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Convergence accelerator approach for the high-precision evaluation
of three-electron correlated integrals
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The standard series expansion that has long been employed to evaluate one-center correlated three-electron
integrals is converted into a different form. The alternative expression obtained allows convergence accelerator
techniques to be directly applied in a very effective manner. The resulting expansion is found to be numerically
stable, in contrast to the series obtained when convergence accelerator techniques are applied to the standard
expansion. Using this approach, the increase in computational speed is found to be very significant for the most
slowly converging integrals. Some representative values are presented for a number of three-electron correlated
integrals calculated using the method suggested hdi®i63-651X98)01106-4

PACS numbds): 02.70—~c, 31.15-p, 02.60--x

[. INTRODUCTION quickly. The focus of the present work is the case wHere
m, andn are all odd, which gives rise to an infinite series.
The general one-center three-electron correlated integréddor an energy determination, the worst-case convergence

takes the form leads to a series of the form
1(i,j,k,1,m,n,a,B,7) Z ag
1=> —. 2
PR s=1 S
=f rrbrkrlrDrle a1 Ar2=vadr dr,drg, 1)

Using the same type of analysis given by Larsgbh, it is

ossible to show that the integrigl0,0,0~1,—-1,—-1,1,1,1
wherer; denotes the electron-nuclear distance gpdiesig- Eehaves like gt )

nates the electron-electron separation. This integral and a

related extension have been well studied in the literdtixe * a

25]. It can be shown that for an energy determination oSan 1(0,0,0-1,-1,—-1,1,1,2= 2 —j. 3)
state of a three-electron atomic system, all of the required s=1 3

e_xpect_ation values can be reduced to integrals of th_e fo.m?’he asymptotic form for the series expansion of the integral
given in Eg. (1), when a standard Hylleraas expansion 'Sl(i,j,k,l,m,n,a,ﬂ,y) has been given by Drake and Yan

employeq for th_e wave fu.nction. _These integrals also arise | 24]. The convergence of each of the preceding two series is
the hybrid configuration-interaction Hylleraas approach fo dominated by the P behavior, although the values af g,

the S states of three-electron atoms. It has been shown that dyin Eq. (1) can have an impact on the convergence. It is

particular group of correlated fqur—electron int(_agrals can b‘?‘easible to numerically evaluate the series in &y by direct
reduced to a sum of the aboVentegrals[26]. Since these summation, but the time required to evaluate &) .directly

integrals occur W|dely_ in h|gh-pre_C|S|on (_:alculatlons using \-kes this proposition inefficient.
correlated basis functions, there is considerable interest in
developing improved procedures for the rapid numerical

evaluation of these integrals.

It can be shown that an energy determination only re- From the appearance of the form of the series given in Eq.
quires| integrals withl=—1, m=—1, andn=-1 and, (2), and particularly that given in Eq3), it should be clear
more specifically, only one of the sktm, n=—1, and the  that the optimal evaluation of theintegral is governed by
other two values are=0. The analysis presented below will how effectively the series expansion can be summed. If the
also include cases like=—1, m=—1, andn=—1. These coefficientsa, fall off quickly with increasings, then direct
latter integrals arise in certain applications, such as particulasummation techniques have a chance to be rather effective.
relativistic corrections and lower bound calculations of en-However, in a general calculation this behavior is not real-
ergy levels.l integrals having arguments with m, orn= " jzed. Direct summation of Eq2) is possible, but the CPU
—2 arise in some important applications. These cases havequirements are relatively high. For the case of B),
been less extensively investigatgtB,19,22,23 in part be-  direct summation is not an efficient strategy if high-precision
cause of the considerable additional complexities arisingesults are required. In practical calculations, it is essential
from the expansion orfijz. They are not considered further that the individual integral evaluations be performed at rea-
in this work. sonably high precision levels, in order to minimize precision

