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Convergence accelerator approach for the high-precision evaluation
of three-electron correlated integrals

Paul J. Pelzl and Frederick W. King
Department of Chemistry, University of Wisconsin–Eau Claire, Eau Claire, Wisconsin 54702

~Received 20 October 1997!

The standard series expansion that has long been employed to evaluate one-center correlated three-electron
integrals is converted into a different form. The alternative expression obtained allows convergence accelerator
techniques to be directly applied in a very effective manner. The resulting expansion is found to be numerically
stable, in contrast to the series obtained when convergence accelerator techniques are applied to the standard
expansion. Using this approach, the increase in computational speed is found to be very significant for the most
slowly converging integrals. Some representative values are presented for a number of three-electron correlated
integrals calculated using the method suggested herein.@S1063-651X~98!01106-4#

PACS number~s!: 02.70.2c, 31.15.2p, 02.60.2x
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I. INTRODUCTION

The general one-center three-electron correlated inte
takes the form

I ~ i , j ,k,l ,m,n,a,b,g!

5E r 1
i r 2

j r 3
kr 23

l r 31
mr 12

n e2ar 12br 22gr 3dr1dr2dr3 , ~1!

wherer i denotes the electron-nuclear distance andr i j desig-
nates the electron-electron separation. This integral an
related extension have been well studied in the literature@1–
25#. It can be shown that for an energy determination of aS
state of a three-electron atomic system, all of the requ
expectation values can be reduced to integrals of the f
given in Eq. ~1!, when a standard Hylleraas expansion
employed for the wave function. These integrals also aris
the hybrid configuration-interaction Hylleraas approach
theS states of three-electron atoms. It has been shown th
particular group of correlated four-electron integrals can
reduced to a sum of the aboveI integrals@26#. Since these
integrals occur widely in high-precision calculations usi
correlated basis functions, there is considerable interes
developing improved procedures for the rapid numeri
evaluation of these integrals.

It can be shown that an energy determination only
quires I integrals with l>21, m>21, and n>21 and,
more specifically, only one of the setl , m, n521, and the
other two values are>0. The analysis presented below w
also include cases likel 521, m521, andn521. These
latter integrals arise in certain applications, such as partic
relativistic corrections and lower bound calculations of e
ergy levels.I integrals having arguments withl , m, or n5
22 arise in some important applications. These cases h
been less extensively investigated@18,19,22,23#, in part be-
cause of the considerable additional complexities aris
from the expansion ofr i j

22. They are not considered furthe
in this work.

For theI integral it is straightforward to show that whe
l , m, andn are not all odd, then the integral simplifies to
finite sum of terms that can be numerically evaluated v
571063-651X/98/57~6!/7268~6!/$15.00
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quickly. The focus of the present work is the case wherel ,
m, andn are all odd, which gives rise to an infinite serie
For an energy determination, the worst-case converge
leads to a series of the form

I 5(
s51

`
as

s6 . ~2!

Using the same type of analysis given by Larsson@11#, it is
possible to show that the integralI (0,0,0,21,21,21,1,1,1)
behaves like

I ~0,0,021,21,21,1,1,1!5(
s51

`
as

s4 . ~3!

The asymptotic form for the series expansion of the integ
I ( i , j ,k,l ,m,n,a,b,g) has been given by Drake and Ya
@24#. The convergence of each of the preceding two serie
dominated by thes2p behavior, although the values ofa, b,
andg in Eq. ~1! can have an impact on the convergence. I
feasible to numerically evaluate the series in Eq.~2! by direct
summation, but the time required to evaluate Eq.~3! directly
makes this proposition inefficient.

