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Abstract 

Progress on high precision calculations for the ground state of atomic lithium is reviewed. The following properties are 
considered: upper and lower bounds to the nonrelativistic ground state energy, the specific mass shift, the transition isotope 
shift, relativistic corrections to the ground state energy, the Lamb shift, the ionization potential, the electron affinity, the 
hyperfine coupling constant, the nuclear magnetic shielding constant, the diamagnetic susceptibility, several polarizability 
factors, shielding constants, oscillator strength sums, the electron density and spin density, intracule functions, moments (r:) 

and (I-;) and form factors. A discussion is also given on some convergence considerations as they apply to high precision 
calculations on the lithium atom. 0 1997 Elsevier Science B.V. 
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1. Introduction 

The lithium atom has long served as a test system 
for various theoretical developments aimed at the 
accurate determination of atomic and molecular prop- 

erties. As far as atomic systems are concerned, it can 
be regarded as a few-electron system, so one might 
hope to achieve results of high precision for a variety 
of properties. The lithium atom is the simplest system 
that offers the possibility of studying core, valence, 
and valence-core interactions. 

The levels of precision that have been obtained for 
various properties of Li generally do not rival those 
obtained for the corresponding properties of the 
helium atom and its isoelectronic series [ 1- 151. 
However, recent theoretical progress has been 
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significant, as the results presented below will 
demonstrate. 

In this review, a distinction is drawn between the 
terms accuracy and precision. Accuracy refers to the 
number of correct significant digits while precision 

refers simply to the number of significant digits in 
the calculation. The term high precision, at least as 
far as the energy is concerned, usually signifies a cal- 
culation that has converged to a spectroscopic level of 
accuracy, i.e. around 1 phartree (or better). For most 
of the properties discussed below, the tag accurate 
does not apply. The fact that a theoretical result agrees 
with an experimental estimate, while always gratify- 
ing, is not proof of an accurate calculation. The theo- 
retical result obtained may be fortuitous for several 
reasons, such as a lucky cancellation of errors, or the 
result of a false convergence of the calculation. A 
handle on the accuracy of a theoretical calculation 
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can be established when the property of interest can be 
bounded from above and below. Unfortunately, for 
almost all properties, bound formulas as they cur- 
rently exist are not easily exploited. For the nonrela- 
tivistic energy, the variation method guarantees a 

strict upper bound estimate. This advantage does not 
transfer to other properties. 

The layout of this review is as follows. After some 

brief discussion of two issues that are important for an 
understanding and interpretation of high precision cal- 
culations, the properties of the ground state are dis- 
cussed. The order of topics is: 

2. Convergence considerations 
3. Extrapolation procedures 
4. Integral problems 
5. Nonrelativisitic ground state energy 
5.1. Upper bound estimates for ENR 

5.2. Lower bound for ENR 

5.3. Correlation energy 
5.4. The radial lithium atom 

6. Specific mass shift 
6.1. Transition isotope shift 
7. Relativistic corrections to the ground state 
energy 
8. Lamb shift 
9. Ionization potential 
10. Electron affinity 
11. The Hyperfine coupling constant 
11.1. Determination of the experimental f 
11.2. The Hiller-Sucher-Feinberg (HSF) 

approach 
11.3. The hyperfine anomaly 

11.4. Hyperfine pressure shift 
11.5. Calculation of g J 
12. Nuclear magnetic shielding constant 
12.1. Connection with X-ray scattering 
13. Diamagnetic susceptibility 
14. Polarizability and hyperpolarizability 
15. Shielding constants 
16. Oscillator strength sums 
16.1. 2’-pole oscillator strength sums 
16.2. Log-weighted oscillator strength sums 
17. Electron density and spin density 
17.1. The Hiller-Sucher-Feinberg approach 
18. Intracule functions 
19. Moments (Tin) 
20. Moments (rij”) 

2 1. Electron correlation studies 
22. Momentum space properties 
23. Form factors 
23.1. Magnetic form factors 
24. Some miscellaneous results 
25. Some future directions 

For most of the aforementioned properties, with the 

principal exception of the nonrelativistic ground state 
energy, a selection of what are believed to be the best 

calculations to date are tabulated, with sufficient 
references for the interested reader to trace some of 
the earlier key calculations of each property. Some 
representative values obtained by more approximate 
theoretical approaches are also included, so the reader 
can appreciate just how much of an improvement is 
obtained with the more sophisticated treatments. For 
the nonrelativistic ground state energy, a sample of 
the results from earlier studies is also presented to 
give a historical view of the progress that has been 
made for this key property. 

The following two standard conventions are 
employed in this review. Error estimates are reported 
in parentheses; for example, 3.672 % 0.021 x lo-* will 
be given as 3.672(21) x lo-*. For expectation values, 
an implied summation convention is employed, so 
that (r,‘) and (7:) refer respectively to 

and 

where $ is a normalized wave function. The following 
abbreviations are employed in various sections: 
CCPPA, coupled cluster polarization propagator 
approximation; CCSD, coupled cluster with single 
and double excitations; CCSD(T), triple excitations 
also included in CCSD; CEA, complex eigenvalue 
approach; CEPA, coupled electron pair approxima- 
tion; CI, configuration interaction; HF, Hartree- 
Fock; HY, Hylleraas-type calculations; MBPT, 
many-body perturbation theory; MCEP, multi- 
configuration electron propagator method; MCHF, 
multiconfiguration Hartree-Fock; MCLR, multi- 
conliguration linear response theory; MP, modified 
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potential method; PNO, pseudonatural orbital; PP, 

pseudopotential method; PT, perturbation theory; 
PV, perturbation-variational method; SCC, super- 

position of correlation configurations; SD, single 
determinant; SEHF, spin extended Hartree-Fock; 
SOC, superposition of configurations; ST, scattering 

theory; and UHF, unrestricted Hartree-Fock. 
Relativistic versions of some techniques will be pre- 
ceded by the prefix REL-. 

2. Convergence considerations 

A particularly difficult feature of the area of high 
precision calculations is assessment of the conver- 
gence of the calculation of a particular property. It 
is well known that the calculation of a precise value 

for the energy is no guarantee that all other properties 
will be equally precise. A few issues should be kept in 
mind. A standard result from quantum theory is that a 

first-order error in the wave function manifests itself 
as a second-order error in the energy [16]. This 
favorable circumstance underlies much of the success 
of early calculations of nonrelativistic energies. Such 
an advantageous reduction in error does not carry over 
to general properties. Since the energy is the sum of 
the potential energy and kinetic energy contributions, 
it is possible, and in practice not uncommon, to 
observe a cancellation of errors between the .two 

energy contributions; this leads to a precision in the 
energy determination that may not be justified when 
the precisions of the separate contributions are 
examined. 

For properties other than the energy, the rough rule 
of thumb is that the precision of the calculated quan- 
tity will be comparable to the precision obtained for 
the energy, if the property depends essentially on the 
same region of configuration space that determines 
the energy. This notion often breaks down when the 
property of interest depends on a difference of terms 
close in magnitude, as for example in a transition 
isotope shift, or when the property depends on a 
sum over excited states. When the required property 
depends on some region of configuration space not 

emphasized in the energy determination, reliable 
assessment of the precision of the calculated quantity 
is often very difficult. Calibration using known 
experimental results is very useful but, as mentioned 

above, not a guarantee that a particular precision level 
has been reached. 

The principal approaches that have been employed 
for high precision calculations on the lithium atom 
include many-body perturbation theory, configuration 
interaction calculations of various sorts, Hylleraas- 
type calculations, and the hybrid CI-Hylleraas techni- 
que. The chief advantage of the first two approaches 

are their applicability to multielectron systems; in 
contrast, the Hylleraas technique is essentially 
restricted to systems with four electrons or less. 
Also, the Hylleraas technique, when applied with a 
general expansion for the basis set, yields mathema- 
tically intractable integration problems. This is the 
primary reason why the technique has not been 
pushed beyond four-electron systems. As far as the 
speed of convergence of the nonrelativistic energy is 
concerned, the Hylleraas approach is far superior for 

few-electron systems. This has been amply demon- 
strated in high precision calculations on two- and 
three-electron systems, where results with an 
improvement ranging from a few to several orders 
of magnitude in precision level have been obtained 
using the Hylleraas technique. The slow convergence 
of the CI technique and issues related to the conver- 
gence of the Rayleigh-Ritz method have been the 

subject of a number of papers [ 17-271. The hybrid 
CI-HY technique [28] has shown considerable recent 
promise for both three- and four-electron systems 

[29,30], and an approach based on explicitly corre- 
lated gaussian functions [31] has yielded high preci- 
sion results for the ground state of Be. Both of these 

methods can probably be extended to larger electronic 
systems. 

For some properties of few-electron systems, the 
current level of precision of the best experimental 
results may only be a few digits. For such properties, 
the CI technique, despite its slow convergence, will be 
adequate for the computation of most properties at 
these lower levels of precision. 

It is a very common practice for authors of high 
precision calculations to display in part the conver- 

gence pattern for the property under investigation. In 
some cases, this pattern can be deceptive in terms of 
what is displayed. Two works are selected for illus- 
trative purposes. The first example is taken from an 
early excellent Hylleraas-type calculation of the 
Fermi contact parameter J defined later in Eq. (102) 
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Table I 

Convergence of the Fermi contact term (from Ref. [32]) for the 

ground state of the lithium atom 

Number of basis functions Fermi contact term (u) 

14 2.882 

21 2.870 

45 2.887 

64 2.894 

82 2.903 

90 2.904 

94 2.907 

100 2.906 

[32]. Table 1 shows a partial set of results for f as a 
function of the size of the basis set. The experimen- 
tally estimated value off used for comparison was 

2.9062 u, which is observed to be in excellent agree- 
ment with the final result reported in Table 1. The 
convergence pattern for these results has been labeled 
erratic [33]. A better characterization might be that the 
convergence offis simply nonmonotonic. Two points 
need to be made with respect to the example illu- 
strated in Table 1. The calculation has definitely not 
yet converged. Adding more basis terms actually 
alters the final value reported in Table 1. So, the 

agreement with experiment is not as close as it first 
appears. The second issue concerns the relatively 
small number of terms being used to monitor the con- 
vergence pattern. Finally, the basis terms were 
selected for their impact on the energy, and this is 
not expected to be an optional choice for obtaining 
smooth convergence for a property such as the Fermi 
contact term. 

A second illustrative example is taken from a 

Table 2 

Convergence pattern for the moment (r;‘) (from Ref. [34]) for the 

ground state of the lithium atom 

Wave function” (u) 

El 30.764 068 

]8s, 6~1 30.242 285 

[Sk, 6p, 6d] 30.242 4 I I 

[8s, 6p, 6d, 4t-j 30.242 646 

[8s, 6p, 6d, 4f, 4gl 30.242 740 

[Es, 6p, 6d, 4f, 4g, 2hl 30.242 7 13 

[Ps, 6p, 6d, 4f, 4g, 2h, 2i] 30.242718 

a The numbers of each Slater-type orbital in the basis set are 

indicated by the numerical prefixes. 

quality calculation on the lithium ground state [34]. 
Table 2 shows the convergence pattern for the 
moment (r,-*). To what value of (v,-‘) does the reader 
think the calculation is converging? The final (extra- 
polated) value reported is 30.24252 u. The conver- 

gence pattern in this example is deceptive. An older 
literature value for this expectation value is 30.2407 u 
1351, and two more recent calculations yield the 
values 30.240959 u [36] and 30.240965 15(25) u 
[37]. So, for the expectation value (r,-‘) given in 
Table 2, the CI results are observed to converge rela- 
tively quickly to four digits of precision, but do not 
converge to five digits. The extrapolated value 
reported is only reliable to four digits of precision. 