For thel integral it is straightforward to show that when loss that invariably occur§articularly for very large basis
I, m, andn are not all odd, then the integral simplifies to a set3 when final expectation values are calculated. There are
finite sum of terms that can be numerically evaluated verydefinite advantages associated with being able to evaluate the
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required atomic integrals at close to the limit of machine [k
accuracy, and this is the goal of the present work. ci(k,A)=(— 1)J< j )(J +1)k2A 8
Drake and Yan[24] have suggested an asymptotic ap-
proach to avoid the direct summation problem. This ap-The Levin u transform exhibits the same alternating sign
proach is closely linked to the well-known Richardson ex-behavior as thé¢’ transformation.
trapolation technique. These authors also considered direct If the individual termsA; have alternating signs, then
application of a convergence accelerator technigue to the setearly Eqs(4) and(7) are likely to be much more stable for
ries in Eq.(3). It was found that significant precision loss numerical evaluation. The problem with the application of
occurred as they increased the key index in the convergenggy. (7) directly to Eq.(3) is the fact that the coefficients
acceleration method employed. The precision level of theibj(k,Aj) alternate in sign whed\;>0 and grow to a very
best result using the convergence accelerator approach wagjnificant size ak increases, leading to a very substantial
rather modest. The problem of precision loss detected byoss of precision fou, for large values ok. For thel inte-
these authors for the convergence accelerator method theyals of interest in this work, eithek;>0 for all j, or this
employed is not unexpected, and is a well-known difficulty condition onA; holds true starting at some small valuejof
associated with the application of such techniques. This means that it is impossible to obtain a relative accuracy
In this paper we show how a convergence acceleratofor the| integrals at precision levels close to machine accu-
technique can be applied to the calculation of thetegrals,  racy via direct application of the transformation. Applica-
in the process obtaining a much more efficient evaluationion of thet’ transformation directly to Eq(3) is ineffective.
process than the classicahM-Nordling analysis. The key Thjs is an expected result as it is well known that this trans-

idea in our approach is as follows. The first step is to turn thgormation is not capable of accelerating the convergence of
required series into a series whose terms have alternatingeries of the form given in Eq3) [33].

signs. Generally, this would be a highly undesirable maneu- |f the sum of interest

ver because of the risk of introducing additional numerical %

round-off errors. However, the functional form of a number S.= >, Ay for A,=0 (9)
of the more effective convergence accelerator techniques has w=0

a mathematical structure that includes an alternating sign bean be converted to a sum of the form

havior. When these techniques are applied to an alternating

series, the alternating signs cancel, leading to a much more - w

stable summation method. For discussions of convergence Swzwzzo (=1)"Bw for By=0, (10)

accelerator techniques and applications, see the works b% .
Levin [27], Fessleret al. [28], Weniger[29—31, Brezinski then the loss of precision observed by Drake and Yan can be

and Redivo Zaglid32], and Smith and Forf33]. ef.fe.ct.ively eliminated. The idea to employ the strgtggy ex-

Smith and Ford[33] (see also Ref[31]) suggested a plicit in Egs.(9) gnd.(lo) seems well known to specialists in
modification of Levin'st transformation, herein denoted by Numerical applications of convergence accelerator tech-
t’, which would normally give superior results for alternat- Niques(see, for example, Fesslet al. [28]), but often re-

ing series. Tha' transformation takes the form ceives no mention in app_hcatlons Papers.
The principal difficulty is whether the functional form of

S qi(kA L 1)S B,, can be determined, and if it can be numerically evaluated
t]= io Thiis ko (4)  in a cost effective manner. We now show how this function
Zi_0dj(KAj+1) can be determined for the integral. For the casé, m,
n=—1, the following result can be derived using the Sack
where [34] expansion forrf} :
K\ .
Qj(kaAj+1):(_1)](j)(J+1)klAj+11: 5 I=1(i,j.k!l.mn,a,pB,y)
and a sequence of partial suBsare defined by => X X | rirbrkem TR (1, 1)
. w=0 w;=0 wy=0
j
Sj= 20 Ay (6) X mel(r3,r1)RnW2(r1,r2)
=

