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Hylleraas-type calculations of the relativistic corrections for the ground state of the lithium atom

Frederick W. King, Daniel G. Ballegeer, David J. Larson, Paul J. Pelzl, Scott A. Nelson, Ty J. Prosa,
and Bradley M. Hinaus

Department of Chemistry, University of Wisconsin–Eau Claire, Eau Claire, Wisconsin 54702
~Received 22 June 1998!

Calculations of the principal Breit-Pauli relativistic corrections for the ground-state energy of the lithium
atom have been carried out. The corrections have been determined using first-order perturbation theory. Only
the non-fine-structure components of the Breit-Pauli Hamiltonian in the infinite nuclear mass approximation
are considered. The wave function employed is an extensively optimized large-scale Hylleraas-type expansion.
Comparisons are made with the few available relativistic corrections for the lithium atom that are available in
the literature. A reevaluation of the first ionization potential for the ground state of Li is presented.
@S1050-2947~98!05911-3#

PACS number~s!: 31.30.Jv, 31.15.Ar
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I. INTRODUCTION

The purpose of this work is to report high-precision es
mates of the principal relativistic corrections to the groun
state energy of the lithium atom. There has been consi
able recent interest in the high-precision determination
various properties of the ground and excited states of
lithium atom and members of its isoelectronic series~see
@1,2# for recent reviews!. The principal~non-fine-structure!
Breit-Pauli relativistic corrections to the energy levels are
notable omission from the long list of properties that ha
been calculated to high precision.

A knowledge of precise values of these corrections is
portant for several reasons. A valuable check on the qua
of ab initio calculations on three-electron atoms can be m
by evaluating the first ionization potential of the system. T
experimental first ionization potential for the lithium atom
available for comparison with a relative accuracy of 0.
ppm. To obtain a match between theory and experimen
this level of accuracy requires rather precise estimates o
relativistic corrections to the ground-state energies of both
and Li1. The availability of precise estimates for the Bre
Pauli corrections would also be of value as benchmarks
other types of relativistic calculations, such as multiconfig
ration Dirac-Fock and relativistic many-body perturbati
theory methods. In addition, if high-precision values for t
relativistic corrections to the energy levels are available, t
it is possible to assess indirectly, in a semiempirical fash
the expected size of the QED contributions to the vario
ionization potentials.

For the doublet states of three-electron atomic syste
almost all the available published work on precise relativis
calculations has been carried out by Chung and co-wor
@3–6# using the configuration-interaction~CI! technique. For
the lithium atom, Chung@3# has carried out calculations o
the relativistic corrections for the ground-state energies
both Li and Li1. For Li1 he was able to compare his C
results with the earlier high-precision Hylleraas calculatio
of Pekeris@7,8#. The difference between the CI and the Hy
leraas results for Li1 was adopted as a core-correction co
tribution for each of the calculated Breit-Pauli contribution
These corrections were then incorporated into the calc
PRA 581050-2947/98/58~5!/3597~7!/$15.00
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tions for the ground state of Li. While this procedure
somewhatad hoc, a validation of the approach, at least f
the relativistic kinetic-energy mass contribution, is given
@1#. There it is pointed out that Chung’s core-corrected va
for this contribution is in relatively close agreement with t
result from more precise calculations. The results of the c
culations reported herein will validate Chung’s approach
the other Breit-Pauli relativistic corrections.

Other than Chung’s calculations@3#, no works are known
to the authors where all the principal Breit-Pauli energy c
rections are evaluated with reasonable precision for
ground state of the lithium atom. High-precision estimates
some of the individual Breit-Pauli relativistic corrections
the energy can be found in the literature@9–15#. The main
reason that all the contributions have received very little
tention can be traced to the rather recalcitrant integra
problems that emerge. This facet of the problem will be d
cussed below in detail.

II. THEORY

The Breit-Pauli Hamiltonian discussed in this work is

H rel5Hmass1HEND1HEED1HSSC1Hoo, ~1!

where the various terms in Eq.~1! are given in atomic units
~a.u.! by

Hmass52
a2

8 (
i 51

3

¹ i
4, ~2!

HEND5 1
2 a2Zp(

i 51

3

d~r i !, ~3!

HEED52pa2(
i 51

3

(
j . i

3

d~r i j !, ~4!

