2}^{j+2} r_{3}^{k+2} r_{12<}^{w_{1}} r_{12>}^{-w_{1}-1}\left(\frac{r_{1}^{2}-r_{2}^{2}}{r_{12>}^{2}-r_{12<}^{2}}\right) \\
& \times r_{23<}^{w_{1}+2 p} r_{23>}^{l-w_{1}-2 p} r_{31<}^{w_{1}+2 q} r_{31>}^{m-w_{1}-2 q} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}} d r_{1} d r_{2} d r_{3} . \tag{17}
\end{align*}
$$

If the integration in Eq. (17) is broken up into the six regions $r_{i} \leqslant r_{j} \leqslant r_{k}$, then I_{1} can be written as

$$
\begin{align*}
I_{1}(i, j, k, l, m, \alpha, \beta, \gamma)= & 64 \pi^{3} \sum_{w=0}^{\infty} \frac{1}{(2 w+1)} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_{w l p} a_{w m q} \\
& \times\{W(k+2+2 p+2 q+2 w, j+2+l-2 p, i+m+1-2 q-2 w, \gamma, \beta, \alpha) \\
& +W(j+2+2 w+2 p, k+2+2 q+l-2 p, i+m+1-2 q-2 w, \beta, \gamma, \alpha) \\
& +W(j+2+2 w+2 p, i+1+2 q, k+m+l+2-2 w-2 p-2 q, \beta, \alpha, \gamma) \\
& -W(i+2+2 w+2 q, j+1+2 p, k+m+l+2-2 w-2 p-2 q, \alpha, \beta, \gamma) \\
& -W(i+2+2 w+2 q, k+2+m-2 q+2 p, j+1+l-2 w-2 p, \alpha, \gamma, \beta) \\
& -W(k+2+2 p+2 q+2 w, i+2+m-2 q, j+1+l-2 w-2 p, \gamma, \alpha, \beta)\} \tag{18}
\end{align*}
$$

where

$$
\begin{equation*}
W(L, M, N, a, b, c)=\int_{0}^{\infty} x^{L} e^{-a x} d x \int_{x}^{\infty} y^{M} e^{-b y} d y \int_{y}^{\infty} z^{N} e^{-c z} d z \tag{19}
\end{equation*}
$$

The W integrals have been well studied in the literature, ${ }^{8,9,13,16,28-30}$ and efficient algorithms exist for the evaluation of these auxiliary functions.

We now examine the summation limits of the w, p, and q sums of Eq. (18). Because of the following property of the Pochhammer symbol,

$$
\begin{equation*}
(-k)_{l}=0, \quad l>k \text { for positive integer } k, \tag{20}
\end{equation*}
$$

the p summation terminates at $(l+1) / 2$ for odd l, and $(l / 2)-w$ for even l. Similarly, the q summation terminates at $(m+1) / 2$ for odd m, and $(m / 2)-w$ for even m. These conditions follow from the definition of $a_{t u v}$ given in Eq. (16). This leads to the following termination conditions for the w sum:

$$
\begin{array}{r}
\frac{m}{2}, \quad m \text { even and } n \text { odd, } \\
\frac{n}{2}, \quad n \text { even and } m \text { odd, } \\
\min \left\{\frac{m}{2}, \frac{n}{2}\right\}, \quad m \text { and } n \text { both even. }
\end{array}
$$

For m and n both odd, the w sum is nonterminating.
In addition to the individual constraints on i, j, k, l, and m mentioned in the Introduction, it is also necessary that

$$
\begin{equation*}
i+j+k+l+m \geqslant-7 \tag{21}
\end{equation*}
$$

This follows directly from a known constraint on the arguments of the W integrals, namely

$$
\begin{equation*}
L+M+N \geqslant-2 \tag{22}
\end{equation*}
$$

Yan and Drake ${ }^{23}$ give a reduction formula [see their Eq. (128)] for a radial integral which is related to I_{1}. This radial integral is part of a nested sum, which for the general case would involve a double infinite sum.

III. EVALUATION OF $\boldsymbol{I}_{\mathbf{2}}$

For this integral, the coordinate system of choice is a three-dimensional analog of the one used by Hylleraas, ${ }^{31}$ where the directions of the vectors \mathbf{r}_{1} and \mathbf{r}_{2} are given relative to \mathbf{r}_{3}. This method has been previously employed to consider other three-electron integration problems. ${ }^{10}$ In this coordinate system the volume element becomes

$$
\begin{equation*}
d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{3}=r_{1}^{2} r_{2}^{2} r_{3}^{2} d r_{1} d r_{2} d r_{3} \sin \theta_{3} d \theta_{3} d \phi_{3} \sin \theta_{23} d \theta_{23} d \phi_{23} \sin \theta_{31} d \theta_{31} d \phi_{31} \tag{23}
\end{equation*}
$$

If $r_{31}^{2}-r_{23}^{2}$ is written as

$$
\begin{equation*}
r_{31}^{2}-r_{23}^{2}=r_{1}^{2}-r_{2}^{2}-2 r_{1} r_{3} \cos \theta_{31}+2 r_{2} r_{3} \cos \theta_{23} \tag{24}
\end{equation*}
$$

then I_{2} may be expressed as

$$
\begin{equation*}
I_{2}(i, j, k, l, m, \alpha, \beta, \gamma)=I_{1}(i, j, k, l, m, \alpha, \beta, \gamma)-2 J_{1}(i, j, k, l, m, \alpha, \beta, \gamma) \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{1}(i, j, k, l, m, \alpha, \beta, \gamma)=\int r_{1}^{i} r_{2}^{j} r_{3}^{k+1}\left(\frac{r_{1} \cos \theta_{31}-r_{2} \cos \theta_{23}}{r_{12}^{3}}\right) r_{23}^{l} r_{31}^{m} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}} d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{3} \tag{26}
\end{equation*}
$$