II. THEORY

From the appearance of the form of the series given in
~2!, and particularly that given in Eq.~3!, it should be clear
that the optimal evaluation of theI integral is governed by
how effectively the series expansion can be summed. If
coefficientsas fall off quickly with increasings, then direct
summation techniques have a chance to be rather effec
However, in a general calculation this behavior is not re
ized. Direct summation of Eq.~2! is possible, but the CPU
requirements are relatively high. For the case of Eq.~3!,
direct summation is not an efficient strategy if high-precisi
results are required. In practical calculations, it is essen
that the individual integral evaluations be performed at r
sonably high precision levels, in order to minimize precisi
loss that invariably occurs~particularly for very large basis
sets! when final expectation values are calculated. There
definite advantages associated with being able to evaluate
7268 © 1998 The American Physical Society
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required atomic integrals at close to the limit of machi
accuracy, and this is the goal of the present work.

Drake and Yan@24# have suggested an asymptotic a
proach to avoid the direct summation problem. This a
proach is closely linked to the well-known Richardson e
trapolation technique. These authors also considered d
application of a convergence accelerator technique to the
ries in Eq. ~3!. It was found that significant precision los
occurred as they increased the key index in the converge
acceleration method employed. The precision level of th
best result using the convergence accelerator approach
rather modest. The problem of precision loss detected
these authors for the convergence accelerator method
employed is not unexpected, and is a well-known difficu
associated with the application of such techniques.

In this paper we show how a convergence acceler
technique can be applied to the calculation of theI integrals,
in the process obtaining a much more efficient evaluat
process than the classical O¨ hrn-Nordling analysis. The key
idea in our approach is as follows. The first step is to turn
required series into a series whose terms have alterna
signs. Generally, this would be a highly undesirable man
ver because of the risk of introducing additional numeri
round-off errors. However, the functional form of a numb
of the more effective convergence accelerator techniques
a mathematical structure that includes an alternating sign
havior. When these techniques are applied to an alterna
series, the alternating signs cancel, leading to a much m
stable summation method. For discussions of converge
accelerator techniques and applications, see the works
Levin @27#, Fessleret al. @28#, Weniger@29–31#, Brezinski
and Redivo Zaglia@32#, and Smith and Ford@33#.

Smith and Ford@33# ~see also Ref.@31#! suggested a
modification of Levin’st transformation, herein denoted b
t8, which would normally give superior results for alterna
ing series. Thet8 transformation takes the form

tk85
( j 50

k qj~k,Aj 11!Sj

( j 50
k qj~k,Aj 11!

, ~4!

where

qj~k,Aj 11!5~21! j S k
j D ~ j 11!k21Aj 11

21, ~5!

and a sequence of partial sumsSj are defined by

Sj5 (
w50

j

Aw. ~6!

In Eq. ~5!, ( j
k) denotes a binomial coefficient.

Perhaps the most widely known technique to accele
logarithmically convergent series@such as those given in
Eqs. ~2! and ~3!# is the Levinu transformation@27#, which
was also extensively investigated in this work. Theu trans-
formation takes the form

uk5
( j 50

k cj~k,Aj !Sj

( j 50
k cj~k,Aj !

, ~7!

where
-
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cj~k,Aj !5~21! j S k
j D ~ j 11!k22Aj

21. ~8!

The Levin u transform exhibits the same alternating si
behavior as thet8 transformation.

If the individual termsAj have alternating signs, the
clearly Eqs.~4! and~7! are likely to be much more stable fo
numerical evaluation. The problem with the application
Eq. ~7! directly to Eq. ~3! is the fact that the coefficient
cj (k,Aj ) alternate in sign whenAj.0 and grow to a very
significant size ask increases, leading to a very substant
loss of precision foruk for large values ofk. For theI inte-
grals of interest in this work, eitherAj.0 for all j , or this
condition onAj holds true starting at some small value ofj .
This means that it is impossible to obtain a relative accur
for the I integrals at precision levels close to machine ac
racy via direct application of theu transformation. Applica-
tion of thet8 transformation directly to Eq.~3! is ineffective.
This is an expected result as it is well known that this tra
formation is not capable of accelerating the convergence
series of the form given in Eq.~3! @33#.