HSSC52
8pa2

3 (
i 51

3

(
j . i

3

si•sjd~r i j !, ~5!
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Hoo5
1

2
a2(

i 51

3

(
j . i

3 S“ i•“ j

r i j
1

r i j •~r i j •“ i !“ j

r i j
3 D . ~6!

Hmassrepresents the kinetic-energy mass correction,HEND is
the electron-nuclear Darwin term,HEED denotes the electron
electron Darwin term,HSSC is the spin-spin contact interac
tion, andHoo designates the electron-electron orbit intera
tion. In Eqs.~2!–~6!, the fine-structure constant is denoted
a. d~r ! is a Dirac delta function,si is an electron spin op
erator, andZ is the nuclear charge. Only the non-fin
structure contributions have been shown in Eq.~1!. In addi-
tion to these terms, there are fine-structure contributions
include spin-orbit, spin-other-orbit, and spin-spin intera
tions.

The individual contributions are evaluated using fir
order perturbation theory. The wave function employed
based on the Hylleraas expansion

c5A(
m51

N

Cmfmxm , ~7!

whereA is the three-electron antisymmetrizer,Cm are the
variationally determined expansion coefficients, andN des-
ignates the number of basis functions employed. T
Hylleraas-type basis termsfm are functions of the electron
nuclear (r i) and electron-electron (r i j ) separations and ar
defined by

fm~r 1 ,r 2 ,r 3 ,r 23,r 31,r 12!

5r 1
i mr 2

j mr 3
kmr 23

l mr 31
mmr 12

nme2amr 12bmr 22gmr 3. ~8!

The Hylleraas approach that we employed is described
Refs.@9–13#.

Integration problems

Using the form of the nonrelativistic Hamiltonian writte
in Hylleraas coordinates, it is not difficult to show that th
matrix elements needed for the eigenvalue and eigenfunc
determination all simplify to sets of integrals of the form

I ~ i , j ,k,l ,m,n,a,b,c!

5E r 1
i r 2

j r 3
kr 23

l r 31
mr 12

n e2ar12br22cr3dr1dr2dr3 ,

~9!

with the conditionsl ,m,n>21. These integrals, the auxi
iary functions on which they depend, and some related g
eralizations have been extensively investigated in the lite
ture @16–40#. Effective numerical methods for the evaluatio
of these integrals are well known. For an energy evaluat
only I integrals withoneof the indicesl,m,nequal to21 are
required. These integrals can be conveniently evaluated
ing available algorithms@18,35,40#. When two of thel,m,n
indices are equal to21 ~a situation that arises for the evalu
ation of the relativistic corrections!, a much more effective
approach to evaluate theseI integrals is by the use of con
vergence accelerator techniques, using a transformation
cedure given by Pelzl and King@40#.
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The integral problems become extremely severe when
expectation values of two of the Breit-Pauli operatorsHmass
andHoo are evaluated using Hylleraas-type wave functio
The electron-nuclear Darwin term, the electron-electron D
win term, and the spin-spin contact interaction present
special difficulties. These latter three contributions all si
plify to the integrals given in Eq.~9! with the condition
l ,m,n>21. The matrix elements of the kinetic-energy ma
operator can all be reduced to integrals of the form given
Eq. ~9!, but the constraintl ,m,n>21 no longer applies. The
required integrals for the kinetic-energy mass correction
the electron-electron orbit interaction includeI integrals hav-
ing at least one of the factorsl ,m,n522. On the surface,
this might seem like a relatively minor change from the p
vious cases, but the difficulties introduced can be apprecia
by noting the form for the expansion ofr 12

22 @41–44#. The
appearance of a logarithm factor in the expansion ofr 12

22

greatly complicates the integral evaluations.
Three-electron integrals withr 12

22 factors@42,44–49# have
received far less study than the other cases mentioned ab
The additionalI integrals that must be evaluated can be
vided into three cases:~i! those havingl 522 and m,n>
21 and notboth odd, ~ii ! I integrals havingl 522 and
m,n>21 andboth odd, and~iii ! l 522 andm522. All
otherI integrals can be reduced to one of these three case
using the symmetry implicit in Eq.~9!. For case~i!, effective
methods were developed by King@42# to deal with these
integrals several years ago. A large number of integrals
this type can be reduced to integrals that arise in the rela
istic problem for two-electron systems. The latter integr
are much easier to evaluate and have been well studied.
case~ii ! integrals, which are significantly more difficult t
evaluate than the case~i! integrals, were considered in@42#.
Several different approaches have now been develope
deal with these integrals@43–49#, but these methods do no
yield the precision levels that can be obtained for the case~i!
I integrals. Case~iii ! integrals are the most difficult to re
solve. Although methods to evaluate case~iii ! have been
discussed in the literature@44,46#, the precision available is
somewhat limited. Cases~ii ! and~iii ! in particular have been
a major bottleneck to carrying out relativistic calculatio
with Hylleraas-type expansions. If the most general Hyll
aas expansion is employed, then both case~ii ! and case~iii !
integrals arise.