J_{1} is simplified by substituting Eqs. (6), (7), (8), (14), and (15) into Eq. (26) and integrating over θ_{3} and ϕ_{3} to obtain

$$
\begin{align*}
J_{1}= & 4 \pi \sum_{w_{1}=0}^{\infty}\left(2 w_{1}+1\right) \sum_{w_{2}=0}^{\infty} \sum_{w_{3}=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_{w_{2} l p} a_{w_{3} m q} \int r_{1}^{i+2} r_{2}^{j+2} r_{3}^{k+3} r_{23<}^{w_{2}+2 p} r_{23>}^{l-w_{2}-2 p} \\
& \times r_{31<}^{w_{3}+2 q} r_{31>}^{m-w_{3}-2 q} r_{12<}^{w_{1}} r_{12>}^{-w_{1}-1}\left(\frac{r_{1} \Phi_{1}-r_{2} \Phi_{2}}{r_{12>}^{2}-r_{12<}^{2}}\right) e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}} d r_{1} d r_{2} d r_{3} \tag{27}
\end{align*}
$$

where

$$
\begin{align*}
\Phi_{1}= & \int_{0}^{2 \pi} d \phi_{23} \int_{0}^{2 \pi} d \phi_{31} \int_{0}^{\pi} d \theta_{31} \sin \theta_{31} \int_{0}^{\pi} d \theta_{23} \sin \theta_{23} \cos \theta_{31} \\
& \times P_{w_{1}}\left(\cos \theta_{12}\right) P_{w_{2}}\left(\cos \theta_{23}\right) P_{w_{3}}\left(\cos \theta_{31}\right) \tag{28}
\end{align*}
$$

and

$$
\begin{align*}
\Phi_{2}= & \int_{0}^{2 \pi} d \phi_{23} \int_{0}^{2 \pi} d \phi_{31} \int_{0}^{\pi} d \theta_{31} \sin \theta_{31} \int_{0}^{\pi} d \theta_{23} \sin \theta_{23} \cos \theta_{23} \\
& \times P_{w_{1}}\left(\cos \theta_{12}\right) P_{w_{2}}\left(\cos \theta_{23}\right) P_{w_{3}}\left(\cos \theta_{31}\right) \tag{29}
\end{align*}
$$

Evaluation of the integrals Φ_{1} and Φ_{2} leads to

$$
\begin{equation*}
\Phi_{1}=\frac{16 \pi^{2} \delta_{w_{1} w_{2}}}{2 w_{1}+1}\left\{\frac{w_{2}}{4 w_{2}^{2}-1} \delta_{w_{2}, w_{3}+1}+\frac{w_{3}}{4 w_{3}^{2}-1} \delta_{w_{3}, w_{2}+1}\right\} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{2}=\frac{16 \pi^{2} \delta_{w_{1} w_{3}}}{2 w_{1}+1}\left\{\frac{w_{2}}{4 w_{2}^{2}-1} \delta_{w_{2}, w_{3}+1}+\frac{w_{3}}{4 w_{3}^{2}-1} \delta_{w_{3}, w_{2}+1}\right\} \tag{31}
\end{equation*}
$$

The solution of these integrals is discussed in Appendix C. Substituting Eqs. (30) and (31) into Eq. (27) leads to

$$
\begin{align*}
J_{1}= & 64 \pi^{3} \sum_{w_{2}=0}^{\infty} \sum_{w_{3}=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_{w_{2} l p} a_{w_{3} m q} \int r_{1}^{i+2} r_{2}^{j+2} r_{3}^{k+3} r_{23<}^{w_{2}+2 p} r_{23>}^{l-w_{2}-2 p} r_{31<}^{w_{3}+2 q} \\
& \times r_{31>}^{m-w_{3}-2 q} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}\left(\frac{r_{1} r_{12<}^{w_{2}} r_{12>}^{-w_{2}-1}-r_{2} r_{12<}^{w_{3}} r_{12>}^{-w_{3}-1}}{r_{12>}^{2}-r_{12<}^{2}}\right)} \\
& \times\left[\frac{w_{2}}{4 w_{2}^{2}-1} \delta_{w_{2}, w_{3}+1}+\frac{w_{3}}{4 w_{3}^{2}-1} \delta_{w_{3}, w_{2}+1}\right] d r_{1} d r_{2} d r_{3} \tag{32}
\end{align*}
$$

Using the fact that

$$
\begin{equation*}
a_{(t+1) u v}=\left(\frac{2 t+3}{2 t+1}\right)\left(\frac{2 t+2 v-u}{2 t+2 v+3}\right) a_{t u v} \tag{33}
\end{equation*}
$$

allows I_{2} to be simplified to

$$
\begin{align*}
I_{2}(i, j, k, l, m, \alpha, \beta, \gamma)= & I_{1}(i, j, k, l, m, \alpha, \beta, \gamma) \\
& +128 \pi^{3} \sum_{w=0}^{\infty} \frac{(w+1)}{(2 w+1)^{2}} \sum_{q=0}^{\infty} \sum_{p=0}^{\infty} a_{w m q} a_{w l p}\left[\left(\frac{2 w+2 p-l}{2 w+2 p+3}\right)\right. \\
& \times\{W(i+2+2 w+2 q, j+1+2 p, k+m+l+2-2 w-2 p-2 q, \alpha, \beta, \gamma) \\
& +W(i+2+2 w+2 q, k+m+4+2 p-2 q, j+l-1-2 w-2 p, \alpha, \gamma, \beta) \\
& +W(k+4+2 w+2 p+2 q, i+m+2-2 q, j+l-1-2 w-2 p, \gamma, \alpha, \beta)\} \\
& -\left(\frac{2 w+2 q-m}{2 w+2 q+3}\right)\{W(j+2+2 w+2 p, i+1+2 q, k+m \\
& +l+2-2 w-2 p-2 q, \beta, \alpha, \gamma) \\
& +W(j+2+2 w+2 p, k+4+l-2 p+2 q, i+m-1-2 w-2 q, \beta, \gamma, \alpha) \\
& +W(k+4+2 w+2 p+2 q, j+2+l-2 p, i+m-1-2 w-2 q, \gamma, \beta, \alpha)\}] \tag{34}
\end{align*}
$$

Equation (34) represents the solution to I_{2}. The summation limits of the w, p, and q sums are the same as those for the I_{1} integral. The constraint given in Eq. (21) also applies for Eq. (34).