It is useful to note that for the two examples just 
selected, the properties of interest are not that easy to 

calculate to high precision. There is a long history of 
efforts to calculate precise (and accurate) Fermi con- 
tact terms. This is discussed later in Section 11 for the 
ground state of Li. The expectation value (r,-*) 
depends in a sensitive manner on the region of con- 
figuration space close to the nucleus, which is usually 
more difficult to describe via standard variational 
techniques. 

3. Extrapolation procedures 

It is a rather common practice by many workers to 
attempt to extrapolate the results obtained with a finite 
basis set to an expected value for an infinite basis set. 
With reference to work on the lithium atom, examples 
can be found where extrapolations are rather conser- 
vative, i.e. one, or perhaps two, digits of precision 
beyond the yield of the finite basis set is/are obtained 
by extrapolation. Other less conservative extrapola- 
tions have been employed, where several digits of 
precision are estimated. The reader needs to be 
aware of several important points in connection with 
extrapolated results. For the calculation of the 

nonrelativistic energy, the extrapolated estimates are 
no longer guaranteed to be a rigorous upper bound 
estimate. Calculations of any desired property need 
not converge monotonically. This becomes a 
problematic issue for extrapolation procedures. Even 
when the calculation of a particular property is 
monotonically converging to the point where the 
calculation is terminated, there is no guarantee for a 
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general property that the convergence would continue 
to remain monotonic in the region where an extrapo- 

lation is attempted. It is of course always easier to 

make an extrapolation when the results of other high 
precision calculations are available for comparison. 

For the energy, one very common approach [37] 
that has been employed is to estimate E(m), the extra- 
polated energy for a basis set of infinite size, from the 
relationship 

where 

R(N) = 
E(N-l)-E(N-2) 

E(N)-E(N- 1) 
(4) 

and N denotes a measure of the size of the polynomial 
order of the basis set. E(N) is the energy computed 
using all basis functions up to the given value of N. 
Related extrapolated procedures have been employed 

in the literature for a long time (see, for example, 
Refs. [l] and [38]). 

An alternative approach [39], which has been 
employed when a progressively larger orbital basis 
set is utilized, is to compute the energy difference 

AE’: 

AEt =E’ -Et-’ (5) 

where E” designates the limit of the e partial wave. 
AE’ is then fit to a functional form of the type 

(6) 

which is based on the known K” behavior [ 17,401 for 
the rate of convergence. 

The wave function is of course not improved by the 
above type of extrapolation procedure. This in turn 
means that a separate extrapolation evaluation must 

be carried out for each property of interest. 

4. Integral problems 

When explicitly correlated factors are introduced 
into the wave function as in the Hylleraas or CI-HY 
techniques, a number of integration problems arise. 
For the *S ground state of Li, it can be shown that 

the integrals arising in the calculation of most proper- 

ties reduce to the form 

I(i,j, k, 4, m, n, a, b, c) 

J’ 

k ( nz n = r;dzw23r31r12e 
-ai- -hr?-cr,&_dr2&3 

(7) 

where r, denotes an electron-nuclear coordinate and 
rli is the electron-electron separation. For most appli- 
cations f?, m, n are each =‘ - 1, and this case has 
received the most attention in the literature [32,41- 
621. It is possible to reduce the I-integrals to a sum of 
integrals of the form 

W(I, J, K, 01, P, r) 

(8) 

These W-integrals have received considerable 

attention in the literature [32,42,44,46,53,62]. The 
decomposition of the Z-integrals leads to a finite sum 
of W-integrals, except when e, m and n are all odd in 
Eq. (7). Even in this case, the sum of W-integrals 
converges sufficiently quickly that direct summation 
can be employed, although a faster asymptotic proce- 
dure has recently been suggested [62]. 

For a number of properties, such as several of the 

relativistic corrections, the calculation of (rii’), 
which is useful in certain lower bound formulas for 
the electronic density [63], or problems involving (H”) 
(where His the Hamiltonian for the system), which is 
required to evaluate the classical lower bound formu- 
las for the energy, Z-integrals arise with one of the 
indices e, m or n = -2. For a general Hylleraas 
expansion, integral cases with two of the indices 4, 

m or n = - 2 arise. Limited attention has been directed 
towards these more difficult integral cases 
[56,57,60,61]. The expansion of t-7: [56,57,61,64,65] 
can be written as [56,61] 

(9) 

where eA(cos0) are the Gegenbauer polynomials, r12< 

denotes min(r,, r2) and r12, signifies max(r,, r2). This 
form has obvious similarities to the well-known 
expansion of r;: in terms of Legendre polynomials; 
however, the complexities of the expansion are car- 
ried with the angular term. An alternative expansion 
for t-722, which gives a better indication of some of the 
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difficulties that arise, is [56] 

I-I 

-2 Crl 
-1+2Ky(-2K-2 

K=O 

min[x.t_n-l]4j I-Zj- 1 

j=O 
( ) K-j 

x f; kl,(;)(2’;2v) 
v=o 2j-2v+ 1 ~l(COS~l2) (10) 

where P, denotes a Legendre polynomial. The appear- 
ance of the logarithmic term in Eq. (10) should alert 
the reader that the convergence characteristics of any 
expansion of these more difficult Z-integrals will 
require careful consideration. Effective methods are 
available to deal with cases such as e = - 2, and m and 

n not both odd (and the various symmetry related 
combinations) [.56]. The real bottleneck to the 
calculation of certain expectation values occurs 

when 4 = -2, and m and n are both odd. The tech- 
niques currently available [56,57,60,61] lead to a 
limited precision of 14-16 digits, which becomes 
restrictive when very large basis sets are employed. 
The even more difficult Z-integral cases having f? = -2 
and m = -2 [60,61] can be avoided if some restrictions 
are placed on the basis functions employed in the 
Hylleraas expansion. 

5. Nonrelativistic ground state energy 

The nonrelativistic energy discussed in this section 
is based on the Hamiltonian (in u): 

(11) 

where Z is the nuclear charge (equal to 3 for the 
lithium atom). The specific mass shift (mass polariza- 
tion correction) is traditionally not included in Eq. 
(1 l), even though it is a purely nonrelativistic term. 
This correction is discussed in Section 6. Eq. (11) 
represents the infinite nuclear mass approximation 
for the Li atom. The essential problem to solve is 

the Schrodinger equation: 

HNR\k = ENR\k (12) 

Several approaches have been invoked to obtain 
approximate solutions for the nonrelativistic energy 
E NRT including perturbation theoretical methods, 
variational methods of different types, local energy 
methods and other nonvariational procedures. No 
work appears to have been carried out on the lithium 
atom using modified variational procedures, where 

the point-wise behavior of the wave function, or any 
related quantity, has been used as a constraint to 
improve the local accuracy of the wave function. 
However, work along these lines has been pursued 

for two-electron systems [66,67]. The focus of the 
discussion below is on variational methods, which 
have yielded the results of highest precision for the 
lithium atom. 

5.1. Upper bound estimates for ENR 

Application of the standard variation method leads 
to the result 

(+]H,&) 2 ENR (13) 

where $ is a normalized approximation to the solution 
of Eq. (12). From a practical point of view, Eq. (13) is 
a rather powerful result because it provides a prescrip- 
tion for systematically improving the approximate 
wave function. The two well-known drawbacks are 
of course that the variational approach gives no expli- 
cit information on the expected rate of convergence, 
and provides no information on how to select a priori 

the best basis set. The latter is really a “trial and 
error” (trial and success) approach, with the experi- 
ence of many past calculations serving as a guide. 

The lithium atom has long been of intrinsic interest 
to many investigators, as well as serving as a bench- 
mark system to test new theoretical methods. The 
quantity ENR has been a common target property in 
these investigations [29,32,34-37,39,68-1351. Addi- 
tional references for values of ENR will be found in 
later sections in connection with the calculation of 
other properties. 

Table 3 shows a limited selection of efforts to 
obtain a high precision estimate of ENR. A variety of 
computational techniques are represented by the 
entries in Table 3. Improvements in computer 
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Nonrelativistic ground state energy for the lithium atom 

Author(s) Reference 

Wilson 

James and Coolidge 

Walsh and Borowitz 

Weiss 

Burke 

ahrn and Nordling 

Seung and Wilson 

Larsson 

Sims and Hagstrom 

Perkins 

Muszynska et al. 

Ho 

Pipin and Woznicki 

King and Shoup 

Hijikata et al. 

King 

Kleindienst and Beutner 

King and Bergsbaken 

Jitrik and Bunge 

Chung 

McKenzie and Drake 

Pipin and Bishop 

Ltichow and Kleindienst 

Kleindienst and L&how 

Tong et al. 

L&how and Kleindienst 

King 

Yan and Drake 

King 

]691 

[701 

[761 

WI 

WI 

[901 

~921 

WI 

[IO21 

[IO31 

[IO91 

[I 101 

[I 1 II 

[I 121 

11131 

[I 171 

[I 141 

1lI81 

[I201 
[I231 

~1241 

[I251 

~271 

[1301 

[391 

~291 

[361 

[371 
[I351 

Method of 

calculation 
ENR (u) 

Explicit calculation Extrapolated estimate 

1933 

1936 

I959 

1961 

I963 

I966 

1967 

1968 

1975 

1976 

1980 

1981 

1983 

1986 

1987 

I989 

1989 

1990 

1991 

1991 

1991 

I992 

I992 

1993 

1993 

1994 

1995 

1995 

SD - 7.4192 

HY - 7.476 075 

HY - 7.395 

45 - Cl - 7.477 IO 

13.HY - 7.47195 

5-HY - 7.474 I 

PT - 7.47262 

100-HY - 7.478 025 

I50-CI-HY - 7.478 023 

30-HY - 7.477 93 

139.see - 7.478 044 

92.HY - 7.478031 

170.see - 7.478 044 

352-HY - 7.478058 

100.HY - 7.478 032 

602.HY - 7.478 059 

3 to-see - 7.478058 24 

296-HY - 7.478 059 53 

3653.CI - 7.477 906 662 - 7.4780624 

1017.CI - 7.477 925 06 - 7.478 059 7 

I l34-HY - 7.478 060 3 I2 - 7.478060326(10) 

1618.CI-HY - 7.478 060 I 

976.CI-HY - 7.478 060 252 

8%C-HY - 7.47806021 

MCHF - 7.477 968 6 - 7.4780609 

1420~CI-HY - 7.478 060 320 8 

760-HY - 7.478 060 

1589.HY - 7.4780 603 215 6 - 7.478060323 lO(31) 

HY - 7.478 060 I9 

Recommended value is in bold. 

technology have obviously played a pivotal role in the 

progress indicated by these results. 
A significant early result for ENR was obtained in Ref. 