If the sum of interest

S`5 (
w50

`

AW for Aw>0 ~9!

can be converted to a sum of the form

S`5 (
w50

`

~21!wBW for Bw>0, ~10!

then the loss of precision observed by Drake and Yan can
effectively eliminated. The idea to employ the strategy e
plicit in Eqs.~9! and~10! seems well known to specialists i
numerical applications of convergence accelerator te
niques~see, for example, Fessleret al. @28#!, but often re-
ceives no mention in applications papers.

The principal difficulty is whether the functional form o
Bw can be determined, and if it can be numerically evalua
in a cost effective manner. We now show how this functi
can be determined for theI integral. For the casel , m,
n>21, the following result can be derived using the Sa
@34# expansion forr i j

p :

I[I ~ i , j ,k,l ,m,n,a,b,g!

5 (
w50

`

(
w150

`

(
w250

` E r 1
i r 2

j r 3
ke2ar 12br 22gr 3Rlw~r 2 ,r 3!

3Rmw1
~r 3 ,r 1!Rnw2

~r 1 ,r 2!

3Pw~cosu23!Pw1
~cosu31!Pw2

~cosu12!dr1dr2dr3 .

~11!

whereRmp is a Sack radial function. If the functional form o
each Sack radial function is substituted into Eq.~11! and
integration over the radial and angular coordinates is car
out, then

I 5 (
w50

`

A~w!, ~12!

whereA(w) is given by
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A~w!5
64p3

~2w11!2 (
p50

`

(
q50

`

(
t50

`

awlpawmqawnt$W~ i 1212w12q12t, j 121n12p22t,k121 l 1m22w22p

22q,a,b,g!1W~ i 1212w12q12t,k121m12p22q, j 121 l 1n22w22p22t,a,g,b!

1W~ j 1212w12p12t,i 121n12q22t,k121 l 1m22w22p22q,b,a,g!

1W~ j 1212w12p12t,k121 l 12q22p,i 121m1n22w22q22t,b,g,a!1W~k1212w

12p12q,i 121m12t22q, j 121 l 1n22w22p22t,g,a,b!1W~k1212w12p12q, j 121 l

12t22p,i 121m1n22w22q22t,g,b,a!%. ~13!
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The awnt coefficient is given by

awnt5

S 2n

2 D
w
S w2

n

2D
t
S 2

1

2
2

n

2D
t

S 1

2D
w

t! S w1
3

2D
t

, ~14!

and (z)p denotes a Pochhammer symbol. TheW function
given in Eq.~13! is defined by

W~ I ,J,K,a,b,g!

5E
0

`

xIe2axdxE
x

`

yJe2bydyE
y

`

zKe2gzdz. ~15!

This auxiliary function has been well studied in the literatu
@1,3,11,15,24,35#. The functional dependence ofA(w) on
$ i , j ,k,l ,m,n,a,b,g% is suppressed to simplify the notation

The principal result employed is

(
s5n

`

A~s!5(
s51

`

~21!s11(
t50

`

2tA~2ts1n21!. ~16!

A concise comment on the origin of this transformation
given in the Appendix. Using Eq.~16! allows theI integral
to be expressed as

I ~ i , j ,k,l ,m,n,a,b,g!52 (
v51

`

~21!vB~v !, ~17!

with

B~v !5(
t50

`

2tA~2tv21!, ~18!

andA(2tv21) is determined from Eq.~13!. Equation~17! is
the key result of this work. Now thet8 transformation is
applied directly to Eq.~17!. It should be clear from the func
tional form of thet8 transformation that the application o
this acceleration technique to Eq.~17! leads to a numerically
stable result, provided thatA(2tv21) can be computed in a
numerically stable way, which turns out to be the case for
integrals of interest.

If the first few terms of the series in Eq.~17! haveB(v)
alternating in sign, then these terms can be separated, an
t8 transformation applied to the remaining sum. Some
e

the
-

amples were considered where the first few terms altern
in sign, and it was found that thet8 transformation could be
applied to the entire series without any numerical problem

It is straightforward to show that for theI integral de-
scribed in Eq.~1! ~with l , m, n>21!, Eq. ~18! behaves
asymptotically like the power series

B~v !5(
t50

`
atv

2t~ l 1m1n19!/2 , ~19!

which for the most slowly convergingI integral, Eq.~3!,
leads to

B~v !5(
t50

`

atv82t. ~20!