X P,,(COS 653) Pwl(cos 031) sz(cos 0,,)drqdr,drs;.
In Eq. (5), (}‘) denotes a binomial coefficient.
Perhaps the most widely known technique to accelerate 1D
logarithmically convergent serigsuch as those given in whereR,, is a Sack radial function. If the functional form of
Egs.(2) and (3)] is the Levinu transformation{27], which ~ each Sack radial function is substituted into Efjl) and
was also extensively investigated in this work. Tihérans-  integration over the radial and angular coordinates is carried

formation takes the form out, then
=K _oci(k,A)S, x
j=0%j A9
U,= , (7) |: A , 12
i) =, A a2

where whereA(w) is given by
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Aw)= 247 i i i Wi+ 24 2W+ 2G4 28, + 24 N+ 2p— 2L K+ 2+ 1+ m—2w—2
W)= Zwr1)2 & & & 2wipdumund W W+2q+2t,j+2+n+2p-2t, m—2w-—2p
—-20,a,8,y) +W(i+2+2w+2q+2t,k+2+m+2p—2q,j +2+1+n—2w—2p—2t,«a,v,B)
+W(j+2+2w+2p+2t,i+2+n+29—2t,k+2+1+m—-2w—2p—20q,8,a,v)
+W(j+2+2w+2p+2t,k+2+1+2q—2p,i +2+m+n—2w—2q—2t, 8,7, a) + W(k+ 2+ 2w
+2p+2q,i+2+m+2t—2q,j+2+1+n—2w—2p—2t,y,a,B) + W(k+2+2w+2p+2q,j+2+I
+2t—2p,i+2+m+n—-2w—2q-2t,v,8,a)}. (13
|
The a,,,; coefficient is given by amples were considered where the first few terms alternated
in sign, and it was found that thé transformation could be
L I L N 1n applied to the entire series without any numerical problems.
2/, 2]\ 2 2], It is straightforward to show that for thk integral de-
awnt= 1 3 : (14)  scribed in Eq.(1) (with I, m, n=—1), Eq. (18) behaves
(_) t! (w+ — asymptotically like the power series
2 w 2 t -
a
and (z), denotes a Pochhammer symbol. TWefunction B(v)=>, WW: (19)
given in Eq.(13) is defined by t=0
w(l,J,K,a,8,7) which for the most slowly converging integral, Eq.(3),
leads to
=f x'e*“deJ' yJe*BydyJ' Ne 7dz. (15) oo
0 X d B(u)zZo a,8 . (20)
t=

This auxiliary function has been well studied in the literature

[1,3,11,15,24,3p The functional dependence @f(w) on g,y coyid be evaluated using convergence accelerator tech-

{i,j.kl,m,n,a,B, 7} is suppressed to simplify the notation. njqes. While such an approach would generate characteris-
The principal result employed is tic precision loss, the rounding errors would be less severe
@ o o than those resulting from the application of similar transfor-
> A= (-1t 2A(2's+n—1). (16 ~ Mations to Eq(12). However, because the time savings re-
s=n s=1 t=0 sulting from this additional use of convergence accelerators
) L ) .. would be relatively small, and to avoid the introduction of
A concise comment on the origin of this transformation is yqgitional precision loss, this approach was not employed.
given in the Appendix. Using Eq16) allows thel integral  Raiher B(y) was evaluated by direct summation. It is clear
to be expressed as from the form of Eq.(19) that this calculation may be per-
o formed very rapidly.
|(i,j,k,|,m,n,a,ﬁ,y)=—z (_1)UB(U)1 (17)
v=1 . RESULTS