[70]. It took just over 30 years to obtain a major 
improvement in ENR [32]. Steady progress on improved 

calculations of ENR followed in the 1980s and 1990s. 
The two approaches that have led to the most pre- 

cise results for ENR have both employed an explicit 
dependence on the interelectronic separation distance 
rti in the basis set. These are the standard Hylleraas 
approach and the CI-Hylleraas technique. In the Hyl- 
leraas approach, the wave function is taken to be of 
the form 

where a is the three-electron antisymmetrizer: 

(15) 

The summation in Eq. (15) runs over the six per- 
mutations P and p is the parity of the permutation. 
In Eq. (14), C, are the variationally determined 

expansion coefficients. The basis functions da are of 
the form 

$Jrl 3 r2,h f-23, r31, t-12) 

where the exponents {ip, j,, k,, l,, m,, rzp] are each 
2 0. In Eq. (14), x denotes the doublet spin 
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eigenfunctions. There are two such functions: in the form [32,76,136] 

x = o( 1 v3mm -PC lbWd2) 

or 

(17) 

x = 2d l)o(2)P(3) - 13( 1 )o(2)a(3) - o( 1 )p(2)o(3) 

(18) 

Calculations are usually carried out using the spin 
eigenfunction given in Eq. (17). The impact of not 
including basis functions involving the second spin 

eigenfunction can be offset by modification of the 
basis set where only the first spin function is 
employed. Discussion on the impact of the inclusion 
of both spin eigenfunctions on the convergence of 
different expectation values can be found in several 
references [29,32,112,117]. The choice of the indices 

]iP, jP, k,, l,, mli. yip] can be made in several ways. 
Terms can be included in the basis set according to the 

expected contribution to the energy. An alternative 
procedure is as follows. If the index parameter o is 

defined by 

where ~;jk signifies summation over the six permuta- 

1 2 3 
tions 

( i 

, and CL, =rzl, LL? = rjl and cl3 = rl?. 
i j k 

w=i,+j,+k,+l,+m,+n, (19) 

then all possible values of i,, jP, k,, I,, rnp, n, (subject 
to any symmetry constraints) are selected so that the 
basis functions are added according to w = 0,1,2,.... 
This approach does not guarantee the fastest possible 
convergence, but does avoid any misdirected bias in 
selecting the basis functions, and generally leads to a 
convergence pattern that is relatively smooth. For the 
nonlinear orbital exponent parameters, essentially 
three distinct approaches have been employed. The 
first is to work with a fixed set of orbital exponents, 

such that 

Using Eqs. (14) (16) and (21) it is possible to show 
that all the matrix elements required for the calcula- 
tion of ENR reduce to integrals of the form given in Eq. 
(7). When fixed exponents are employed, it is straight- 
forward to show that only two combinations of the set 

(a, b, c) (see Eq. (7)) arise, namely (ICY, 2a, 2~) and 
(ICY, cy + y, 01 + y). It is therefore feasible to store an 
array of integrals for a wide range of values of (i, j, k, 

e, m, n). If the following symmetry is exploited 

I(Lj, k, e, m, n, 0, b, c) =I(i, k, j, Y, II, m, a, c, b) 

=ICj, i, k,m, t, n, b,u, c) 

then a significant reduction in required computer 
memory can be made. 

(Yp=CX 

P,=cY allp (20) 

yp=-Y I 

The fixed choice of exponents greatly simplifies the 
calculations in two ways. The computer resources 
needed are relatively minor, compared with what is 
required in any calculation requiring exponent 
optimization. The second feature is that it is 
feasible to store all the integrals involved in the 
calculations. For the S-states of the lithium atom, it 
is possible to work with the coordinate variable set 
[r,, 12, r3, r12, r21, r31 ] and hence re-express Eq. (11) 

The fixed exponents that have been employed for 
calculations of the ground state have typically been in 
the region of 01 = /3 = 2.76, y = 0.65 [32]. The highest 
precision Hylleraas calculations have employed opti- 
mization of the orbital exponents [36,37,118,124]. For 
a basis with N terms, where N is a large number (say 
several hundred to two thousand terms), it is not fea- 
sible with current computer technology to optimize all 
the exponents. One approach that yields a rather pre- 
cise value of ENR is to optimize the exponents of each 
basis function as it is added, and then to recycle 
through the basis set and reoptimize the exponents 
one basis function at a time [ 1181. The optimization 
recycling procedure can in principle be continued 
until no further improvement is obtained at some 

(21) 

=I(j, k, i, m, n, 4, b, c, a) 

=Z(k,j, i,n,m, t, c, b,a) 

=Z(k, i,j,n,C,m,c,a, b) 

(22) 



F. W. Kitzg/Jounurl c?f Molrculur Structure (Theochrm) 400 (1997) 7-56 15 

preselected precision level. An alternative procedure 

is to optimize blocks of terms as they are added 

]37,124]. This particular approach has been very suc- 
cessful, and accounts for the most precise value of ENS 

given in Table 3. 
The second computational approach that has been 

particularly successful in obtaining high precision 
estimates of ENR is the CI-HY approach 

[28,29,102,114,127,130]. The three-electron wave 
function is taken to be of the form 

where 

and pKW denotes the @h basis orbital in the Kth con- 
figuration and O,,Z is an orbital angular momentum 
projection operator. The basis functions are taken to 
be Slater-type orbitals. a and x are defined in Eqs. 
(15) and (17). Early applications have imposed the 

restriction of one factor of r,j per term. The most 
recent applications of this technique have used basis 

functions that employ factors of the form I&~~,I&‘~ 

1291. The results from this approach [29] (see Table 3) 
are very encouraging and close to the results from the 
most precise Hylleraas calculations. From the theore- 
tical work published to date on Li, it appears essential 
to incorporate factors of r,, in the wave function, if the 
highest possible precision is to be obtained. This is 
not a surprising conclusion, since the same result 
has already been established for calculations on two- 

electron systems. 

5.2. Lower boundaries for ENR 

In comparison with efforts to establish the lowest 
possible upper bound for ENR, there has been rela- 
tively little effort devoted to the determination of a 
lower bound for ENR for the lithium atom. Two basi- 
cally distinct avenues of research have been 
employed. In the first approach, methods based on 
the use of intermediate Hamiltonians have been used 
[137-1431. Although the method shows some pro- 
mise, considerable problems remain to be resolved. 

No high precision estimates for the lower bound to 
ENR for Li have been obtained using the method of 
intermediate Hamiltonians, although some success 

has been achieved for two-electron systems [ 144- 

1591. The second approach involves application of 

the three classical lower bound formulas, which all 
involve the variance, u, defined by 

a=($Uf%$-(~IHI$)2 (25) 

For the application of interest here, H in Eq. (25) is 
given in Eq. (11). The three lower bound formulas are 
the Weinstein (Ew) [160], the Temple (ET) [161] and 
the Stevenson (Es) [162,163], which are respectively 

E, 2 E,=(I+IHI$)-~“~ (26) 

(27) 

E, 2 E,=ol- (ol’-2c~($lHI$)+($IH’l$))“~ 

=a!- [+Y-($~H~$))‘! “’ (281 

where E. denotes the exact nonrelativistic ground 
state energy. In Eq. (27) E, is the energy of the first 
excited state having the same symmetry as the ground 

state. The Weinstein bound requires 

($lHh+5)~ i E +E,) 
2( O 

(29) 

and the Temple boundary requires 

($]H]$) < El (30) 

Since El is not known exactly, for practical applica- 
tions, a lower bound estimate for El (Ef) is employed 
with Ef > (~/lHl$). The Stevenson bound requires 

(Y s 2 E,+E,) I( (31) 

Eqs. (26) and (27) can be shown to be special cases of 

Eq. (28) with appropriate choice of the parameter 01. 
Extensive discussion of these bounds has been given 
in the literature [ 160-1691. Most of the applications 
of these formulas have been restricted to one- and 
two-electron atomic and molecular systems 
[ 10,170- 1861. The principal reason for this is the con- 
siderable mathematical difficulty associated with the 
evaluation of ($]H2 I$). Table 4 lists the results avail- 
able in the literature [29,36,173] for the lithium atom 
based on eqns (26)-(28). The first entry reported is 
questionable, since the upper bound result for E0 
reported in this work [ 1731 has converged to only 



Table 4 

Lower bound estimates for the nonrelativistic ground state energy of the lithium atom 

Author(s) Reference Method Lower boundary Upper boundary 

Conroy [I731 17.term - 7.614 13 - 7.470 19 
Likhow and Kleindienst 1291 920.CI-HY - 7.478 1% - 7.478 060277 
King 1361 600.HY - 7.478 30 - 7.478 OS9 86 

three digits of precision, and the convergence of (Hz) 
is somewhat slower than for(H). This first entry is just 
slightly better than a rough lower bound estimate of 
-7.6295 u [ 1871 based on the Bopp approximation. 

Determination of a high precision estimate for (H’) 
requires a wave function that gives an excellent 
description of the near-nuclear region of configuration 
space. With this objective in mind, the optimal 
approach is the technique of variance minimization, 
which involves the optimization of the appropriate 
parameters upon which $ depends so that a minimum 

is obtained for u in Eq. (25). In the limit of an exact 
wave function CJ - 0. This approach was employed in 
Ref. [29], yielding the most precise entry in Table 4. 

The method employed in Ref. [36] determined (H’) 
from the standard variational approach. The precision 
level is very similar to that obtained in the variance 
minimization technique. The other point of interest to 
note from Tables 3 and 4 is the significant difference 
between the precision levels for the upper and lower 
bound estimates for Eo. This is similar to the situation 
found for two-electron systems. From the best results 

reported in Tables 3 and 4, the following result is the 
current state of knowledge for the nonrelativistic 
ground state energy of atomic lithium [29,37]: 

-7.478 176 u < EvR < -7.478060321 56 u (32) 

The nonrelativistic energy cannot be measured by 
experiment. An indirect experimental estimate for 
ENR can be obtained as follows. The total energy of 
the ground state of Li, Er(Li), and of Li+, Er(Li+), can 
be written as 

Er(Li) =E,,(Li) +E,,,(Li) + E,,,,(Li) +Eyno(Li) 

(33) 

Er(Li+)=ENR(Li+)+EREL(Li+)+EMZASS(Li+) 

+Eonn(Li+) (34) 

where the labels REL, MASS and QED denote, 
respectively, the relativistic corrections, the finite 
nuclear mass correction (Bohr plus specific mass 
shift), and quantum electrodynamical corrections to 

the energy. On defining 

AEREL=EREL(Li+)-EREL(LI) (35) 

AEM.tss = E,,ss(Li+ ) - EM,4SS(Li) (36) 

AEQED=EQED(Li+)-EQED(Li) (37) 

I, = Er(Li+) - Er(Li) (38) 

where I, denotes the first ionization potential of the 

ground state of Li; then 

E,a(Li)=E,R(Li+)+AEREL +AE,,ss +AEonb -1, 

(39) 

Using the value of ENR(Li+) [ 151 

ENR(Li+)= -7.2799134126693020~ (40) 

and values of AEMASS, AEREL and AEorn discussed in 

detail later in Sections 6-8 

AEMASS = -0.0000165003(4) u (41) 

‘=REL= 0.000 0 12 67(6) u (42) 

AEono=-0.0000011(1) U (43) 

and the experimental first ionization potential of ‘Li 

IlS81 

I, =0.198 14204(2) u (44) 

leads to the estimate 

E,,(Li) = -7.478 06038( 12) (45) 

The result in Eq. (45) is close to a recent estimate of 
ENR(Li) = - 7.4780603420(20) u [124]. The slight 
difference in estimates is due to the use of a more 
recent estimate of AEosn [37] and a slightly better 
estimate of AEaEL given in Section 7. The changes 
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in these two quantities partially offset each other, so 

that the value reported in Eq. (45) remains close to the 
previous estimate. The best upper bound estimate 
given in Eq. (32) [37] is found to be in excellent 
agreement with the ‘experimental’ estimate of ENR. 