The obvious question to pose is: Is it possible, by ju
cious selection of the basis functions, to avoid these diffic
integral cases entirely? Deleting a number of basis functi
that have two or three odd entries for$ l m ,mm ,nm% allows the
case~ii ! and case~iii ! I integrals to be avoided. The omissio
of basis functions having three odd entries for$ l m ,mm ,nm%
has an insignificant effect on the determination of a prec
energy estimate or the calculation of a number of other pr
erties. The omission of basis functions with two odd entr
for $ l m ,mm ,nm% is more problematic, but it is still possible t
obtain reasonable levels of precision when a large basis s
employed. It is possible to select the basis terms such
cases~i!–~iii ! I integrals do not arise; however, the ener
obtained with a basis set of this design, even with seve
hundred terms included, is relatively poor. A comprom
was selected in the present work, namely, that basis fu
tions with two and three odd values for the indic
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$ l m ,mm ,nm% were excluded. This simplifies the integr
evaluations for the relativistic kinetic-energy mass correct
and the electron orbit-orbit correction since only case~i! I
integrals need to be evaluated.

For the evaluation of the electron-electron orbit intera
tion, in addition to the I integral cases having one o
$ l m ,mm ,nm%522, some integrals of the following form
arise:

I 1~ i , j ,k,l ,m,n,a,b,c!5E r 1
i r 2

j r 3
k~r 1

22r 2
2!r 23

l r 31
mr 12

23

3e2ar12br22cr3dr1dr2dr3

~10!

and

I 2~ i , j ,k,l ,m,n,a,b,c!5E r 1
i r 2

j r 3
k~r 23

2 2r 31
2 !r 23

l r 31
mr 12

23

3e2ar12br22cr3dr1dr2dr3 .

~11!

The integrals defined in Eqs.~10! and ~11! look at first
glance like they might be simple extensions of theI integrals
defined in Eq.~9!. This turns out not to be the case; th
integrals I 1 and I 2 cannot be split into two parts, as th
separate integrals diverge. Different approaches to deal
these more singular-looking integrals were investigated.
effective approach to evaluate these integrals involves w
ing directly with the expansions of the factors (r 1

22r 2
2)r 12

23

and (r 23
2 2r 31

2 )r 12
23. The integralsI 1 and I 2 may both be

evaluated rapidly and to high precision. A detailed disc
sion of the evaluation of these integrals is given by Fe
mann, Pelzl, and King@49#.

There are still several unresolved problems connecte
the evaluation of some of the more difficult integrals. T
principal issue to resolve is the current inability to obta
high-precision results without significantly increasing t
CPU time required for evaluation. Efforts in this directio
are in progress on some of the more obdurate integrals.

III. COMPUTATIONAL PROCEDURE

The wave function employed was constructed in the f
lowing manner. An indexv is defined by

v5 i m1 j m1km1 l m1mm1nm . ~12!

Basis functions were then added in terms of increasing p
ers ofv, v50, 1, 2, 3, and 4, except terms withv50 and 1
were added in a nonsequential fashion at the start of the b
expansion. The number of terms included for each value
v, Nv , is shown in Table I. Four repetitions of each ba
function were included forv50, 1, 2, and 3; forv54, four
to five repetitions were employed. The repeats were adde
clusters in a manner intended to avoid problems associ
with linear dependence in the basis set. For each term ad
the exponent set$am ,bm ,gm% was determined using a globa
optimization approach. A stochastic procedure was use
locate the minima for a reasonably sized grid of the expon
set$am ,bm ,gm%. This approach has the advantage that th
n
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is a high confidence that the global minimum has been
cated, but this is at the expense of requiring significant C
resources. The global optimization procedure also gives
indication of the plethora of false minima that occur for
number of basis functions; the difference in energies betw
the false minima and the global minima can often be sign
cant. The optimization phase of the calculation was carr
out in double precision~with a 32-bit word length!. The final
energy determination and the evaluation of the relativis
contributions were done after the matrix elements were
evaluated in quadruple precision.