VI. EVALUATION OF \boldsymbol{I}_{3}

The generating function for the Chebyshev polynomials of the first kind is

$$
\begin{equation*}
\frac{1-r^{2}}{1-2 r x+r^{2}}=1+2 \sum_{w_{1}=1}^{\infty} r^{w_{1}} T_{w_{1}}(x) . \tag{35}
\end{equation*}
$$

Letting $r=r_{12<} / r_{12>}$ and $x=\cos \theta_{12}$ in Eq. (35) yields

$$
\begin{equation*}
\frac{1}{r_{12}^{2}}=\frac{1}{r_{12>}^{2}-r_{12<}^{2}}\left[1+2 \sum_{w_{1}=1}^{\infty}\left(\frac{r_{12<}}{r_{12>}}\right)^{w_{1}} T_{w_{1}}\left(\cos \theta_{12}\right)\right] . \tag{36}
\end{equation*}
$$

Substituting Eqs. (6), (7), and (36) into Eq. (5) leads to the result

$$
\begin{equation*}
I_{3}=F(i, j, k, l, m, \alpha, \beta, \gamma)+2 \sum_{w_{1}=1}^{\infty} \sum_{w_{2}=0}^{\infty} \sum_{w_{3}=0}^{\infty} I_{\Omega}\left(w_{1}, w_{2}, w_{3}\right) I_{R}\left(w_{1}, w_{2}, w_{3}\right), \tag{37}
\end{equation*}
$$

where

$$
\begin{gather*}
F(i, j, k, l, m, \alpha, \beta, \gamma)= \\
\sum_{w_{2}=0}^{\infty} \sum_{w_{3}=0}^{\infty} \int r_{1}^{i} r_{2}^{j} r_{3}^{k}\left(\frac{r_{1}^{2}-r_{2}^{2}}{r_{12>}^{2}-r_{12<}^{2}}\right) R_{l w_{2}}\left(r_{2}, r_{3}\right) R_{m w_{3}}\left(r_{3}, r_{1}\right) \tag{38}\\
 \tag{39}\\
\times P_{w_{2}}\left(\cos \theta_{23}\right) P_{w_{3}}\left(\cos \theta_{31}\right) d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{3}, \\
I_{\Omega}=\int T_{w_{1}}\left(\cos \theta_{12}\right) P_{w_{2}}\left(\cos \theta_{23}\right) P_{w_{3}}\left(\cos \theta_{31}\right) d \Omega_{1} d \Omega_{2} d \Omega_{3}
\end{gather*}
$$

and

$$
\begin{equation*}
I_{R}=\int r_{1}^{i+2} r_{2}^{j+2} r_{3}^{k+2} r_{12<}^{w_{1}} r_{12>}^{-w_{1}}\left(\frac{r_{1}^{2}-r_{2}^{2}}{r_{12>}^{2}-r_{12<}^{2}}\right) R_{l w_{2}}\left(r_{2}, r_{3}\right) R_{m w_{3}}\left(r_{3}, r_{1}\right) d r_{1} d r_{2} d r_{3} . \tag{40}
\end{equation*}
$$

Employing Eqs. (14) and (15), and expanding the Legendre polynomials in terms of spherical harmonics, Eq. (38) may be easily evaluated to yield

$$
\begin{align*}
F(i, j, k, l, m, \alpha, \beta, \gamma)= & 64 \pi^{3} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_{0 l p} a_{0 m q} \\
& \times\{W(k+2+2 p+2 q, j+2+l-2 p, i+m+2-2 q, \gamma, \beta, \alpha) \\
& +W(j+2+2 p, k+2+l-2 p+2 q, i+m+2-2 q, \beta, \gamma, \alpha) \\
& +W(j+2+2 p, i+2+2 q, k+m+l+2-2 p-2 q, \beta, \alpha, \gamma) \\
& -W(i+2+2 q, j+2+2 p, k+m+l+2-2 p-2 q, \alpha, \beta, \gamma) \\
& -W(i+2+2 q, k+m+2+2 p-2 q, j+l+2-2 p, \alpha, \gamma, \beta) \\
& -W(k+2+2 p+2 q, i+m+2-2 q, j+l+2-2 p, \gamma, \alpha, \beta)\} \tag{41}
\end{align*}
$$

Due to the property of the Pochhammer symbol given in Eq. (20), the p summation in Eq. (41) will terminate at $l / 2$ for even l, and $(l+1) / 2$ for odd l. Similarly, the q summation will terminate at $m / 2$ for even m, and $(m+1) / 2$ for odd m.

The integral I_{Ω} can be evaluated to give

$$
\begin{align*}
I_{\Omega}= & \frac{32 \pi^{3}}{2 w_{2}+1} \delta_{w_{2} w_{3}} \\
& \times\left\{\begin{array}{l}
\frac{\sqrt{\pi} \Gamma\left(w_{1}+1\right)}{2 \Gamma\left(w_{1}+\frac{3}{2}\right)}, \quad w_{1}=w_{2}, \\
\frac{-w_{1}}{\left(w_{1}-w_{2}\right)\left(w_{1}+w_{2}+1\right)} \frac{\Gamma\left(\frac{w_{1}-w_{2}-1}{2}\right) \Gamma\left(\frac{w_{1}+w_{2}}{2}\right)}{\Gamma\left(\frac{w_{1}-w_{2}}{2}\right) \Gamma\left(\frac{w_{1}+w_{2}+1}{2}\right)}, \quad w_{1} \geqslant w_{2}+2, \quad w_{1}+w_{2} \text { even, } \\
0, \quad \text { elsewhere, }
\end{array}\right.
\end{align*}
$$