5.3. Correlation energy 

A widely employed definition of the correlation 

energy, E,,,,, is [ 1891 

Ecorr =&IF -&JR (46) 

where EuF is the nonrelativistic energy calculated in 
the restricted Hartree-Fock approximation and ENR is 
the ‘exact’ nonrelativistic energy for the same state. 

There are a large number of calculations of EHF for the 
ground state of the lithium atom (see, for example, 

Refs. [77], [78], [89], [loll, [129] and [133]). The 
most precise value for the restricted Hartree-Fock 
energy appears to be [ 1331 

E,, = - 7.432 726 93 1 u (47) 

and an extrapolated estimate of -7.432 726 932 u has 

been proposed [ 1081. Combining the results from eqns 
(32), and (47) gives the value 

E,,,, =0.045 333 391(2) u (48) 

and the uncertainty is a rough estimate based on the 
predicted extrapolated values for EHF and ENR. 

5.4. The radial lithium atom 

In the radial model of the Li atom, the electronic 
distribution of the electrons does not depend on the 
angular variables; therefore, this model can be 
employed to study separately the radial contribution 
and, indirectly, the angular contribution to the corre- 
lation energy. A number of calculations of the radial 
energy Erad of the lithium ground state have been 
made [39,80,94,97,10.5,190-1931, and the most pre- 
cise value currently available is [39] 

Erad = - 7.448 667 06 u (49) 

with an extrapolated estimate for the radial limit being 

-7.448 667 26 u [39]. In analogy to Eq. (46), the radial 
correlation energy can be defined as 

Erad.corr = EHF -‘%d (50) 

Using the values in Eqns (47), and (49) gives a value 
for the radial correlation energy of the lithium ground 
state of 

.!&rcorr = 0.015 940 l(2) U (51) 

and the uncertainty has been estimated based on the 
extrapolated value for Erad given above. Eqs. (48) and 

(51) allow the angular correlation energy, Eanr,corr, to 
be determined as 

Eanp,corr = 0.029 393 3(2) u (52) 

6. Specific mass shift 

There are two stable isotopes of Li, 6Li and 7Li, and 
their corresponding energy levels are slightly different 
because of several factors. In this section, the two 
principal mass dependent contributions to the energy 
are discussed. 

The total kinetic energy component of the Hamil- 

tonian for the electrons (mass m,) and the nucleus of 
mass M can be written as 

(53) 

In the rest frame of an atom, the momentum of the 
nucleus satisfies 

p=- iPi 
I=1 

(54) 

and so 

H,,= 3: d, L i $ pip, 
;=I 2~ M;=lj>i 

where p is the reduced mass 

m,M 
‘=M+m, 

(55) 

(56) 

The kinetic energy contribution given earlier in Eq. 
(11) corresponds to the infinite nuclear mass approx- 
imation of Eq. (55). The first correction for finite 
nuclear? mass arises from the additional term 
C;‘=, $. The effect of this term can be accommo- 
dated by adjustment of the Rydberg constant for the 
finite nuclear mass: 

RM= 
M 

-RcC 
M+m, 

(57) 
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where R, is the Rydberg constant for infinite nuclear 

mass; R, = 109737.3156844(31) cm-’ [194-1971. 
For 6Li the nuclear mass is MhLi = 6.013 4766(5) 
amu, and for ‘Li it is MLi = 7.014 3584(5) amu 

[ 1981. The nuclear masses in atomic units are respec- 
tively 10961.897( 1) u and 12786.393( 1) u. The appro- 
priate Rydberg constants for Li are (using a 

rearranged form of Eq. (57)) 

RhLi = 109727.305 8018(32) cm-’ (58) 

R7Li = 109 728.7340045(32) cm-’ (59) 

All the energy levels for one isotope are shifted by the 
same multiplicative factor. This shift is referred to as 
the normal mass shift or the Bohr shift. An alternative 

approach is to evaluate the normal mass shift correc- 
tion AE,,, as 

AE,,, = - &M W MM) (60) 

where $,,, is the nuclear mass dependent approximate 
wave function based on the Hamiltonian 

(61) 
The second correction to the energy due to the finite 

nuclear mass arises from the second term in Eq. (55) 

Table 5 

Specific mass shift for the ground state of the lithium atom 

[ 1991, giving the specific mass shift correction, or the 
alternative terminology mass polarization correction 
is also employed. Two distinct approaches have been 
used in the literature to determine the specific mass 
shift correction (AE,,,). In the first, the correction is 

calculated by first-order perturbation theory, using the 

formula 

(62) 

where $ is the wave function obtained from the 
approximate solution of the infinite nuclear mass 
Schrodinger equation. This formula is obtained by 

the scale change of variables: 

r; + (m,l~)ri’ and Pi + (CL/~&;’ (63) 

A common practice has been to evaluate AE,,, with 
(p/M) replaced by l/M (m, = 1 u). The errors intro- 
duced by this approximation (about 9.1 x 10-j% for 
‘Li and 7.8 x lo-‘% for ‘Li) were previously consid- 

ered as too small to be of consequence. An alternative 
approach is to evaluate the specific mass shift using 
first-order perturbation theory based on wave func- 
tions that incorporate the Bohr correction to the 
Hamiltonian (i.e. the first term in Eq. (55) is part of 
HNR (see, for example, Ref. [200]). 

A number of values of AE,,, [29,37,39,117,118, 

Author(s) Reference Method ( I;=, I;>, V;V,) A%,\ (u) 

bLi ‘Li 

Prasad and Stewart I2021 CI - 0.3014 2.749 x 1 O-’ 2.357 x IO-’ 
Martensson and ~2031 MBPT - 0.300 2 2.738 x IO-’ 2.348 x IO-’ 

Salomonson 
Chambaud et al. ~2041 CI - 0.305 5 2.787 x IO-’ 2.389 x IO-’ 
Veseth [2051 MBPT - 0.304 7 2.779 x IO-’ 2.383 x IO-’ 
King 12061 352.HY - 0.301 85 2.7531 x 1O-5 2.3603 x IO-’ 
King [I 171 602.HY - 0.301 8467 2.753097 x IO-’ 2.360318 x IO-” 
King and Bergsbaken [I 181 296-HY - 0.301 843 6 2.753068 x IO-’ 2.360293 x IO-’ 
Chung [I231 CI - 0.30 1 80 2.7528 x IO-’ 2.3600 x lO-5 
Tong et al. [391 MCHF - 0.302 45 2.7586 x IO-’ 2.3650 x lO-5 
Liichow and ~271 976.CI-HY - 0.301 843 0 2.753063 x IO-’ 2.360289 x IO-i 
Kleindienst 
Liichow and ~291 1420.Cl-HY - 0.301 842 799 2.7530611 x lo-’ 2.3602871 x lo-’ 
Kleindienst 
Yan and Drake [371 1589.HY - 0.301842 809( 15) 2.7530612 x 1O-5 2.3602872 x lo-’ 

Absolute u are employed in this table. 
‘Computed using the values p/M = 7.8202021(6) x 10m5 for ‘Li and p/M = 9.1216762(8) x 10mr for ‘Li. 
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127,201-2061 based on the use of the first-order per- 
turbation theory approach are summarized in Table 5. 
Using Eq. (62) gives the answer in atom-based atomic 
units, i.e. the conversion to cm-’ (the unit useful for 
comparison with experimental data) is 1 u (Li) = 2RM 
(cm-‘), and the required Rydberg constants are given 
in eqns (58) and (59). The entries given in Table 5 
have been converted to absolute atomic units (1 u = 

2R, cm-‘). 
Parenthetically, it is noted that in the Hylleraas 

coordinate system {r,, r2, r3, rlz, r23, rjl ), the specific 
mass shift operator V;‘Vj can be expressed [206] in 
terms of the derivatives a/~%, and c?/&Q in much the 
same way that HNR was written in Eq. (21). This leads 
to a considerable reduction in algebra for the evalua- 
tion of the necessary matrix elements to determine 
AE,,, when using a Hylleraas expansion. 

An alternative expression for the expectation value 
in Eq. (62) has been explored, taking the form 

[207,208] 

(641 

and is based on the relationship 

(l+lv;.vjl$)= -(~lr;.~jVl$) (65) 

where V is the sum of the electron-nuclear and elec- 

tron-electron potential terms. The convergence beha- 
vior obtained using Eq. (64) is less smooth than that 
obtained with Eq. (62) [39]. 

The second general (less commonly employed) 
approach is to evaluate AE,,, from the formula 

(66) 

Table 6 

Specific mass shift for the ground state of the lithium atom using Eq. (66) 

The results based on Eqs. (62)-(66) will be fairly 
close, but the current precision level of the calcula- 

tions is such that Eq. (66) is the recommended 
approach. The most recent high precision values of 
AE,,, obtained using this approach [29,37,206] are 
summarized in Table 6. The heading entry u refers 
to absolute atomic units in this table. 

The following result for the nonrelativistic ground 

state of lithium has been given [37] in units of 2RM: 

EM = -7.47806032310(31)+0.301842809(15)~ 

- 1.500(72)( 5)’ (67) 

This result incorporates both the AE,,, and AE,,,, 
shift corrections. From Eq. (67) the nonrelativistic 
ground state energies including nuclear mass effects 

are (in absolute u) 

ENa(6Li) = - 7.477 350 683(2) u (68) 

ENa(7Li) = -7.477 451933(2) u (69) 

These values are fairly close to the results ENR( ‘Li) = 
- 7.477 350678 u and ENa(7Li) = - 7.477451928 u 
also obtained using the full mass dependent Hamilto- 
nian, Eq. (61) [29]. 