B(v) could be evaluated using convergence accelerator t
niques. While such an approach would generate charact
tic precision loss, the rounding errors would be less sev
than those resulting from the application of similar transf
mations to Eq.~12!. However, because the time savings r
sulting from this additional use of convergence accelera
would be relatively small, and to avoid the introduction
additional precision loss, this approach was not employ
Rather,B(v) was evaluated by direct summation. It is cle
from the form of Eq.~19! that this calculation may be per
formed very rapidly.

III. RESULTS

In Table I we show a comparison of the behavior obtain
when theu transformation is applied to Eq.~12! and thet8
transformation is applied to Eq.~17! for the caseI (0,0,0,
21,21,21,1,1,1). The calculations for both tables were c
ried out usingFORTRAN quadruple precision~with a 32-bit
word length!, which corresponds to approximately 30 digi
of precision. The final result reported in Table I using E
~17! is in agreement with the results for this integral obtain
by other workers@16,24#, but is converged to more digit
than reported previously. Our calculation is also in agr
ment with a high-precision arithmetic evaluation of the an
lytic formula of Remiddi @17#. The advantage of our ap
proach should be readily apparent from these results.

In Table II we report a few representativeI integrals ob-
tained using Eq.~17!. The tabulated values agree with resu
obtained using an alternative evaluation employing the O¨ hrn-
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TABLE I. Convergence of theu and t8 transforms for the integralI (0,0,0,21,21,21,1,1,1).

Levin
index
(k)

u transform applied
directly to Eq.~12!

t8 transform applied
to Eq. ~17!

0 661.0 702.0
1 681.0 684.3
2 683.8 684.094
3 684.093 684.114 58
4 684.113 0 684.113 374
5 684.113 57 684.113 410 7
6 684.113 43 684.113 412 07
7 684.113 410 8 684.113 411 830
8 684.113 411 5 684.113 411 842 71
9 684.113 411 839 684.113 411 842 668

10 684.113 411 848 684.113 411 842 627 1
11 684.113 411 843 0 684.113 411 842 629 968
12 684.113 411 842 57 684.113 411 842 629 917 7
13 684.113 411 842 622 684.113 411 842 629 911 27
14 684.113 411 842 630 5 684.113 411 842 629 911 853
15 684.113 411 842 630 1 684.113 411 842 629 911 836 99
16 684.113 411 842 629 909 684.113 411 842 629 911 836 066
17 684.113 411 842 629 909 5 684.113 411 842 629 911 836 176 3
18 684.113 411 842 629 911 78 684.113 411 842 629 911 836 172 439
19 684.113 411 842 629 911 87 684.113 411 842 629 911 836 172 321 1
20 684.113 411 842 629 911 838 684.113 411 842 629 911 836 172 341 13
21 684.113 411 842 629 911 835 8 684.113 411 842 629 911 836 172 340 265
22 684.113 411 842 629 911 836 12 684.113 411 842 629 911 836 172 340 253 3
23 684.113 411 842 629 911 836 14 684.113 411 842 629 911 836 172 340 256 9
24 684.113 411 842 629 911 836 3 684.113 411 842 629 911 836 172 340 256 7
25 684.113 411 842 629 911 836 3 684.113 411 842 629 911 836 172 340 256 7
26 684.113 411 842 629 911 835 9 684.113 411 842 629 911 836 172 340 256 7
27 684.113 411 842 629 911 836 7 684.113 411 842 629 911 836 172 340 256 7
28 684.113 411 842 629 911 835 684.113 411 842 629 911 836 172 340 256 7
29 684.113 411 842 629 911 88 684.113 411 842 629 911 836 172 340 256 7
30 684.113 411 842 629 911 86 684.113 411 842 629 911 836 172 340 256 7
31 684.113 411 842 629 911 79 684.113 411 842 629 911 836 172 340 256 7
32 684.113 411 842 629 913 684.113 411 842 629 911 836 172 340 256 7
33 684.113 411 842 629 913 684.113 411 842 629 911 836 172 340 256 7
34 684.113 411 842 629 92 684.113 411 842 629 911 836 172 340 256 7
35 684.113 411 842 629 96 684.113 411 842 629 911 836 172 340 256 7