where $\Gamma(n)$ denotes the Gamma function. The evaluation of this integral is discussed in Appendix D. Since I_{Ω} is independent of $\{i, j, k, l, m, \alpha, \beta, \gamma\}$, it can be stored in table form to increase the computational speed of the integral evaluation. Equation (37) may now be written

$$
\begin{equation*}
I_{3}=F(i, j, k, l, m, \alpha, \beta, \gamma)+2 \sum_{w_{1}=1}^{\infty} \sum_{w_{2}=0}^{w_{1}} I_{\Omega}\left(w_{1}, w_{2}\right) I_{R}\left(w_{1}, w_{2}\right) \tag{43}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{\Omega}\left(w_{1}, w_{2}\right) \equiv I_{\Omega}\left(w_{1}, w_{2}, w_{2}\right) \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{R}\left(w_{1}, w_{2}\right) \equiv I_{R}\left(w_{1}, w_{2}, w_{2}\right) \tag{45}
\end{equation*}
$$

Inserting Eqs. (14) and (15) into Eq. (43), then breaking up the region of integration as $r_{i} \leqslant r_{j}$ $\leqslant r_{k}$, allows us to write Eq. (43) as

$$
\begin{align*}
& I_{3}(i, j, k, l, m, \alpha, \beta, \gamma) \\
& \qquad \begin{aligned}
= & F(i, j, k, l, m, \alpha, \beta, \gamma)+2 \sum_{w_{1}=1}^{\infty} \sum_{w_{2}=0}^{w_{1}} I_{\Omega}\left(w_{1}, w_{2}\right) \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_{w_{2} l p} a_{w_{2} m q} \\
& \times\left\{W\left(j+2+w_{1}+w_{2}+2 p, i+2-w_{1}+w_{2}+2 q, k+2+l+m-2 w_{2}-2 p-2 q, \beta, \alpha, \gamma\right)\right. \\
& +W\left(j+2+w_{1}+w_{2}+2 p, k+2+l-2 p+2 q, i+2-w_{1}+m-w_{2}-2 q, \beta, \gamma, \alpha\right) \\
& +W\left(k+2+2 w_{2}+2 p+2 q, j+2+l+w_{1}-2 p-w_{2}, i+2+m-w_{1}-w_{2}-2 q, \gamma, \beta, \alpha\right) \\
& -W\left(k+2+2 w_{2}+2 p+2 q, i+2+w_{1}+m-w_{2}-2 q, j+2-w_{1}+l-w_{2}-2 p, \gamma, \alpha, \beta\right) \\
& -W\left(i+2+w_{1}+w_{2}+2 q, j+2-w_{1}+w_{2}+2 p, k+2+l+m-2 w_{2}-2 p-2 q, \alpha, \beta, \gamma\right) \\
& \left.-W\left(i+2+w_{1}+w_{2}+2 q, k+2+m-2 q+2 p, j+2-w_{1}-w_{2}+l-2 p, \alpha, \gamma, \beta\right)\right\} .
\end{aligned}
\end{align*}
$$

Due to properties of the Pochhammer symbol, the p summation in Eq. (46) will terminate at $l / 2$ for even l, and $(l+1) / 2$ for odd l. Similarly, the q summation will terminate at $m / 2$ for even m, and $(m+1) / 2$ for odd m. Also, due to the Pochhammer symbols in Eq. (46) and the restriction on w_{2} given in Eq. (42), the w_{2} sum has the following termination conditions:

$$
\begin{aligned}
\min \left\{w_{1}, \frac{l}{2}\right\}, & l \text { even and } m \text { odd, } \\
\min \left\{w_{1}, \frac{m}{2}\right\}, & m \text { even and } l \text { odd, } \\
\min \left\{w_{1}, \frac{l}{2}, \frac{m}{2}\right\}, & l \text { and } m \text { both even, } \\
w_{1}, & l \text { and } m \text { both odd. }
\end{aligned}
$$

The w_{1} sum is always nonterminating.
In addition to the individual constraints on i, j, k, l, and m mentioned in the Introduction, Eq. (46) requires that

$$
\begin{equation*}
i+j+k+l+m \geqslant-8 \tag{47}
\end{equation*}
$$

which follows from Eq. (22).

V. NUMERICAL EVALUATION

For even l or m, the evaluation of I_{1} and I_{2} reduces to a finite sum of terms. For l and m both odd, it is useful to examine the asymptotic behavior of the series. I_{1} is considered first.

The asymptotic behavior of a single W integral appearing in Eq. (18) is ${ }^{32}$

$$
\begin{equation*}
W \sim \frac{1}{w^{2}} . \tag{48}
\end{equation*}
$$

However, if the W integrals are taken in the appropriate pairs, it can be shown that the set of six W integrals in Eq. (18) behaves like

$$
\begin{equation*}
\text { set of } \operatorname{six} W \sim \frac{1}{w^{3}}, \tag{49}
\end{equation*}
$$

due to the difference in signs. The product of the $a_{t u v}$ coefficients in Eq. (17) exhibits the asymptotic behavior ${ }^{32}$

TABLE I. Values of $I_{1}(i, j, k, l, m, n, \alpha, \beta, \gamma)$.

i	j	k	l	m	α	β	γ	$I_{1}(i, j, k, l, m, n, \alpha, \beta, \gamma)$
0	0	0	-1	1	2.7	2.9	0.65	8.947959925047512835052492
2	-1	1	3	-1	2.7	2.9	0.65	$3.066249710874801140638611 \times 10^{4}$
1	2	3	1	3	2.7	2.9	0.65	$-7.127529951937274842240935 \times 10^{7}$
0	2	0	2	1	2.7	2.9	0.65	$-1.155955548991711453287647 \times 10^{4}$
-1	3	2	0	4	2.7	2.9	0.65	$-4.898965561162249945560093 \times 10^{7}$
1	2	-1	3	4	2.7	2.9	0.65	$-5.595918656196395007062751 \times 10^{6}$

$$
\begin{equation*}
\frac{(-m / 2)_{w}(-l / 2)_{w}}{\left[\left(\frac{1}{2}\right)_{w}\right]^{2}} \sim \frac{1}{w^{(l+m+2) / 2}} . \tag{50}
\end{equation*}
$$