The theoretical results presented in Tables 5 and 6 

cannot be compared directly with experiment. How- 
ever, the quality of these results can be assessed indir- 
ectly in two ways. The specific mass shift is one 
component in the determination of the ionization 
potential. Thus, at least the accuracy of the first few 

digits of AE,,, can be indirectly assessed. This com- 
parison is, however, complicated by uncertainties in 
other contributions such as the relativistic and quan- 
tum electrodynamic corrections. This is discussed 
later in Section 9. A more direct comparison is to 

Author(s) Reference AE\,, 

‘Li ‘Li 

U cm 
-I 

U cm-’ 

King 12061 2.75160 x IO-’ 6.039 06 2.35923 x IO-’ 5.17791 

Liichow and Kleindienst WI 2.7505657 x IO-’ 6.036 793 9 2.3584530 x IO-’ 5.1762062 
Yan and Drake [371 2.75181 x IO-’ 6.039 53 2.35937 x IO-’ 5.17821 
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derive from AE,,, the transition isotope shifts, which only the isotope shift associated with the transition to 

can be measured experimentally. This is discussed in the ionization limit (i.e. the formation of Li+) is 

the next subsection. considered. 
Two other small nuclear dependent factors arise in the 

determination of high precision estimates of state ener- 
gies. The first of these additional corrections are the 

relativistic terms depending on the nuclear mass 
[209-2111. None of them has been accurately evalu- 
ated for the ground state of lithium. The reader inter- 
ested in exploring this avenue might start with Refs. 
[212] and [213]; in addition, a clear exposition for two- 
electron systems has recently been published [214]. 

Like the specific mass shift correction AE,,, (to 
which the isotope shift is closely related), the isotope 
shift is a sensitive measure of the extent to which 
electron correlation effects have been incorporated 
in the wave function. 

The isotope shift for a pair of isotopes A1 X and Az X 
(with mass numbers A, > A?) is determined from 

@,I, = [AE,,,,(A'X+)--E,,,(A'X)l 

The second type of correction is the field shift con- 

tribution (also referred to as the volume shift) [215]. 
This shift arises from the interactions of the electrons 

with the electric field generated by the nuclear charge 
distribution. For light atoms, this shift is rather small. 

Very little work has been done on this field shift for 
Li. An estimate of 0.021 68 cm-’ has been given for 
the ground state of 7Li [205]. Similar values of 
0.021 43 cm-’ for the lowest ‘P state of 7Li and 
0.02147 cm-’ for the ground state of 7Li+ have been 
obtained [205]. The net result is that for a transition 
energy or ionization potential, the field shift correc- 
tion is outside the range of detectability based on the 
best experiential results currently available. 

- [AE,,,JA2X+) - AE,,,JAzX)] 

= W,,,(A2X) - AE,,d WI 

-[AE,,,(A’X+)-AE,,,(AIX+)] (70) 

where + signifies the ionization limit of the species. 
In the second line of Eq. (70), the terms in square 
brackets represent, respectively, the isotope shifts 
for the three-electron and two-electron atomic sys- 
tems. These individual shifts, together with the transi- 
tion isotope shift, are tabulated in Table 7. The 
standard approach employed in this area is to express 
the shifts in GHz. The appropriate conversion factor 
from atomic units to GHz to obtain the isotope shift is 

6.1. Transition isotope shift 
1 u = 85.618 37(7) GHz 

which corresponds to the conversion factor 

(71) 

Transition isotope shifts have been measured for 

electronic excitations arising from the ground state 
to a host of excited states [216-2201. In this section, 

29.9792458 (jlr. 7cL 
M2R~,i - M2R7,i 

hL1 ‘LI 

Table I 

Transition isotope shift for the ground state of the lithium atom 

Author(s) Reference Method Shift for ‘Li - ‘Li Shift for bLii-7Lit TransItion isotope 

(GHz) @Hz) shift (GHz) 

Prasad and Stewart 

Martensson and Salomon 

Chambaud et al. 

Veseth 

Kmg 

King 
King and Bergsbaken 

Liichow and Klemdienst 

Yan and Drake 

Experiment 

Lorenzen and Niemax 

Vadla et al. 

12021 
son [203] 

~2041 

w51 

PO61 

[I 171 

[I181 

1291 

[371 

I2161 I. I I l(6) 

~2171 1.108(8) 

CI 

MBPT 

CI 

MBPT 

HY 

HY 

HY 

CI-HY 
HY 

25.80 

25.165 

26.090 

25.844 

25.843 6 

25.843 36 

25.843 29(3) 

25.843 30(3) 

24.81 0.99 

0.962 

25.077 1.088 

25.007 1.083 
I.102 

I.102 
1.102 

24.741 64(3) 1.10165(4) 
24.741 64(3) 1.10166(4) 
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where the reduced mass/atomic mass ratios are given 

at the bottom of Table 5, and the Rydberg factors are 

given in Eqs. (58) and (59). The conversion factor 
above assumes that the expectation value 

(c:=, &;Vi.Vj) is determined in the infinite 
nuclear mass approximation. The entry in Table 7 
based on Ref. (2061 employed the value (V, .V,) = 
-0.288 975 8 u for Li’ derived from Ref. [221], 
which leads to an isotopic shift for Li’ of 24.7416 
GHz. The final two entries in Table 7 give more pre- 
cise expectation values for Li’. Also, for these two 
entries, the precision of the reported shifts for 
‘Li- ‘Li and “Li+- 7Li+, and the transition isotope 

shift are limited by the experimental precision 
available for the nuclear masses of the two isotopes 
of Li. 

The absolute isotope shifts for ‘Li-‘Li and ‘Li’- 
‘Li+, while of interest to theorists, cannot be directly 

compared with experimental results. The transition 
isotope shift reported in Table 7 is in close agreement 
with the most recent experimental value but, unfortu- 
nately, the uncertainty of the experimental result is too 
high to test the quality of the most precise calculations 
available. 

Two additional refinements need to be kept in 
mind. Fairly small corrections are necessary to the 
results reported in Table 7 owing to the field shift 
correction. For Li, as discussed in Section 6, this cor- 
rection is expected to make a negligible contribution 

to the transition isotope shift at the level of precision 

being presented in Table 7. The second correction 
takes into account calculations based on the complete 
nuclear mass dependent Hamiltonian [29,37,206], 
rather than the perturbation analysis employed to 
determine the results tabulated in Table 7. A recent 
high precision calculation [29] reports that the calcu- 
lat&d- transition isotope shift decreases 
0.0066 GHz when the full Hamiltonian 
perturbative) approach is employed. 

7. Relativistic corrections to the ground 
energy 

by about 
(i.e. non- 

state 

Essentially, two distinct approaches have been 
employed to incorporate relativistic effects. In the 
first approach, the Breit-Hamiltonian [2 121 is 
employed in a first-order perturbation-theoretical 

procedure. The standard form is 

H,=H,+H2+Hj+H4+Hs 

where (in u) 

(72) 

(73) 

(74) 

H3= -A i i&r,) 
i=l;>i 

(75) 

(76) 

(77) 

In these equations, o( is the fine structure constant, si is 
the electron spin operator, and 6(r) is a Dirac delta 
function. H, represents the kinetic energy correction, 
Hz is the electron-nuclear Darwin term, H3 denotes 
the electron-electron contact Darwin term, H4 is the 
spin-spin contact interaction, and HI, designates the 
electron-electron orbit interaction (retardation cor- 
rection). A standard discussion of these terms is 

given in Ref. [212], with Refs. 12221 and [223] pro- 
viding readable accounts. There has been consider- 

able discussion on the appropriate form of some of 
the relativistic operators and the appropriate ways to 
evaluate them. The interested reader is directed to a 
selection of articles [224-2411 which will provide a 
pathway to additional sources. 

For the ground state of the lithium atom, relatively 
little work is available on high precision estimates of 
the terms given in Eqs. (72)-(77) [36,37,112,117, 

118,123,242]. The current status of the higher preci- 
sion work available is summarized in Table 8. 

Of the five corrections, the most precise values are 

available for (Hz) [37,118], and (H3) is known with 
good precision [37]. The most difficult expectation 
values to evaluate are (H,) and (HJ. For Li’, the CI 

calculations [ 1231 give results different from the pre- 
cise values of the relativistic corrections reported pre- 
viously [ 1,221], so an adjustment of the CI results was 
made for the Li calculations to correct for this 1 s2 core 
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Table 8 

Relativistic (Breit) corrections (u) for the ground state of the lithium atom 

Author(s) Reference Method (H ,) (HL) (H :) (H,) (Hc) 

King and Shoup [ I 121 352.HY 3.4734 x IO_’ 

King Lll71 602.HY 3.47348 x Ior’ 

King and [ll81 296.HY 3.47370 x IO_’ 

Bergsbaken 

Chung” [I231 CI (H, + HL) = (H, + Hd) = - 2.3331 x Io-i 

- 7.0748 x IO-’ 9.5340 x 10-j ( - 2.3201 x lo-‘) 

( - 7.0942 x IO+ (9.1154 x 10-S) 

Esquivel et al. 12421 CI - 4.18769 x IO-’ 

King [361 760.HY - 4.18317(2) x 10m3 

Yan and Drake [37] 1589-HY 3.473663 x 10m3 - 9.10630 x IO-’ 

’ Chung reports the combinations (H, + Hz) and (Hi + H,). The values in parentheses have been corrected for the discrepancy between 

Chung’s results for Li’ and those of Pekeris [I ,221]. 

discrepancy. Such corrections improve the results, but 
add an empirical element to the calculations. 

Accurate evaluation of (HI) is a difficult problem, 
as this expectation value is sensitive to the near- 
nuclear region of configuration space, a domain that 
is less well described in the standard variational treat- 
ment. Working out the matrix elements of ($lV:‘l$) 
usually leads to difficult integrals, so it is useful to 

employ the result 

(~IV~I$)=(Vf$lV~~) (78) 

which generally simplifies the integration problems. 
The high precision estimates of (HI) for Li+ that have 
served as a benchmark employed the relationship [l] 

(V&Q2 + (v;$)* = - 2v:ri/v:$ + (ENR - v)‘q2 (79) 

where V is the sum of the electron-electron and elec- 
tron-nuclear potential terms. The right-hand side of 
Eq. (79) was used to simplify the calculations. The 

problem is that Eq. (79) assumes the exact eigenfunc- 
tion for the nonrelativistic problem to be available, 
which is of course not the case. No assessment of 
the error in (H,) for Li’ has been given when the 
replacement in Eq. (79) is employed. The simplifica- 
tion expressed in Eq. (78) is true for a general 
(approximate) wave function, and is not subject to 
the aforementioned drawback. 

The total relativistic correction for the ground state 
of Li using the values of (HI) [36], (HZ) [37], (Hj + H4) 
and (Hj) [ 1231 is 

EREL = -0.000 641 55(4) u (80) 

The error estimate in Eq. (80) has been evaluated 
using those for (HI) [36] and (HZ) [37] based on con- 
vergence patterns. For (H3 + H_,) and (HS) no error 
estimates have been published [ 1231. A rough esti- 
mate of 2 in the fourth significant digit has been 

assumed for these expectation values. The 1s’ core- 
corrected CI result for (HI + H2) [ 1231 agrees with the 
sum of (HI) [36] and (Hz) [37] to within 1 in the fourth 
significant digit. If the uncorrected results of Ref. 