684.113 411 842 629 911 836 172 340 256 708 22a

aValue calculated from the formulas of Remiddi@17#.
t

c

t

lts
all

an

arly
ma-
Nordling scheme@3#. The optimal value of thet8 transfor-
mation indexk is also reported for eachI integral in Table II.
The optimal value ofk stays in a narrow range, and no
surprisingly, increases slightly whenl 1m1n is smaller. The
first entry in Table II can be written in a simple compa
form as@17#

I ~21,21,21,21,21,21,1,1,1!

548p3H 2 ln 2 ln 32@ ln 2#22
p2

6
22Li2S 2

1

2D J , ~21!

where Li2(x) is the dilogarithm function. Equation~21! pro-
vides a useful check on the precision of the results calcula
from Eq. ~17!.
t

ed

In addition to thet8 transformation described in Eqs.~4!
and ~5!, both the Levinu transformation@Eqs. ~7! and ~8!#
and the Wynn« algorithm~see Ref.@32#! were applied to Eq.
~17!. All three transformations were able to produce resu
converged to machine precision using a relatively sm
number of partial sums. However, it was found that thet8
transformation converged slightly faster~approximately 4–
20% for the test cases explored! than the Levinu transfor-
mation, which in turn performed noticeably better th
Wynn’s « algorithm.

IV. DISCUSSION

The success of the method described in Sec. II is cle
indicated by the results presented in Table I. The transfor
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TABLE II. I integrals calculated using Eq.~17!.

i j k l m n a b g
Levin

index (k) I integral

21 21 21 21 21 21 1.0 1.0 1.0 25 4.382 174 441 144 904 256 316 255 864 03102

1 2 3 21 21 1 2.0 2.0 2.0 24 3.708 891 282 966 454 151 598 287 024 43102

1 2 3 21 1 1 2.7 2.9 0.6 20 1.578 902 278 992 620 564 949 557 089 83105

1 1 1 1 1 1 2.7 2.9 0.6 19 1.040 856 004 718 114 742 772 502 350 03105

1 2 3 1 3 5 2.7 2.9 0.6 16 4.835 593 508 551 350 528 836 141 841 931011

1 1 1 21 21 3 2.7 2.9 0.6 23 5.955 187 798 127 083 390 562 091 432 63102

1 21 1 21 21 5 2.7 2.9 0.6 20 4.153 189 410 286 313 893 597 821 275 03103

1 2 3 21 3 5 2.7 2.9 0.6 18 2.586 142 496 244 587 259 912 015 456 23109

2 3 4 3 3 3 2.7 2.9 0.6 16 8.916 498 620 151 390 527 629 386 520 931014

1 2 3 21 1 5 2.7 2.9 0.6 20 2.040 035 974 322 132 225 687 117 746 23107

1 2 3 21 3 3 2.7 2.9 0.6 19 1.735 574 025 561 259 042 558 668 735 73108

1 2 3 1 1 3 2.7 2.9 0.6 18 1.624 109 122 716 939 602 311 210 167 13108

1 2 3 1 3 1 2.7 2.9 0.6 18 3.746 128 793 511 223 583 778 107 984 53109

2 1 3 21 3 5 2.7 2.9 0.6 18 3.148 008 255 555 465 945 427 369 006 73109

2 3 1 21 3 5 2.7 2.9 0.6 19 1.582 909 076 240 029 045 602 994 145 63108

3 2 1 21 3 5 2.7 2.9 0.6 19 2.017 154 027 170 239 339 249 790 957 83108

3 1 2 21 3 5 2.7 2.9 0.6 18 9.359 166 057 879 182 911 239 528 248 03108
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tion given by Eq.~16! has the net effect of transforming
logarithmically converging sequence into an alternating
ries, with the terms of the transformed series being given
an infinite series that converges linearly. Because of the r
tively rapid convergence of the infinite series forB(v), this
can be evaluated very efficiently by direct summation.