with In Table | we show a comparison of the behavior obtained
when theu transformation is applied to E¢12) and thet’
transformation is applied to Eq17) for the casel(0,0,0,
-1,-1,-1,1,1,1). The calculations for both tables were car-
ried out usingFORTRAN quadruple precisioriwith a 32-bit
andA(2'v — 1) is determined from Eq13). Equation(17)is  word length, which corresponds to approximately 30 digits
the key result of this work. Now the’ transformation is of precision. The final result reported in Table | using Eq.
applied directly to Eq(17). It should be clear from the func- (17) is in agreement with the results for this integral obtained
tional form of thet’ transformation that the application of by other workerg 16,24, but is converged to more digits
this acceleration technique to Hd.7) leads to a numerically than reported previously. Our calculation is also in agree-
stable result, provided tha&(2'v — 1) can be computed in a ment with a high-precision arithmetic evaluation of the ana-
numerically stable way, which turns out to be the case for thdytic formula of Remiddi[17]. The advantage of our ap-
integrals of interest. proach should be readily apparent from these results.

If the first few terms of the series in E¢L7) haveB(v) In Table Il we report a few representativéntegrals ob-
alternating in sign, then these terms can be separated, and ttaned using Eq(17). The tabulated values agree with results
t’ transformation applied to the remaining sum. Some exobtained using an alternative evaluation employing then©

B(U)=t§0 2'A(2v —1), (18
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TABLE I. Convergence of the andt’ transforms for the integrdl(0,0,0-1,—1,—1,1,1,1).

Levin
index u transform applied t’ transform applied
(k) directly to Eqg.(12) to Eq.(17)
0 661.0 702.0
1 681.0 684.3
2 683.8 684.094
3 684.093 684.114 58
4 684.1130 684.113 374
5 684.113 57 684.113 4107
6 684.113 43 684.113 412 07
7 684.113 4108 684.113 411 830
8 684.1134115 684.113 41184271
9 684.113 411 839 684.113 411 842 668
10 684.113 411 848 684.113 411 842 627 1
11 684.113 4118430 684.113 411 842 629 968
12 684.113 411 842 57 684.113 411 842 629917 7
13 684.113 411 842 622 684.113 411 842 629 911 27
14 684.113 411 8426305 684.113 411 842 629 911 853
15 684.113 4118426301 684.113 411 842 629 911 836 99
16 684.113 411 842 629 909 684.113 411 842 629 911 836 066
17 684.113 411 842 629 909 5 684.113 411 842 629 911 836 176 3
18 684.113 411 842 629911 78 684.113 411 842 629 911 836 172 439
19 684.113 411 842 629 911 87 684.113 411 842 629 911836172321 1
20 684.113 411 842 629 911 838 684.113 411 842 629 911 836 172 341 13
21 684.113 411 842 629 911 835 8 684.113 411 842 629 911 836 172 340 265
22 684.113 411 842 629 911 836 12 684.113 411 842 629 911 836 172 340 253 3
23 684.113 411 842 629 911 836 14 684.113 411 842 629 911 836 172 340 256 9
24 684.113 411 842 629 911 836 3 684.113 411 842 629 911 836 172 340 256 7
25 684.113 411 842 629 911 836 3 684.113 411 842 629 911 836 172 340 256 7
26 684.113 411 842 629911 8359 684.113 411 842 629 911 836 172 340 256 7
27 684.113 411 842 629 911 836 7 684.113 411 842 629 911 836 172 340 256 7
28 684.113 411 842 629 911 835 684.113 411 842 629 911 836 172 340 256 7
29 684.113 411 842 629 911 88 684.113 411 842 629 911 836 172 340 256 7
30 684.113 411 842 629 911 86 684.113 411 842 629 911 836 172 340 256 7
31 684.113 411 842 629 911 79 684.113 411 842 629 911 836 172 340 256 7
32 684.113 411 842 629 913 684.113 411 842 629 911 836 172 340 256 7
33 684.113 411 842 629 913 684.113 411 842 629 911 836 172 340 256 7
34 684.113 411 842 629 92 684.113 411 842 629 911 836 172 340 256 7
35 684.113 411 842 629 96 684.113 411 842 629 911 836 172 340 256 7

684.113 411 842 629 911 836 172 340 256 708222

a/alue calculated from the formulas of Remiddi7].