Combining Eqs. (49) and (50) with the factor $1 /(2 w+1)$ from Eq. (18) leads to

$$
\begin{equation*}
I_{1} \sim \sum_{w} \frac{1}{w^{(l+m+10) / 2}} \tag{51}
\end{equation*}
$$

The worst case that arises in the evaluation of the matrix elements of H_{oo} is $l=-1$ and $m=1$, where

$$
\begin{equation*}
I_{1} \sim \sum_{w} \frac{1}{w^{5}} \tag{52}
\end{equation*}
$$

which is suitable for direct numerical evaluation.
The asymptotic form for I_{2} can be determined in a similar manner to that described for I_{1}. The result is

$$
\begin{equation*}
I_{2} \sim \sum_{w} \frac{1}{w^{(l+m+10) / 2}} \tag{53}
\end{equation*}
$$

The worst case asymptotic behavior for I_{2} is the same as that of I_{1}.
While the series representations of I_{1} and I_{2} are suitable for direct summation, such a process is rather time consuming for the most slowly converging cases. An improved approach is to apply the techniques discussed in Ref. 18. By first converting these monotonic series into equivalent alternating series, then applying convergence accelerators to the transformed series, a highprecision evaluation scheme is produced which is far more rapid for the most slowly converging integrals.

The sign differences on the coefficients of the W integrals in Eqs. (18) and (34) might be suggestive of possible numerical precision problems. However, both equations have been tested and found to be numerically stable. Tables I and II present some representative values for the I_{1} and I_{2} integrals, respectively.

A useful check for I_{1} and I_{2} can be derived by considering the integral

TABLE II. Values of $I_{2}(i, j, k, l, m, n, \alpha, \beta, \gamma)$.

i	j	k	l	m	α	β	γ	$I_{2}(i, j, k, l, m, n, \alpha, \beta, \gamma)$
0	2	0	-1	-1	2.7	2.9	0.65	-2.943608978543536288422283
1	4	3	-1	3	2.7	2.9	0.65	$2.755380752419424787112100 \times 10^{6}$
2	1	1	1	-1	2.7	2.9	0.65	$-1.874264201450095466617095 \times 10^{2}$
1	3	2	0	2	2.7	2.9	0.65	$6.929145321870892125904854 \times 10^{3}$
0	4	0	2	-1	2.7	2.9	0.65	$-2.953164176902131531016592 \times 10^{3}$
3	2	-1	3	2	2.7	2.9	0.65	$2.411321913805718749043867 \times 10^{5}$

$$
\begin{equation*}
I_{4}(i, j, k, l, m, \alpha, \beta, \gamma)=\int r_{1}^{i} r_{2}^{j} r_{3}^{k} \frac{\left(r_{1}^{2}-r_{2}^{2}\right)\left(r_{31}^{2}-r_{23}^{2}\right)}{r_{12}^{3}} r_{23}^{l} r_{31}^{m} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}} d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{3} \tag{54}
\end{equation*}
$$

Equation (54) can be evaluated using either I_{1} or I_{2}, resulting in the following relationship:

$$
\begin{align*}
& I_{1}(i, j, k, l, m+2, \alpha, \beta, \gamma)-I_{1}(i, j, k, l+2, m, \alpha, \beta, \gamma) \\
& \quad=I_{2}(i+2, j, k, l, m, \alpha, \beta, \gamma)-I_{2}(i, j+2, k, l, m, \alpha, \beta, \gamma) \tag{55}
\end{align*}
$$

Hence, Eqs. (18) and (34) may checked against each other. Also, if $l=m=0$ in Eq. (26), $J_{1}=0$, and therefore

$$
\begin{equation*}
I_{1}(i, j, k, 0,0, \alpha, \beta, \gamma)=I_{2}(i, j, k, 0,0, \alpha, \beta, \gamma) \tag{56}
\end{equation*}
$$

The asymptotic behavior of I_{3} is the most difficult to estimate, due to the nested w_{2} sum in Eq. (46). Let us define K to be the infinite series portion of the I_{3} integral. The technique used to analyze the asymptotic behavior of K will be to divide the w_{1}, w_{2} plane into three regions:

$$
\begin{gathered}
w_{2}=0, \\
0<w_{2}<w_{1}, \\
w_{2}=w_{1} .
\end{gathered}
$$

Making these simplifications, it is possible to arrive at upper and lower bound estimates on the convergence rate for the w_{1} summation.

First we examine the region where $w_{2}=0$. From Eq. (42), it can easily be shown that

$$
\begin{equation*}
I_{\Omega} \sim \frac{1}{w_{1}^{2}} \tag{57}
\end{equation*}
$$

If taken in the appropriate pairs, the sum of the W integrals in Eq. (46) behaves like

$$
\begin{equation*}
\text { set of } \operatorname{six} \quad W \sim \frac{1}{w_{1}^{2}} . \tag{58}
\end{equation*}
$$

For the case $w_{2}=0$, the $a_{t u v}$ coefficients in Eq. (46) lead to

$$
\begin{equation*}
\frac{(-m / 2)_{0}(-l / 2)_{0}}{\left[\left(\frac{1}{2}\right)_{0}\right]^{2}} \sim 1 \tag{59}
\end{equation*}
$$

Combining Eqs. (57), (58), and (59) gives the result

$$
\begin{equation*}
K \sim \sum_{w_{1}} \frac{1}{w_{1}^{4}} . \tag{60}
\end{equation*}
$$