[123] were used as a basis for error analysis, then 
the error estimate would be around 100 times larger 
than the estimate given in Eq. (80), and would be 
dominated by the uncertainty in (H3 + H1) and (H,). 
The value in Eq. (80) can be contrasted with the 
uncorrected value [ 1231 ERE~ = -0.000 663 52 u and 
the corrected (for 1s’ core discrepancy) value of EKEL 
= -0.000641 47 u obtained from CI calculations 

11231. 
There is no way to directly assess the quality of 

EREL given in Eq. (80), but this value is employed 
later to determine a theoretical ionization potential 
for Li (see Section 9), which is in very good agree- 
ment with the experimental value. While this com- 
parison is complicated by the fact that there might 
be some cancellations of errors with other small con- 
tributions, it does provide indirect support that the 
value given for ERR,_ is precise to at least the first 
few digits. 

An alternative pathway to relativistic corrections, 
such as the multiconfigurational Dirac-Fock 
approach (MCDF), expands the relativistic atomic 
state function \k as a sum of symmetry adapted 



F. W. Kin,y/fourml of Molrcular Structure (Throchrm) 400 (1997) 7-56 23 

configuration state functions +K 

\k= cc,+)K 
K 

(81) 

where aK are expanded as a linear combination of 
Slater determinants which can be formed from a 
basis of Dirac orbitals. The expansion coefficients 
CK in Eq. (81) are determined by employing the 
Dirac-Coulomb Hamiltonian: 

H,,,=,~ {C(Y;.p,+(pi-l)C’-ZZr,-‘I+ ~ ~’ 
i= I j>i Y,j 

632) 

where c is the speed of light, and CY and 6 are defined 
in terms of the Pauli spin matrices. 

While this approach has been employed in the 
evaluation of some properties [243-2461, no high 
precision estimates of the ground state energy have 
been reported. The results from the perturbation 
analysis discussed above are the best available for 
the relativistic correction to the ground state energy 
of Li. 

8. Lamb shift 

To account for the current level of precision avail- 
able for the ionization potentials of atomic systems, it 
is necessary to incorporate some rather small quantum 

electrodynamic (QED) corrections. These contribu- 
tions are most often expressed in the form of a correc- 
tion (to a given order in the tine structure constant 01) 
to the ionization potential. 

For the Li’ ion, the Lamb correction has been 
frequently evaluated from the formulas (in u) 

Table 9 

Lamb shifts for the ground states of Li+ and Li 

[2 12,247-2531 

E, , ( 1 s*) = q&r,)), - 2en(u - &(ko) + g 

and 

+ 2.29627~~21 (83) 

where 

(84) 

(85) 

c l(0l0, Im)12(~,, - Eo)t32 

en(ko)= m 
; ](O]V;]m)]*(E, -E,) 

(86) 

and y is Euler’s constant. In Eq. (83), k. denotes the 
Bethe mean excitation energy for a two-electron 
state. The corresponding Lamb correction for the 
one-electron ground state is EL.,(ls) and is given in 

Eq. (83) with (6(r,))=Z3/a. Additional corrections to 
EL,,( 1 s) are discussed in Ref. [25 11. The level shift for 
Liz’ has been evaluated to be 15.956 cm-’ (2511. For 
Li’, the most common practice is to quote the energy 
shift: 

Author(s) Reference AE&Li 
t ) (cm-‘) AEo&Li) (cm-‘) 

Pekeris 

Aashamal 

Aashamar and Austvik 

Hata 

Drake 

McKenzie and Drake 
Chung 

Feldman and Fulton 

[II 
I2521 
L-1 
[ZO] 

[254] 

[I241 

[1231 

12601 

- 7.x3 

- 832.5 

- 8.54(5) 

- 8.95 

- 8.938 

- 0.22(2) 
- 0.08 

- 0.24 
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which represents the quantity of interest in evaluat- 
ing the ionization potential of Li+. For the transi- 
tion Li+ - Li” + e-, several values of AEL can be 
found in the literature [ 1,250,252-2541. A summary 
of some of the available results for Lif is presented 

in Table 9. The last two entries for Li’ account for 
additional terms not incorporated in the earlier 
investigations. 

For three-electron systems, far less attention has 

been directed to the Lamb corrections [ 123,124, 
255-2601. Two approaches have been employed. 

The first, and more approximate approach, assumes 
that for the ionization process Li - Li+ + e-, the 

QED correction for the core electrons will 
approximately cancel, and so the correction to the 
ionization potentials of Li, AEoro, can be represented 
as [123] 

&(K(n)) 1 (88) 
where y1 = 2, and Zeff is the effective nuclear charge 
experienced by the 2s valence electron. This is the 
analogy of the one-electron term EL,,(ls) modified 

for n = 2 and with Z replaced by a screened nuclear 
charge. The one drawback with this approach is the 
semiempirical nature of the one-electron model 
assumed. In essence, the significance of the two- 
electron contributions to the Lamb correction for 
the ionization potential is lost in the adjustment 

of Z,ff. 
The second approach that has been explored is to 

Table 10 

Ionization potential for the ground state of the lithium atom 

generalize Eqs. (83) and (84) to cover the many- 
electron system, i.e. for Li [ 124,258,260] 

E,~,(ls’2~)=Za’{E(li:Zs)(~j~(~,)) 

- ge-,,lz12(;~ SO)} 

where F( 1~~2s) denotes a combination of one-electron 

functions F(ls) and F(2s) (each dependent on ZJ 
[258], which in turn can be written as a sum of one- 
electron quantum electrodynamic corrections [25 11. 

The second factor in Eq. (89) takes into consideration 
the correction for screening of the Bethe logarithm 
term (see Eq. (86)). The two-electron term takes the 
form 

(90) 

which has an analogy with the two-electron formula 

given above in Eq. (84). The second factor in Eq. (90) 
has been evaluated in a form involving (6(rU)) and a 
power series in Z [ 1241. The radiative corrections for a 
many-electron system (and Li in particular) have 
recently been investigated in detail [260]. In this 
work, the factor 164/15 in Eq. (90) is not obtained, 
but instead these authors find the somewhat smaller 

Author(s) Reference Method Ionization potential (u)” 

Lindgren I2661 
Johnson et al. I2681 
Johnson et al. I2691 
Blundell et al. [2701 
Chung 11231 
Weiss 11281 
Pipin and Bishop 11251 
Tong et al. [391 
Yan and Drake [371 
Yan and Drakeb [371 
Experiment: Johans: ion [I881 

MBPT 
MBPT 
MBPT 
MBPT 
CI 
CI 
CI-HY 
MCHF 
HY 
HY 

0.198 139(3) 

0.19797 

0.198076(3) 

0.198 142 9(5) 

0.198 I42 O(4) 

0.198 14 

0.198 131 

0.198 146 I 
0.198 141 89(30) 

0.198 142 114(20) 

0. I98 I42 04(2) 

A Absolute atomic units are employed in this table. 

’ Determined from the calculated ionization energy of ls’3d ‘D and the experimental 2%2*P and 2*P-3*D transition energies. 
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term (12905) - (3a/2). Some available values for 

AEo,,=E,(1s2)-EEL(1s22s) (91) 

are given in Table 9. An estimated uncertainty of 
around 20% has been given for AEoso(Li) [258] 
based on a consideration of all the components lead- 
ing to the calculation of the ionization potential. 

9. Ionization potential 

The ionization potential for the process Li - Li+ + 
e- has received considerable attention in the literature 
for over 60 years [37,39,123,125,128,261-2761. This 
quantity is an attractive target property for testing 

computational schemes as a high precision experi- 
mental estimate of the first ionization potential is 
available for comparison. 

A summary of some of the higher precision calcu- 
lations is presented in Table 10. The units employed in 
reporting the ionization potential are often given in 
atom-based u, with the conversion to cm-’ being 
obtained by multiplication by ~Z?T,~ (see Eq. (59)). 
In Table 10 all the values are reported in absolute u 

(conversion to cm-’ is made by multiplication using 
2R,). A number of factors enter into the theoretical 
determination of the ionization potential, I,: 

I, = ENR(Li+) - ENa + AEREL + AE,,,, + AEon,, 

(92) 

where the various terms have been defined previously 
in Eqs. (35)-(37). Table 11 summarizes the separate 

Table 1 I 
Contributions to the ground state energy (in absolute u) for Lit and 

Li 

Li+ (Is’) Li (Is’ 2s) 

ENR - 7.279913412669302” - 7.478060323 1(3)b 

E Bohr 0.000 569 303 94(4) 0.000584 79943(4) 

E rm, 0.000022588912(2)h 0.000023 593 7(4)b 

EKEL - 0.000 628 88(4)’ - 0.000641 55(4)b.d.’ 

EQED 0.000 11343(2)‘.’ 0.000 1145(l)“,h 

ET~I AL - 7.219 836 97(4) - 7.477 978 98( 11) 

IP 0.198 1420(l) 

Experimental’ 0.198 142 04(2) 

’ Thakkar and Koga [15]. bYan and Drake [37]. ‘Pekeris [1,221]. 
dKing [36]. ‘Chung [123]. ‘Johnson and Soff [251]. “Drake 

[254,258]. hFeldman and Fulton [260]. ‘Johansson [ 1881. 

contributions leading to the calculation of I,. The 

major part of the error in 1, is due to uncertainty in 

the relativistic correction (see Section 7 for a discus- 

sion on this) and from the error in AEosn [37,258] (see 

Eq. (43)). 
Several literature values of I, are available. The 

value in Ref. [277] is taken from Ref. [188], and the 
later collection of atomic data [278] is a reprint 
volume based on earlier experimental work. Two 

other commonly employed tabulations [279,280] 
employ the latest experimental value available, 
which gives 43 487.150(5) cm-’ [ 1881 (this is 
0.198 14204(2) u or as sometimes reported 

0.198 157 53(2) atom-based u for ‘Li). A semiempiri- 
cal fitting procedure also reproduces this value [281]. 
There is a hint, based on more recent experimental 
measurements [220,282], that the error estimate for 

this value of I, may be too small. 
An alternative method has recently been suggested 

which yields a joint theoretical-experimental 

approach to the determination of I, [37]. Combining 
the experimental 2 ‘S-2 ‘P and 2 *P-3 *D transition 
energies with the theoretically determined absolute 
ionization energy of the 3 *D state leads to the value 

]371 

I, =43487.167(4) cm-’ (93) 

This value is in close agreement with the purely 
experimental estimate given above. The values for 
the 3d 2D3,2 and 3d 3D 5,2 levels have recently been 
determined to high precision, and are 3 1 283.0505( 10) 
cm-’ and 31 283.0866( 10) cm-’ (for ‘Li) [220]. From 
these values, the center of gravity estimate is 

2 3 
E(2D) = JE(2Ds,2) + ~E(‘Ds,z) 

=31283.0772(14) cm-’ (94) 

If this value is combined with the theoretical estimate 
of the ionization potential of the 1s23d *D state, 
0.055 605 932(20) u [37], then the value of I, obtained 
is 

I, =43 487.163(5) cm-’ (95) 

This is in slightly closer agreement with the experi- 
mental estimate given above. Further experimental 

work should prove decisive in resolving the small 
variation that remains between these slightly different 
estimates of I,. 
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10. Electron affinity 

The electron affinity, EA, of the ground state of Li 
has received considerable theoretical attention over 
many years [283-3061. There have also been several 
experimental measurements of the electron affinity of 

Li [307-3151. Progress in theoretical and experimen- 
tal work on electron affinities including work on Li 
has been reviewed [316]. The electron affinity is the 

negative of the energy associated with the process 

Li(,, + e- - Li(,,, i.e. 