The operators given in Eqs.~2! and ~6! emphasize the
near-nuclear region of configuration space. The variat
method leads to the most significant improvements in
wave function in a region further~on average! from the
nucleus than that emphasized byHmass and Hoo. Adding
large numbers of more diffuse basis functions is likely
improve the convergence of the expectation values of
aforementioned two operators, but at a somewhat slo
rate.

Alternative forms for expectation values

A considerable investment of labor and CPU resour
was made in order to check the calculations. The formu
for the expectation values of the kinetic-energy mass cor
tion and the electron-electron orbit interaction are straig
forward but rather tedious to evaluate. The final expressi
are too lengthy to reproduce here. The original formu
were worked out by hand and then later evaluated using
symbolic capabilities ofMATHEMATICA . In order to check the
results, an alternative approach was employed. For
kinetic-energy mass correction we have

^Hmass&52
a2

8 (
i 51

3

^cu¹ i
4uc& ~13!

and this can be recast as

^Hmass&52
a2

8 (
i 51

3

^¹ i
2cu¹ i

2c&. ~14!

Equations~13! and ~14! should yield identical results, eve
for an approximate eigenfunction. It actually turns out th
Eq. ~14! is much easier to work with and most of the calc
lations were done with this form. However, a number

TABLE I. Ground-state energy of the lithium atom~in a.u.! as a
function of the basis set size.

v @Eq. ~12!# Nv N
Nonrelativistic

energy

0,1 28 28 27.477 198 9
2 72 100 27.478 007 7

200 27.478 055 5
3 181 281 27.478 057 4

400 27.478 059 6
500 27.478 059 76
600 27.478 059 83

4 419 700 27.478 059 89
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TABLE II. Breit-Pauli relativistic contributions to the ground-state energy of the lithium atom~in a.u.!.

Number
of basis
functions ^Hmass& ^HEND& ^HEED& ^HSSC& ^Hoo& ^H rel&

28 24.171 2831023 3.469 1231023 29.567 5231025 1.913 5031024 22.412 0131025 26.306 0831024

100 24.183 9431023 3.474 4831023 29.212 4731025 1.842 4931024 22.331 8431025 26.406 5631024

200 24.182 7331023 3.473 5031023 29.123 9031025 1.824 7831024 22.321 8431025 26.412 0731024

281 24.183 2231023 3.473 7431023 29.121 3031025 1.824 2631024 22.321 3531025 26.414 8031024

400 24.183 0831023 3.473 6531023 29.114 7331025 1.822 9531024 22.320 3131025 26.414 9031024

500 24.183 0131023 3.473 6131023 29.114 5631025 1.822 9131024 22.320 2731025 26.414 5431024

600 24.183 0531023 3.473 6331023 29.114 3931025 1.822 8831024 22.320 2431025 26.414 7931024

700 24.183 0831023 3.473 6431023 29.113 6131025 1.822 7231024 22.320 1831025 26.415 0431024
t
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checks were made using Eq.~13!. The set of integrals tha
arise when the expectation value ofHmass is evaluated is
quite different for the two forms. This is rather easy to s
for Eq. ~14! involves nod-function evaluations, but the ex
pansion of¹ i

4 does lead to such terms. Much more singul
looking integrals can also arise when Eq.~13! is employed.

For the electron-electron orbit interaction, the expectat
value can be written as the expectation value ofHoo given in
Eq. ~6!, or as the alternative form

^Hoo&5 1
2 a2(

i 51

3

(
j . i

3

@^cur i j
21

“ i•“ j uc&

2^r i j
23~11r i j •“ i !cur i j •“ jc&#. ~15!

For an application of this identity to the corresponding pro
lem for the ground state of the helium atom see@50#. Both
the expectation value shown in Eq.~15! and the expectation
value of Eq.~6! were evaluated as a check on each calcu
tion.

IV. RESULTS

The energies obtained with the different size basis sets
tabulated in Table I. The final energy is approximately 0
mhartree above the best previous estimate of the ground-
energy@14# ~see@1# for an extensive tabulation of previou
calculations of this quantity!. In Table II the convergence o
the five contributions determined from the operators defi
in Eqs. ~2!–~6! are shown as a function of the size of th
basis sets employed.