The asymptotic behavior of K in the other two regions may be obtained by similar methods. The results are

$$
\begin{equation*}
K \sim \sum_{w_{1}} \frac{1}{w_{1}^{4}} \quad \text { to } \quad \sum_{w_{1}} \frac{1}{w_{1}^{(l+m+14) / 2}} \tag{61}
\end{equation*}
$$

and

$$
\begin{equation*}
K \sim \sum_{w_{1}} \frac{1}{w_{1}^{(l+m+11) / 2}} \tag{62}
\end{equation*}
$$

TABLE III. Values of $I_{3}(i, j, k, l, m, \alpha, \beta, \gamma)$.

i	j	k	l	m	α	β	γ	$I_{3}(i, j, k, l, m, \alpha, \beta, \gamma)$
1	-1	0	-1	1	2.7	2.9	0.65	$1.35608735218909217 \times 10^{2}$
1	2	2	1	1	2.7	2.9	0.65	$-6.371117492583756 \times 10^{4}$
3	1	2	3	1	2.7	2.9	0.65	$4.8701341784512316 \times 10^{7}$
2	2	3	-1	3	2.7	2.9	0.65	$6.471807181649945 \times 10^{5}$
4	1	2	3	3	2.7	2.9	0.65	$3.2039175218467031 \times 10^{10}$
3	1	-1	1	5	2.7	2.9	0.65	$5.84980549283482233 \times 10^{6}$

respectively. The second of the two results given in Eq. (61) was obtained using $w_{2}=w_{1} / 2$. If instead we employ $w_{2} \approx w_{1}$ (with $w_{2}<w_{1}$), the same asymptotic behavior given in Eq. (62) would be obtained.

The convergence of the entire sum will be determined by the most slowly converging portion of that sum, which was found at $w_{2}=0$. So the entire sum behaves asymptotically like

$$
\begin{equation*}
K \sim \sum_{w_{1}} \frac{1}{w_{1}^{4}} . \tag{63}
\end{equation*}
$$

It should be clear from this result that a large number of terms are needed to obtain an accurate result for K. Rather than directly summing the series, a convergence acceleration technique was applied to the infinite series portion of Eq. (46). The acceleration method employed was the Richardson extrapolation, ${ }^{33}$ which has been used previously in the evaluation of other threeelectron integration problems. ${ }^{22}$ The Richardson extrapolation is given by

$$
\begin{equation*}
S_{0}=\sum_{k=0}^{N} \frac{S_{n+k}(n+k)^{N}(-1)^{k+N}}{k!(N-k)!} \tag{64}
\end{equation*}
$$

where S_{0} is an approximation to the total sum in Eq. (46). A well-known difficulty associated with the application of Eq. (64) is that it is subject to numerical precision loss for higher values of N.

Careful examination of Eq. (46) shows it to be composed of two monotonically decreasing series, one for w_{1} even and one for w_{1} odd. Because the individual terms of the two series differ significantly in magnitude, a direct application of the Richardson extrapolation produces quite poor results. However, if Eq. (64) is applied individually to these two series, then a significant improvement in convergence is obtained. For both of these series, choosing $n=1$, the optimal value of N appears to be at about $N=23$. At this value, approximately 17 digits of precision may be obtained using 30 digit arithmetic. As was found for I_{1} and I_{2}, the sign differences on the coefficients of the W integrals in Eq. (46) do not appear to be problematic. Some representative values of I_{3} are presented in Table III.

For the case l and m both odd, evaluation of Eq. (5) via the approach developed in Sec. IV requires about half the computational time of previously published methods. For a number of test cases investigated, several more significant digits were obtained using the present approach. The increased speed of evaluation is directly tied to the much simpler formula that results in the present work, in comparison with what is obtained by breaking the integral into two separate parts. For l and m not both odd, evaluation methods may be employed which are both computationally faster and produce higher-precision results. ${ }^{19}$

VI. DISCUSSION

In this work, some key integrals are solved which are needed for the evaluation of $\Delta E_{\text {REL }}$ (the non-fine-structure contributions) for the ${ }^{2} S$ states of three-electron systems. The basic approach employed in this work is to treat each of the integrand factors $\left(r_{1}^{2}-r_{2}^{2}\right) r_{12}^{-3},\left(r_{31}^{2}-r_{23}^{2}\right) r_{12}^{-3}$, and $\left(r_{1}^{2}-r_{2}^{2}\right) r_{12}^{-2}$ as single expansions. For the I_{1} and I_{2} integrals investigated, the option of splitting these factors into separate parts does not exist, as each of the separate integrals diverge. A recursive scheme for an integral related to I_{1} is developed by Yan and Drake. ${ }^{23}$

With the evaluation of I_{1}, I_{2}, and I_{3}, the difficulties associated with the evaluation of the matrix elements of the Breit-Pauli relativistic operators now lie elsewhere. Integrals of the form shown in Eq. (2) with $l=-2$ also arise in the evaluation of H_{oo} and $H_{\text {mass }}$, and these have known computational difficulties. ${ }^{19}$ While several methods exist for their evaluation, ${ }^{19-24}$ they are relatively slow for some choices of the arguments and are subject to precision loss. Development of better methods for handling integrals of this form would be useful.

ACKNOWLEDGMENTS

Support from the National Science Foundation (Grant Nos. PHY-9300863 and PHY-9600926) is greatly appreciated. The initial stages of this project were partially supported by the Donors of the Petroleum Research Fund, Administered by the American Chemical Society.

APPENDIX A: DIVERGENCE OF I INTEGRAL WHEN $n=-3$

This appendix illustrates that Eq. (2) diverges for at least one of l, m and $n=-3$. Consequently, Eqs. (3) and (4) cannot be broken into separate integrals of the form of Eq. (2).