Nordling schemd3]. The optimal value of the’ transfor- In addition to thet’ transformation described in Eg&l)
mation indexk is also reported for eadhintegral in Table II.  and (5), both the Levinu transformation Egs. (7) and (8)]
The optimal value ofk stays in a narrow range, and not and the Wynre algorithm(see Ref[32]) were applied to Eq.
surprisingly, increases slightly whés-m-+n is smaller. The (17). All three transformations were able to produce results
first entry in Table Il can be written in a simple compact converged to machine precision using a relatively small
form as[17] number of partial sums. However, it was found that the
transformation converged slightly fast@approximately 4—
20% for the test cases explojetthan the Levinu transfor-
mation, which in turn performed noticeably better than
Wynn's ¢ algorithm.

(-1,-1-1-1-1-111))

2
—487% 21n21n 3-[In 22— ——2Lj 1 21

IV. DISCUSSION
where Li(x) is the dilogarithm function. Equatiof21) pro-

vides a useful check on the precision of the results calculated The success of the method described in Sec. Il is clearly
from Eq. (17). indicated by the results presented in Table I. The transforma-
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TABLE Il. | integrals calculated using E¢L7).
Levin
i j k | m n a B y index (k) | integral
-1 -1 -1 -1 -1 -1 1.0 1.0 1.0 25 4.382 174 441 144 904 256 316 255 8640
1 2 3 -1 -1 1 2.0 2.0 2.0 24 3.708 891 282 966 454 151 598 287 02404
1 2 3 -1 1 1 2.7 2.9 0.6 20 1.578 902 278 992 620 564 949 557 08BB
1 1 1 1 1 1 2.7 2.9 0.6 19 1.040 856 004 718 114 742 772 502 35010°
1 2 3 1 3 5 27 29 06 16 4.835 593 508 551 350 528 836 141 8449
1 1 1 -1 -1 3 2.7 2.9 0.6 23 5.955 187 798 127 083 390 562 091 43206
1 -1 1 -1 -1 5 2.7 2.9 0.6 20 4.153 189 410 286 313 893 597 821 2750
1 2 3 -1 3 5 2.7 2.9 0.6 18 2.586 142 496 244 587 259 912 015 45802
2 3 4 3 3 3 2.7 2.9 0.6 16 8.916 498 620 151 390 527 629 386 5209
1 2 3 -1 1 5 2.7 2.9 0.6 20 2.040 035 974 322 132 225 687 117 34808
1 2 3 -1 3 3 2.7 2.9 0.6 19 1.735 574 025 561 259 042 558 668 23E07
1 2 3 1 1 3 2.7 2.9 0.6 18 1.624 109 122 716 939 602 311 210 16710°
1 2 3 1 3 1 2.7 2.9 0.6 18 3.746 128 793 511 223 583 778 107 984 BY
2 1 3 -1 3 5 2.7 2.9 0.6 18 3.148 008 255 555 465 945 427 369 00B)?
2 3 1 -1 3 5 2.7 2.9 0.6 19 1.582 909 076 240 029 045 602 994 24EB
3 2 1 -1 3 5 2.7 2.9 0.6 19 2.017 154 027 170 239 339 249 790 95108
3 1 2 -1 3 5 2.7 2.9 0.6 18 9.359 166 057 879 182 911 239 528 24800

tion given by Eq.(16) has the net effect of transforming a ing lower bounds to state energiese Ref[36] for a sum-
logarithmically converging sequence into an alternating semary on these applicationsThe possibility of carrying out
ries, with the terms of the transformed series being given byhe series transformation of the type discussed in this work is
an infinite series that converges linearly. Because of the relainder investigation for these much more complex integrals.
tively rapid convergence of the infinite series #fv), this  The particular cases of interest dre —2, andm andn both