EA(Li) = ETdLi) - ~Total&- > (96) 

A positive EA implies the anion is more stable than 
the neutral atom. The total energies for each species in 
Eq. (96) can be expressed as a sum of contributions as 

indicated in Eq. (33). 
High precision calculations of the EA present a 

more serious theoretical challenge than calculation 

Table 12 

Electron affinity for the ground state of the lithium atom 

Author(s) Reference 

of the ionization potential of the neutral atom. There 
are two key reasons for this. The first is the obvious 
problem of having to deal with a system with one 
additional electron. The second issue is that atomic 
anions have a more diffuse electronic charge distribu- 
tion, which requires additional care in building basis 
sets to describe the regions of configuration space that 
are more distant from the nucleus. For a quantity like 

the ionization potential of a neutral species, the Har- 
tree-Fock model is good enough to obtain at least 
semiquantitative agreement with experiment. How- 
ever, for the electron affinity, the Hartree-Fock 

approach is unsatisfactory. ENR for LiC has been cal- 
culated in the HF approximation [302,317.318] and 
the best available value is [302,3 171 

EHF(Li-) = - 7.428 232 0 u (97) 

The preceding value is above the ground state energy 
of Li, so the HF model does not predict a stable bound 

Method Electron affinity (u) 

Weiss 

Schwartz 

Fung and Matese 

Griin 

Victor and Laughlin 

Norcross 

Stewart et al. 

Sims et al. 

Cooper and Gerratt 

Lin 

Kaldor 

Christensen-Dalsgaard 

Heully and Salomonson 

Canuto et al. 

Agren et al. 

Graham et al. 

Moccia and Spizzo 

Chung and Fullbright 

Fischer 

Experiment 

Patterson et al. 
Feldmann 

Bae and Peterson 

Dellwo et al. 

Haeffler et al. 

[2861 
12871 
Wnl 
[2911 
[2881 
12931 
12941 
~2951 
[2961 
[2641 

[2971 
[300] 

~2981 

[2991 
[302] 

[3Ol] 

[3031 

r3041 

[3051 

[3101 

~3121 

[3131 

[3141 

[3151 

sot 
Cl 

MCHF 

CI 

CI-MP 

ST 

MP 

CI 

Cl 

Hyperspherical 

CCSD 

Hyperspherical 

CCSD 

CCPPA 

MCLR 

MCEP 

K-matrix 

Cl 

MCHF 

0.022 6 

0.022 8 

0.022 5 

0.02 I 7 

0.022 6 

0.022 6 

0.021 9 

0.0224(3) 

0.022 5 

0.021 8 

0.022 4 

0.021 9(18) 

0.02153 

0.022 3 

0.022 6 

0.022 7 

0.022 69 (0.022 74) 

0.022 689 6(80) 

0.022 695 (0.022698)” 

0.0228(3) 

0.02272(2)h 

0.02269(3) 

0.022695(7) 

0.0227129(g) 

’ Extrapolated estimate. 
h A nonsymmetric error estimate is given by Feldmann 
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state for Li-. This signifies that correlation effects will 

play a critical role in the determination of a high pre- 
cision estimate of EA for Li. 

A summary of a number of theoretical calculations 
of EA is given in Table 12 along with some of the 
better experimental estimates for this quantity. The 
two best estimates of ENR (Li-) are -7.500 751 2(81) 
u [304] and -7.500 758 u [305], which involve extra- 
polations of = 221 phartree and = 181 phartree, 

respectively. A recent explicitly correlated coupled 
cluster calculation yields - 7.500 671 u for ENR 

[319]. An estimate based on experimental data gives 
E,,(Lii) = -7.50078(3) [317]. No high precision 
Hylleraas-type calculation is available for ENR(Lii), 
partly because of the integration problems that must 
be handled. Although a major part of the four-electron 
integral problem involving multiple correlation fac- 
tors riJ has been solved [320-3221, there are still sev- 
eral unresolved issues remaining. 

For a number of entries in Table 12, the relativistic 
corrections have been either ignored or treated in a 
fairly approximate manner. The basic hope in such an 

approach is that the relativistic corrections for Li and 
Li- are very similar, and so cancel when the energy 
difference is taken. The most detailed consideration of 
relativistic corrections [304] leads to Ear&i) = 
-0.000640 u, which can be compared to the value 
EKEL(Li) = -0.000641 55 u given in Section 7. 
Assuming both these relativistic corrections to be 
valid, it appears that the relativistic contribution to 
the energy difference is small, but still significant at 
the current level of the best experiment result [315]. 

The energy estimated for E Total(Lim) is 
-7.501 367(8) u [304]. In order to match up with the 

current experimental estimate, it is necessary to com- 
pute EN&-) to an accuracy of a few phartrees. 
Recent work on the ground state of Be 
[30,31,323,324] has shown how difficult it is to 
achieve this level of accuracy for ENR, and it should 
be expected to be an even more problematic assign- 
ment for Li-. Since the two lowest values reported 
above for ENR involve extrapolation of about 200 
phartree and require estimates of basis set truncation 
errors, it is probably safe to assume that ETolal(Lii) is 
not known to better than six digits of precision. The 
most recent experimental estimate for the EA is 
0.022 712 9(8) u (4984.90( 17) cm-’ or 0.618 049(21) 
eV) 13151. The two best computational entries in 

Table 12 [304,305], which were in close agreement 

with the previous best experimental measurement 

[314], now appear to be in less satisfactory agreement 
with the latest experimental work. Should the experi- 
mental precision for the EA improve by an order of 
magnitude, then a significant challenge will be pre- 
sented to theorists. Explicit r,, dependent basis sets 
(HY-CI, HY) will be required to determine ENR for 
the anion, and a careful evaluation of relativistic and 
quantum electrodynamic corrections will also be 
needed. 

11. The hyperfine coupling constant 

The Fermi contact operator discussed in this section 
is 

2 ? 
HF = $1*06J&~B~N1’ i5, 6@-i)S; (98) 

which can be written as an effective operator 

HF = hA,Z.J (99) 

where cl0 is the vacuum permeability, gJ is the elec- 
tronic g-factor (incorporating bound state correc- 

tions), gl is the nuclear g-factor, pa and ,_&N are the 
Bohr and nuclear magneton respectively, Z is the 
nuclear spin operator, Sj is the electron spin operator 
for electron i, 6(ri) is the Dirac 6 function, h is 

Planck’s constant, J is the total electronic angular 
momentum operator, and AJ is the hyperfine coupling 
constant. The energy splitting for the *S state of Li 

occurs between the I+( l/2) and I - (l/2) levels 
for J = l/2. That is, in terms of the total angular 
momentum F 

hA,F=E(F)-E(F-l)=hAv (100) 

where Au is the experimentally determined frequency. 
The hyperfine coupling constant can be written as 

2 
A+= 2Z+l PAV (101) 

where for 7Li, I = 312 and for ‘Li, I = 1. It is most 
common in theoretical calculations to calculate the 
Fermi contact interaction parameter, f, defined as 

f=($]4r1i W;)@ (102) 

and aZ, satisfies az,a(i)=a(i) and a_$(i)= -/3(i). 
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From Eq. (98) and Eqs. (99) (101) and (102) the 
connection between the hyperfine coupling constant 
and f can be written as (using a conventional grouping 
of terms) 

A 
POPBPN &Pi 

1/2= 
( 1 ~ 3/f 27rhai 

(103) 

Employing the most recent values of pa, pN, h and a0 

[ 1971, the factor in parentheses in Eq. (103) simplifies 

to 

=95.410672(75) MHz (104) 

An alternative grouping of terms is 

C=~2~R,(m,/mP)=95.410673(9) (105) 

where c is the speed of light and mP is the proton mass. 
This leads to an eight-fold reduction in the uncer- 
tainty. Some authors use a value of C = 95.521 316 

MHz, which incorporates a correction for the anom- 
alous magnetic moment (,&/pa) of the electron. Since 
there is a small bound state correction to the electronic 
g-value, it is preferable to isolate this factor from the 
collection of fundamental constants and account for 
this effect using the appropriate g J factor. Thus, A ,j2 

is given by 

A,/,=95.410673(9)( F)-f (106) 

There has been considerable discussion in the litera- 
ture over an extended period of time on the nature and 

derivation of the correct operator form for HF. The 
interested reader could start an exploration of these 
issues with the following sources: [325-3301. 

For the ground state of the lithium atom, the calcu- 
lation of f has received considerable attention 
[32,34,39,112,117,118,262,266,270,330-3841. Two 
approaches have been commonly employed. The 
first has been to evaluate the expectation value in 
Eq. (102) using nonrelativistic wave functions and 
then apply some additional corrections that are dis- 

cussed below. The second approach is to evaluate f 
using relativistic wave functions [39,270,376]. 

There are a number of additional corrections that 
must be made when f is calculated from Eq. (102) 
using nonrelativistic wave functions, in which case 
the calculated f is designated fNR. Until relatively 
recent times, these corrections were usually ignored, 

because the precision of the nonrelativistic phase of 
the calculation was not sufficiently high to justify 
efforts in calculating these additional small terms. 
While these small corrections have received consider- 
able attention for atomic hydrogen [385-3871, the 
same is not true for Li, and as a consequence there 
is still a considerable uncertainty associated with a 

couple of the corrections. The first and easiest correc- 
tion to consider is the adjustment for finite nuclear 

mass. This is handled by multiplication of fNR (from 
Eq. (102)) by (1 - c)‘, where it is assumed that $ is 
computed in the infinite nuclear mass approximation. 
Alternatively, the following correction factor is added 

to fNR: 

(107) 

For ‘Li this correction is -0.000 682 u. There is a very 

small mass dependent correction due to the mass 
polarization term in the Hamiltonian. This is an 
order of magnitude smaller than the error in the 
relativistic correction. The other two corrections are 
for relativistic effects f!.fREL, and for quantum electro- 
dynamic effects, Afosn. The final expression is 
therefore 

f =fNR + ‘!fmss + AfRm + AfQm (108) 

The correction for finite nuclear size is often incorpo- 
rated in AfREL. 