Let

$$
\begin{equation*}
I(i, j, k, l, m,-3, \alpha, \beta, \gamma) \equiv \int r_{1}^{i} r_{2}^{j} r_{3}^{k} r_{23}^{l} r_{31}^{m} r_{12}^{-3} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}} d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{3} \tag{A1}
\end{equation*}
$$

Because the integrand is everywhere positive,

$$
\begin{equation*}
I \geqslant \int_{\left(r_{3}-\varepsilon\right) \geqslant r_{p}} r_{1}^{i} r_{2}^{j} r_{3}^{k} r_{23}^{l} r_{31}^{m} r_{12}^{-3} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}} d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{3} \tag{A2}
\end{equation*}
$$

where $\left(r_{3}-\varepsilon\right)>0$ and $p=1,2$.
Furthermore,

$$
\begin{equation*}
I \geqslant \min _{\substack{\mathrm{R}^{9} \\\left(r_{3}-\varepsilon\right) \geqslant r_{p}}}\left\{r_{23}^{l}\right\} \quad \min _{\substack{\mathrm{R}^{9} \\\left(r_{3}-\varepsilon\right) \geqslant r_{p}}}\left\{r_{31}^{m}\right\} \int_{\left(r_{3}-\varepsilon\right) \geqslant r_{p}} r_{1}^{i} r_{2}^{j} r_{3}^{k} r_{12}^{-3} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}} d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{3} \tag{A3}
\end{equation*}
$$

Due to the restrictions placed on the region of integration,

$$
\begin{equation*}
\min _{\substack{\mathrm{R}^{9} \\\left(r_{3}-\varepsilon\right) \geqslant r_{p}}}\left\{r_{23}^{l}\right\} \quad \min _{\mathrm{R}^{9}}^{\left(r_{3}-\varepsilon\right) \geqslant r_{l}}\left\{r_{31}^{m}\right\}=\varepsilon^{l+m} . \tag{A4}
\end{equation*}
$$

Substituting Eq. (A4) into Eq. (A3) yields,

$$
\begin{equation*}
I \geqslant \varepsilon^{l+m} \times \int_{\left(r_{3}-\varepsilon\right) \geqslant r_{p}} r_{1}^{i} r_{2}^{j} r_{3}^{k} r_{12}^{-3} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}} d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{3} \tag{A5}
\end{equation*}
$$

Integration over \mathbf{r}_{3} produces a finite sum of positive terms involving integrals of the form

$$
\begin{equation*}
\int r_{1}^{s} r_{2}^{t} r_{12}^{-3} e^{-a r_{1}-b r_{2}} d \mathbf{r}_{1} d \mathbf{r}_{2} \tag{A6}
\end{equation*}
$$

Choosing perimetric coordinates ${ }^{6}$ it can easily be shown that Eq. (A6) diverges irrespective of the values of s, t, a, and b. Therefore Eq. (A5) must be divergent, and so Eq. (A1) must also diverge.

The extension to N-electron systems is obvious.

APPENDIX B: EXPANSION FOR \boldsymbol{r}_{12}^{-3}

The generating function for the Legendre polynomials is ${ }^{34}$

$$
\begin{equation*}
\frac{1}{\sqrt{1-2 r x+r^{2}}}=\sum_{n=0}^{\infty} r^{n} P_{n}(x) \tag{B1}
\end{equation*}
$$

If the operator $\hat{O} \equiv 1+2 r \partial / \partial r$ is applied to both sides of Eq. (B1 $)^{26}$ one obtains

$$
\begin{equation*}
\frac{1-r^{2}}{\left(1-2 r x+r^{2}\right)^{3 / 2}}=\sum_{n=0}^{\infty}(2 n+1) r^{n} P_{n}(x) \tag{B2}
\end{equation*}
$$

Making the substitutions $r=r_{12<} / r_{12>}, x=\cos \theta_{12}$, and $n=w_{1}$ in Eq. (B2) results in Eq. (8).

APPENDIX C: SOLUTION OF ANGULAR INTEGRALS FOR $I_{\mathbf{2}}$

This appendix discusses the evaluation of the angular integrals Φ_{1} and Φ_{2} which arise in Eq. (27). If the addition theorem for Legendre polynomials, ${ }^{26}$

$$
\begin{align*}
P_{w_{1}}\left(\cos \theta_{12}\right)= & P_{w_{1}}\left(\cos \theta_{23}\right) P_{w_{1}}\left(\cos \theta_{31}\right) \\
& +2 \sum_{n=1}^{w_{1}} \frac{\left(w_{1}-n\right)!}{\left(w_{1}+n\right)!} P_{w_{1}}^{n}\left(\cos \theta_{23}\right) P_{w_{1}}^{n}\left(\cos \theta_{31}\right) \cos \left(n\left(\phi_{23}-\phi_{31}\right)\right) \tag{C1}
\end{align*}
$$

is applied to $P_{w_{1}}\left(\cos \theta_{12}\right)$ in Eq. (28), and the integration over ϕ_{23} and ϕ_{31} is performed, then the finite sum in Eq. (C1) vanishes. Thus Φ_{1} simplifies to

$$
\begin{equation*}
\Phi_{1}=4 \pi^{2} \int_{-1}^{1} x P_{w_{1}}(x) P_{w_{3}}(x) d x \int_{-1}^{1} P_{w_{1}}(x) P_{w_{2}}(x) d x \tag{C2}
\end{equation*}
$$

Using the standard recurrence relationship

$$
\begin{equation*}
(2 v+1) x P_{v}(x)=(v+1) P_{v+1}(x)+v P_{v-1}(x) \tag{C3}
\end{equation*}
$$

and the orthogonality property of the Legendre polynomials, allows Eq. (C2) to be simplified to Eq. (30). The result for Φ_{2} can be obtained by symmetry [switch $1 \leftrightarrow 2$ and $w_{2} \leftrightarrow w_{3}$ in Eq. (28), thereby obtaining Eq. (31)].