The scale factorh, defined by

h52
^V&
2^T&

, ~16!

where^V& and ^T& are the potential energy and kinetic e
ergy, respectively, was also calculated for each wave fu
tion. For the final 700-term wave function employed,h
51.000 000 1, which is very close to the resulth51, ex-
pected on the basis of the virial theorem for an exact w
function.
,
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V. DISCUSSION

A. Convergence characteristics and literature comparisons

The comments on the convergence characteristics
based on the results presented in Table II. The converge
of the expectation value ofHEND is relatively smooth, but not
monotonic. The final value reported in Table II is in clo
agreement with other high-precision estimates of this qu
tity @9–11,14#, the most precise of which leads to the val
^HEND&53.473 66(1)31023 a.u. @14#.

The convergence patterns for the expectation values
HEED andHSSCbehave similarly, with the convergence bein
approximately monotonic. It is straightforward to show, u
ing the spin eigenfunction given in Eq.~9!, that

K (
i 51

3

(
j . i

3

si•sjd~r i j !L 52 3
4 K (

i 51

3

(
j . i

3

d~r i j !L , ~17!

which implies

^HSSC&522^HEED&. ~18!

Both ^HSSC& and^HEED& were computed separately to che
for possible roundoff errors and to confirm that Eq.~18! was
satisfied. The similarity of the observed convergence beh
ior for ^HSSC& and ^HEED& results directly from the connec
tion given in Eq.~18!. An estimate for̂ HSSC& and ^HEED&
can be determined from the high-precision result for the
pectation value of̂ d(r i j )& given by Yan and Drake@14#.
The value obtained for̂HEED& is 29.106 30(6)31025 a.u.
@14#, and the final value reported in Table II is about 0.08
lower. A possible explanation for one of the contributin
factors for the slower convergence observed for^HSSC& and
^HEED& may be the omission of basis functions where two
the set $ l m ,mm ,nm% are both odd values. Some of the
terms, particularly for smaller values ofv @see Eq.~12!#,
would be expected to play a more important role for obta
ing precise expectation values such as^d(r i j )&.

The expectation value ofHmass displays a convergenc
behavior that is clearly not monotonic, while the conve
gence of the expectation value ofHoo exhibits monotonic
characteristics. Both of these expectation values are expe
to be more sensitive to the behavior of the wave function
the region of configuration space fairly close to the nucle
Since the wave functions were determined using the stan
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TABLE III. Contributions ~in absolute a.u.! to the first ionization potential of the lithium atom.

Energy contribution 7Li1(1s2) 7Li(1s22s)

ENR 27.279 913 412 669 305 9a 27.478 060 323~3!d

EBohr 0.000 569 303 94~4!b 0.000 584 799 43~4!e

ESMS 0.000 022 588 912~2!b 0.000 023 593 74~4!e,f

Erel 20.000 628 865 188~57!c 20.000 641 50~8!g

DEQED 20.000 001 1~1!h

theoreticalI 1 0.198 141 9~1!

experimentalI 1 0.198 142 03~2!i

aFrom Ref.@51#.
bEvaluated from results in Ref.@51# using the mass information given in Sec. V B.
cEvaluated from results in Ref.@51# and the value of the fine-structure constant given in Ref.@55#.
dFrom Ref.@14#.
eEvaluated from results in Ref.@14# using the mass information given in Sec. V B.
fEvaluated from results in Ref.@52#.
gPresent work.
hFrom Refs.@53,54#.
iFrom Ref.@57#.
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implementation of the variation method, where the import
focus is the region of configuration space near but not
close to the nucleus, it should be expected that^Hmass& and
^Hoo& would exhibit a slower rate of convergence. A super
approach would be to determine the wave function so
the variances, defined by

s5^HNR
2 &2^HNR&2, ~19!

is optimized. As the approximate wave function approac
the exact eigenfunction,s→0. An alternative strategy migh
be to augment the standard variation approach with the c
straint that s also be optimized. Both these approach
would lead to wave functions that provide a better desc
tion of configuration space close to the nucleus. Unfor
nately, such calculations would be prohibitively expensive
terms of the CPU resources required.