The Öhrn-Nordling approach amounts to the evaluation
the I integrals as a series of the form

(
s51

`

ass
2~ l 1m1n111!/2.

As l 1m1n increases, the O¨ hrn-Nordling scheme converge
more quickly, while the evaluation of Eq.~18! becomes more
time-consuming. So an effective computational approach
the I integrals should allow for a combination of the O¨ hrn-
Nordling method and the approach of this paper. Based
calculations of a number of differentI integrals, the switch-
over point in CPU efficiency occurs whenl 1m1n'7, al-
though the exact point depends on the values ofi , j , k, a, b,
g as well as on the suml 1m1n. The smaller the value o
l 1m1n, the larger the CPU savings obtained using the c
vergence accelerator approach@Eq. ~17!#. For the smallest
values ofl 1m1n employed for the entries in Tables I an
II, the decrease in evaluation time was several orders of m
nitude to produce the precision levels given in the tables
practical calculation of the energy~particularly for the
ground and lowest-lying states! will lead to many more inte-
grals having values ofl 1m1n of 1 or 3, relative to higher
values. Consequently, there will be a very significant gain
computational speed for the entire energy calculation w
the technique of the present work is employed.

In this work the focus has been on the most commo
occurring one-center three-electron correlated integrals.
next most important cases havel 522, m>21, and n>
21. These integrals arise in applications such as certain r
tivistic corrections, and in applications concerned with fin
-
y
a-

f

r

n

-

g-
A

n
n

y
he

la-
-

ing lower bounds to state energies~see Ref.@36# for a sum-
mary on these applications!. The possibility of carrying out
the series transformation of the type discussed in this wor
under investigation for these much more complex integr
The particular cases of interest arel 522, andm andn both
odd, which are extremely difficult to evaluate to high pre
sion by other approaches.

A second application that is about to be investigated c
cerns the application of the series transformation appro
discussed in this work to more complicated many-elect
correlated integrals. A target integral for future investigati
is the four-electron correlated integral, which involves up
six interelectronic coordinate factors. Although a number
the four-electron correlated integrals have been resol
@26,37,38#, there are still a number of important unsolve
cases. Convergence accelerator techniques of the type
cussed in this work might be particularly well suited f
resolving some of the more difficult four-electron correlat
integrals.

Evaluation of theI integrals occurs at the innermost lev
of an atomic energy evaluation. Faster techniques to eval
these integrals can lead to significant impact on the ove
speed of the calculations. This is a particularly importa
issue in any Hylleraas-type calculation that does extens
optimization of the nonlinear parameters, because the n
ber of I integrals being evaluated becomes enormous w
large basis set expansions are employed. The use of gl
optimization techniques significantly magnifies the numb
of I integrals that must be evaluated. Future progress in
lizing correlated basis sets for many-electron systems
probably going to be dependent on the judicious applicat
of convergence accelerator techniques.
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APPENDIX

In this appendix a few concise comments are made on
derivation of Eq.~16!. By considering separately the tw
series

(
s51

`

A~ js1m!, (
s51

`

~21!sA~ js1m!,

it is straightforward to show that

(
s51

`

A~ js1m!5(
s51

`

~21!s11A~ js1m!12(
s51

`

A~2 js1m!.

~A1!
s.

. A
s
e

he

If Eq. ~A1! is used recursively, then it follows that

(
s51

`

A~ js1m!5(
s51

`

~21!s11(
t50

`

2tA~2t js1m!.

~A2!

On settingm50, j 51, andA(s)5s2k in Eq. ~A2!, the well-
known result for the Riemannz function

z~k!5(
s51

`
1

sk 52~12212k!21(
s51

`
~21!s

sk ~A3!

is obtained. Equation~16! follows directly from Eq. ~A2!
using j 51 andm5n21.
h.
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