can be evaluated very efficiently by direct summation. odd, which are extremely difficult to evaluate to high preci-
The Chrn-Nordling approach amounts to the evaluation ofsion by other approaches.
thel integrals as a series of the form A second application that is about to be investigated con-

cerns the application of the series transformation approach
a 112 discussed in this work to more complicated many-electron
2, ags (M correlated integrals. A target integral for future investigation
s=1 . ) . L
is the four-electron correlated integral, which involves up to
As|+m+n increases, the @n-Nordling scheme converges SiX interelectronic coordinate factors. Although a number of
more quickly, while the evaluation of EfL8) becomes more the four-electron correlated integrals have been resolved
time-consuming. So an effective computational approach fok26.37,38, there are still a number of important unsolved
the | integrals should allow for a combination of then@- ~ ¢@Ses. Convergence accelerator techniques of the type dis-
Nordling method and the approach of this paper. Based ofuSSed in this work might be particularly well suited for
calculations of a number of differentintegrals, the switch- resolving some of the more difficult four-electron correlated
over point in CPU efficiency occurs whérm+n~7, al-  Integrals.

though the exact point depends on the values pf k, a, B Evaluation of thd integrals occurs at the innermost level
y as well as on the suitm+n. The smaller the value of Of an atomic energy evaluation. Faster techniques to evaluate

I+ m+n, the larger the CPU savings obtained using the Con;hese integrals can lead to significant impact on the overall

vergence accelerator approaiiq. (17)]. For the smallest 'speed'of the calculations. This is a particularly important
values ofl +m-+n employed for the entries in Tables | and issue in any Hylleraas-type calculation that does extensive

I, the decrease in evaluation time was several orders of ma _pt|m|za_t|0n of the r)onllnear parameters, because the num-
nitude to produce the precision levels given in the tables. €7 Of | integrals being evaluated becomes enormous when
practical calculation of the energyparticularly for the arge _ba§|s Set expansions are employed. _T_he use of global
ground and lowest-lying statewill lead to many more inte- optlr_mzatlon techniques significantly magnifies the nu_mber
grals having values df+m+n of 1 or 3, relative to higher c_>f_| integrals that must be evaluated. Future progress in uti-
values. Consequently, there will be a very significant gain inhzmg correl_ated basis sets for many-gleptron system; IS
computational speed for the entire energy calculation wheRoPably going to be dependent on the judicious application
the technique of the present work is employed. of convergence accelerator techniques.

In this work the focus has been on the most commonly
occurring one-center three-electron correlated integrals. The
next most important cases have —2, m=—-1, andn=
— 1. These integrals arise in applications such as certain rela- Support from the National Science Foundat{@rant No.
tivistic corrections, and in applications concerned with find-PHY-9600926 is greatly appreciated. The authors thank a
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well-known authority on convergence accelerator techniquelf Eq. (Al) is used recursively, then it follows that
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APPENDIX

In this appendix a few concise comments are made on the
derivation of Eq.(16). By considering separately the two

series

0

> (—1)°A(js+m),

> A(js+m),
s=1 s=1

it is straightforward to show that

oo %)

Zl A(js+m)= Zl (—1)STIA(js+ m)+221 A(2js+m).
(A1)

21 A(js+m)= 21 (— 1)S+1§)0 2'A(2Ys+m).
S= sS= t=
(A2)

On settingm=0, j=1, andA(s)=s ¥ in Eq. (A2), the well-
known result for the Riemaniifunction

o1 o (—1)°
(=3, g=-1-20%1% T g
s=1 S s=1 S

is obtained. Equatiori16) follows directly from Eq.(A2)
usingj=1 andm=n—1.
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