Because the convergence patterns for the individual c
tributions to^H rel& are not monotonic, it is rather difficult to
arrive at reliable estimates for extrapolated values of th
expectation values, as the size of the basis set becomes
nite. The approximate uncertainty for the final value of^H rel&
reported in Table II is estimated~in part! on the basis of
convergence trends, to be about 2–8 in the fifth signific
digit reported.

Chung @3# reports the values ^Hmass&1^HEND&5
27.094231024 a.u. ~in the present work we obtain
27.094431024!, ^HEED&1^HSSC&59.115431025 a.u.
(9.113631025), ^Hoo&522.320131025 a.u. (22.3202
31025), and ^H rel&526.414731024 a.u. (26.4150
31024). The final results reported in Table II are in ve
close agreement with Chung’s results. This comparison p
vides a validation of the core-correction strategy employ
for the CI calculations carried out by Chung.

B. The first ionization energy

The first ionization energy of the ground state of Li,I 1 ,
can be determined from the result
t
o

r
at

s

n-
s
-
-

n

n-

e
nfi-

t

o-
d

I 15ET~Li1!2ET~Li !, ~20!

where ET(Li1) and ET(Li) denote the total energy of the
ground-state energies of Li1 and Li, respectively.ET(Li) is
given by

ET~Li !5ENR~Li !1Erel~Li !1Emass~Li !1EQED~Li !,
~21!

with a similar expression forET(Li1). The first ionization
potential can therefore be written as

I 15ENR~Li1!2ENR~Li !1DErel1DEmass1DEQED,
~22!

where the energy differences refer to ion2neutral species.
In Table III the most precise values for each energy c

tribution are collected, along with the available error es
mates@51–54#. The value of the fine-structure constant h
been taken from@55# and the nuclear mass for7Li has been
taken from@56#. The specific mass shift correction has be
evaluated using

m
7M

57.820 202 2~6!31025,

wherem is the reduced mass~for the isotope7Li ! and 7M is
the nuclear mass for7Li @ 7M57.014 358 4(5) amu@56##.
The calculated ionization potential is observed to be in rat
close agreement with the available experimental result@57#.
To convert the values ofI 1 to cm21, the conversion factor is
1 a.u. (absolute)5219 474.631 368 8(62) cm21. Other re-
cent high-precision theoretical evaluations ofI 1 can be found
in @3,14,58–61# and a summary of earlier results is given
@1#. It is clear from the results presented in Table III tha
major part of the uncertainty in the theoretical determinat
of I 1 now resides with the QED contribution.
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C. Further refinements

If some of the integration difficulties inherent in th
present approach can be resolved in a more effective man
it should be possible to improve the precision of the pres
results for the various Breit-Pauli relativistic contribution
The obvious starting point is to make two improvements
the basis set. The first is to add more diffuse functions~terms
with v.4!. These basis functions would improve the pre
sion of the calculations, but at an expected slow rate of c
vergence. The second and more important improvem
would be to include those basis functions having two od
for the set$l,m,n% for values ofv52, 3, and 4. Inclusion of
these functions is expected to improve the precision leve
several parts of the calculation. This is, however, at the c
of dealing with a significant number of the most difficu
integrals. Improved numerical evaluation procedures
these integrals would be of considerable value if the in
cated extensions of the proposed basis set were employ

The next most significant refinement of the calculati
would be the incorporation of nuclear mass-dependent r
tivistic corrections~see@62#!. Because of the high precisio
of the experimental value ofI 1 , the largest of the Stone
corrections would be expected to play a role in determin
an equally precise theoretical value ofI 1 .

VI. CONCLUSION

The final value ofErel obtained is of sufficient precision t
allow a theoretical determination of the first ionization p
th,
er,
nt
.
o

-
n-
nt
s

f
st

r
i-
.

a-

g

tential of the lithium atom to seven digit precision. Improve
calculation of the QED contribution toI 1 will be essential if
the precision of the theoretical determination of the ioniz
tion potential is to approach the precision level availa
from experiment.

Significant refinements to the present calculations will d
pend on the development of improved methods to evalu
the most difficult integral cases that arise. Work is
progress attempting to improve the evaluation procedures
the most difficult integral cases.

Note added in proof.Recently the authors received un
published work from Dr. Drake on relativistic and QED e
ergies in lithium, which has now been published~Z.-C. Yan
and G. W. F. Drake@63#!. The work of Yan and Drake@63#
also evaluates the relativistic correction for the ground-s
energy of Li, but using a much larger basis-set expansio
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