APPENDIX D: SOLUTION OF ANGULAR INTEGRAL FOR \boldsymbol{I}_{3}

This appendix discusses the evaluation of the angular integral I_{Ω}, Eq. (39), which occurs in I_{3}. We choose our coordinate system such that

$$
\begin{equation*}
d \Omega_{1} d \Omega_{2} d \Omega_{3}=\sin \theta_{12} d \theta_{12} d \phi_{12} \sin \theta_{31} d \theta_{31} d \phi_{31} \sin \theta_{1} d \theta_{1} d \phi_{1} \tag{D1}
\end{equation*}
$$

Expanding $P_{w_{2}}\left(\cos \theta_{23}\right)$ by the addition theorem for Legendre polynomials, then integrating over $\theta_{1}, \phi_{1}, \phi_{12}, \phi_{31}$, and θ_{31}, yields

$$
\begin{equation*}
I_{\Omega}\left(w_{1}, w_{2}, w_{3}\right)=\frac{32 \pi^{3}}{2 w_{2}+1} \delta_{w_{2} w_{3}} \int_{0}^{\pi} T_{w_{1}}\left(\cos \theta_{12}\right) P_{w_{2}}\left(\cos \theta_{12}\right) \sin \theta_{12} d \theta_{12} \tag{D2}
\end{equation*}
$$

Expanding $P_{w_{2}}\left(\cos \theta_{12}\right)$ in a Fourier sine series, ${ }^{34}$ and using the identity

$$
\begin{equation*}
T_{w_{1}}\left(\cos \theta_{12}\right)=\cos \left(w_{1} \theta_{12}\right) \tag{D3}
\end{equation*}
$$

produces

$$
\begin{equation*}
I_{\Omega}=\frac{64 \pi^{5 / 2}}{2 w_{2}+1} \delta_{w_{2} w_{3}} \sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{k} \Gamma\left(w_{2}+k+1\right)}{k!\Gamma\left(w_{2}+k+\frac{3}{2}\right)} \int_{0}^{\pi} \cos \left(w_{1} \theta_{12}\right) \sin \left[\left(w_{2}+2 k+1\right) \theta_{12}\right] \sin \theta_{12} d \theta_{12} \tag{D4}
\end{equation*}
$$

Evaluation of this integral, followed by some straightforward simplification, leads to Eq. (42).
${ }^{1}$ F. W. King, J. Mol. Struct. (Theochem) 400, 7 (1997).
${ }^{2}$ F. W. King, Adv. At. Mol. Opt. Phys. 40, 57 (1999).
${ }^{3}$ K. T. Chung, Phys. Rev. A 44, 5421 (1991).
${ }^{4}$ Z.-C. Yan and G. W. F. Drake, Phys. Rev. Lett. 81, 774 (1998).
${ }^{5}$ F. W. King, D. G. Ballegeer, D. J. Larson, P. J. Pelzl, S. A. Nelson, T. J. Prosa, and B. M. Hinaus, Phys. Rev. A 58 (1998) (in press).
${ }^{6}$ C. L. Pekeris, Phys. Rev. 112, 1649 (1958).
${ }^{7}$ C. L. Pekeris, Phys. Rev. 126, 143 (1962).
${ }^{8}$ H. M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936).
${ }^{9}$ Y. Ohrn and J. Nordling, J. Chem. Phys. 39, 1864 (1963).
${ }^{10}$ L. Szász, J. Chem. Phys. 35, 1072 (1961).
${ }^{11}$ J. F. Perkins, J. Chem. Phys. 48, 1985 (1968).
${ }^{12}$ Y. K. Ho and B. A. P. Page, J. Comput. Phys. 17, 122 (1975).
${ }^{13}$ A. Berk, A. K. Bhatia, B. R. Junker, and A. Temkin, Phys. Rev. A 34, 4591 (1986).
${ }^{14}$ D. M. Fromm and R. N. Hill, Phys. Rev. A 36, 1013 (1987).
${ }^{15}$ E. Remiddi, Phys. Rev. A 44, 5492 (1991).
${ }^{16}$ G. W. F. Drake and Z.-C. Yan, Phys. Rev. A 52, 3681 (1995).
${ }^{17}$ F. E. Harris, Phys. Rev. A 55, 1820 (1997).
${ }^{18}$ P. J. Pelzl and F. W. King, Phys. Rev. E 57, 7268 (1998).
${ }^{19}$ F. W. King, Phys. Rev. A 44, 7108 (1991).
${ }^{20}$ F. W. King, K. J. Dykema, and A. Lund, Phys. Rev. A 46, 5406 (1992).
${ }^{21}$ A. Lüchow and H. Kleindienst, Int. J. Quantum Chem. 45, 445 (1993).
${ }^{22}$ I. Porras and F. W. King, Phys. Rev. A 49, 1637 (1994).
${ }^{23}$ Z.-C. Yan and G. W. F. Drake, J. Phys. B 30, 4723 (1997). For an application to the fine-structure terms of the $1 s^{2} 2 p^{2} P$ state of the lithium atom, see Z.-C. Yan and G. W. F. Drake, Phys. Rev. Lett. 79, 1646 (1997).
${ }^{24}$ F. W. King, Int. J. Quantum Chem. (submitted for publication).
${ }^{25}$ R. A. Sack, J. Math. Phys. 5, 245 (1964).
${ }^{26} \mathrm{H}$. Hochstadt, The Functions of Mathematical Physics (Dover, New York, 1986).
${ }^{27}$ S. Chapman, Q. J. Math. 185, 16 (1916).
${ }^{28}$ V. McKoy, J. Chem. Phys. 42, 2959 (1965).
${ }^{29}$ F. Byron, Jr. and C. J. Joachain, Phys. Rev. 146, 1 (1966).
${ }^{30}$ A. M. Frolov and V. H. Smith, Jr., Int. J. Quantum Chem. 63, 269 (1997).
${ }^{31}$ E. A. Hylleraas, Z. Phys. 48, 469 (1928).
${ }^{32}$ S. Larsson, Phys. Rev. 169, 49 (1968).
${ }^{33}$ C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978), p. 375.
${ }^{34}$ M. Abramowitz and I. A. Stegun (editors), Handbook of Mathematical Functions (Dover, New York, 1970).