11.1. Determination of the experimental f 

For the lithium atom, several different experimen- 
tally derived values off can be found in the literature. 
For this reason, a detailed explanation is provided for 
the value recommended below. The experimental f is 
determined from Eq. (106) and the case of ‘Li is dis- 
cussed. The nuclear moment needed in Eq. (106) is 
the unshielded moment, py, which is determined from 
the experimentally measured shielded moment using 
the result 

PI=(1-~Li)P: (109) 

where VLi is the diamagnetic shielding factor for Li. 
The most recently published table of nuclear moments 
[388] employs the screening factor (1 - gLi)-’ which 
was used in a previous tabulation of nuclear moments 
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[389]; this in turn attributes the value of ULi employed, 
uL, = 1.048 x IO-“, to a private communication. This 
value does not match accurate nonrelativistic calcula- 

tions of this quantity, which give uLI = 1.014 990 62 x 
1OA [36] and uLI = 1.01499064 x lo-” [37]. Finite 
nuclear mass corrections and relativistic effects 
modify these values, but not at a level that has any 
significant impact on the calculated screening factor 
(1 - uL,))‘. The value employed in Ref. [389] may 

arise from the accidental omission of the digit 1 in 
the second decimal place. The nuclear moment py 

has been re-evaluated using the accurate value for 
ULi [36,37] to give 

(1 -aLi)-’ = 1.000 101509 (110) 

pcL:)=3.2564159(17) nm for ‘Li (111) 

and 

based on the incorrect uLI value are 3.256426 8( 17) 
and 0.82204728(55) [388]. The nuclear moments 
based on NMR measurements [390,391] must be 
corrected for shielding due to the surrounding Hz0 
molecules; 

&I,,=(1 -u*)-‘PNMR (113) 

where u* = - 0.114(8) x lo-” for ‘Li and u* = 
-0.1 lO(7) x lOA for 7Li [392]. 

The experimental value of A ,,2 has been measured 
by several investigators [392-3961. For 7Li the value 

A112 = 401.752043 3(5) MHz, and for 6Li A 112 = 

152.1368393(20) MHz [392] are employed. The 
value of gJ has been determined experimentally and 
relies on the measurement of three ratios of g-factors 

[397,398]. The value gJ = 2.002 301 O(7) [397] is 
employed, which was obtained using the result 

py =0.822 044 54(S) nm for ‘Li (112) 

The nuclear moments are given in units of nuclear 
magnetons (nm). The corresponding tabulated values and the factors are grouped according to which ratios 

Table 13 

Fermi contact termfand hype&e coupling constant A for the ground state of ‘Li 

Author(s) Reference Method 4&Xr,)oz,)” .&, (u)h Ai,, (MHz)’ 

Sachs 

Bagus et al. 

Larsson 

Lindgren 

King and Shoup 

King 

Panigrahy et al. 

Blundell et al. 

King and Bergsbaken 

Martensson-Pendrill and 

Ynnerman 

Sundholm and Olsen 

Esquivel et al. 

Carlsson et al. 

Tong et al. 

Shabaev et al. 
Bieron et al. 

Yan et al. 

Experimental: Schlecht 

and McColm 

Beckmann et al. 

[331] HF 

13541 UHF 

1321 IOO-HY 

W61 MBPT 

Cl 121 352-HY 

[I 171 602-HY 

[376] REL-MBPT 

~2701 REL-MBPT 

[I181 296-HY 

[3781 REL-CCSD 

[3811 

[341 

[3791 

[391 

[3831 

[3841(a) 

[3841(b) 

[3941 

[3921 401.752 043 3(5) 

MCHF 

CI 

MCHF 

MCHF 

CI 

MCDF 

HY 

2.094 

2.823 

2.906 

2.9172 

2.904 1 

2.9064 

2.907 1 

2.903 9 

2.909 5 

2.904 7 

2.905 1 

2.905 922(50) 

2.095 289.6 

2.824 390.4 

2.907 401.9 

2.9180 403.40 

2.905 401.6 

2.907 2 401.91 

2.9114 402.49 

2.911 1 402.47 

2.907 9 402.01 

2.899 9 400.90 

2.904 7 

2.9103 

2.905 5 

2.905 9 

2.904 

2.905 78 

2.905 75(22)d 

401.56 

402.34 

401.67 

401.73 

401.5 

401.714 

401.71(3) 

40 1.752 02(24) 

a Nonrelativisitic expectation value computed in the infinite nuclear mass approximation 

h Evaluated using Eq. (108). 

’ Evaluated using Eq. (106). 

d This value uses the correction factors given in Ref. [384](b). 
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have been experimentally measured. Within experi- 
mental error both ‘Li and 7Li give the same value 
for gJ [398]. In several previous estimates of fex,,, 
the free electron g-value, ge = 2.002 319 304 386(20), 

has been employed. Part of the confusion probably 
arises from the fact that it is very common notation 

(particularly among ESR spectroscopists) to write 
gJ as g (or sometimes g,). It is intended that in 
this notation, g should incorporate bound state 
effects, so the use of the free-electron g value is an 
approximation. 

Employing Eq. (106) and the values of p,, gJ and 
A j/2 indicated above, gives for 7Li 

f,,,(7Li) = 2.906 0.58 9( 18) u 

and for 6Li 

(114) 

f,,p(6Li) = 2.906 256 7(22) u (115) 

A summary of mostly high precision values off is 
presented in Table 13. The HF result is shown for 
comparison. The HF level of theory performs rather 
poorly in predicting the hyperfine coupling constant. 
The reasons for this have been discussed widely in the 
literature [95,325,331-333,342]. The values given for 
47r@(r,)az,) are all nonrelativistic and computed in the 
infinite nuclear mass approximation. The listed values 
Of~Li are calculated from Eq. (108) unless the authors 
carried out a relativistic calculation. The work of Refs 
[39] and [384] comes closest to the estimate given in 

Eq. (114). 
There are a few different estimates of AfREL in the 

literature. Values for AfRrL given in Ref. [39] 
range from 0.00153 to 0.00176 u, obtained by com- 
parison of MCHF and MCDF calculations for differ- 
ent basis sets. The relativistic correction is then 
computed from 

Af&=/,,,,,c{ E- 1) (116) 

where fNa,ext denotes the extrapolated nonrelativistic 

value, and fMcDF and fMMCHF designate respectively the 
values computed in the MCDF and MCHF approxi- 
mations for the smaller basis sets. An earlier calcula- 
tion [326] reports a value of AfREL = 0.0017 u, which 
was evaluated in a similar procedure to that described 
above. 

A recent calculation [383] gives an estimate of the 

finite nuclear size correction, AfrIN: 

AfFIN = - 0.000 764 u (117) 

This correction is relative to the calculatedfbased on 
a point-nucleus model. These authors determined a 
combined relativistic and finite nuclear mass correc- 

tion of 0.00 177 u. Based on the procedures employed, 
it is unlikely that three digits of precision can be 

assigned to any of the above values. From the avail- 
able results, the value 

A&,_ =0.0017(3) u (118) 

seems a reasonable estimate. The error estimate is 
based on the range of values available, and is probably 

conservative. 
For the Li atom, relatively little work has been done 

on the radiative correction Afoso. The approach that 
has been employed to evaluate Afo,, is based on a Z- 
dependent one-electron hydrogen-like formula [376]. 

The value reported is 

A&o = - 0.0002 u (119) 

Alternative estimates of 0.003 36 u [384](a) and 
-0.000918(47) u [384](b) have been given for 
Afo,,. The value given in Eq. (119) can be regarded 
as a first rough approximation only, since no 
electron-electron interaction effects are included in 
this estimate and there is an uncertainty associated 
with the choice of the best effective nuclear charge 
to employ in the one-electron formula. 

The entries appearing forJLi in Table 13 based on 
published values of 47&(r,)az,) have all been cor- 
rected using eqns (108), (107), (118) and (119), and 
Eq. (106) has been employed to calculate the hyper- 
fine coupling constant. The f values can be compared 
with the experimental estimate given in Eq. (114). 
The experimentally derived estimate for fNR (in the 

infinite nuclear mass approximation) is 

fNR = 2.905 2(8) u (120) 

which is based on the hyperfine coupling constant 
reported in Ref. [392], and the corrections AfMi\ss, 
AfsEL and AfoED discussed above. The error estimate 
in Eq. (120) reflects the range of values given for 
Afonn and AfREL. Several entries in Table 13 are 
near the estimate given in Eq. (120) [32,112, 
117,381,379,39,384], with Ref. [384] providing the 
closest agreement. Some caution might be appropriate 
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with this property, because the uncertainty in 4fQED 
and AfREL may be somewhat larger than the estimate 
used to arrive at Eq. (120). 

11.2. The Hiller-Sucher-Feinberg (HSF) approach 

The standard formula for the determination of J 
(Eq. (102)) suffers from the point-like nature of the 
delta function operator. An alternative formulation is 

based on the following result [399]: 

WW;)0z, M=W;~z, M) (121) 

with D, given as 

t2 D;=&L_L 
, 274 

(122) 

where V is the potential term given in Eq. (11) and ef 

is the square of the orbital angular momentum for 
electron i. Eq. (121) and its analogue for the electron 

density and electron-electron pair distribution 
function, and related identities, have been discussed 
at length in the literature [369,370,399-4121. For 
an S state, the ef term vanishes, so Eq. (121) simpli- 

fies to 

(123) 

For the lithium atom, this approach has been exploited 
in several papers [369,370,380,381]. The hope is that 
the expectation value involving the global operator D, 

will lead to a faster convergence for the calculation of 
f. This is at some cost, however, because of the 
increased complexity of the integrals required to eval- 

uate ($lDiaz, I$>. 
For the lithium atom, the results obtained using the 

HSF identity generally give results in better agree- 
ment with experiment, although for some smaller 
basis sets, the standard delta function approach does 
somewhat better [380]. The latter situations have been 
regarded as fortuitous [380]. Faster convergence has 
been reported when the HSF identity is employed 
using a few different basis sets. 

11.3. The hype&e anomaly 

There are two different definitions for the hyperfine 
anomaly, and the one discussed in this section is 

[397,4 131 

AI ~TI 
AZ= -$+42) (124) 

where A, and g I are the hyperfine coupling constant 
and nuclear g,-factor for isotope 1, and A Iz is referred 
to as the hyperfine anomaly. This effect arises from 
the distribution of magnetization within a nucleus of 
finite size. 

For the ‘S ,,? ground state of Li 

47 = 
A,& 1 

hg6 
(125) 

which simplifies to 

.fi Ah,=--1 
f7 

(126) 

From Eq. (12.5), the experimental value for the two 
isotopes of Li is Ae7 = 6.806(63) x lo-’ [397]. If we 
write 

(127) 

where Afh incorporates the relativistic, radiative, and 
finite nuclear size corrections, for isotope ‘Li, and 
using a similar expression for isotope ‘Li, then 

A67 x (‘%-‘%)_3 
.fNR 

I (128) 

The second factor in Eq. (128) contributes - 3.9044 x 
lo-“. The first factor can be estimated using the value 
of A67 given above. It should be apparent from the 

previous discussion of AfREL and Afoeu that the cur- 
rent calculations are not sufficiently advanced to 
determine Aft - Af, with the precision necessary for 
evaluating AC,. 

11.4. Hyper-ne pressure shif 

The hyperfine pressure shift, f,,, measures the pres- 
sure dependence of the hyperfine splitting as a buffer 
gas is introduced. The most common buffer gases 
employed are the inert gases. For 6Li and ‘Li, experi- 

mental values are available for buffer gases He, Ne 
and Ar. The results for fp are usually reported as a 
fractional pressure shift, i.e. 

(129) 
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Table 14 

Calcualted correction factor to 8, for the ground state of Li 

Author(s) Reference Method 

Hegstrom 

Veseth 

Veseth 

Lindroth and Ynnerman 

Marketos 

Experiment 

[4151 

[4161 

[4171 

[4191 

I4201 
[397.398,421] 

HF 

SEHF 

MBPT 

REL - CCSD 

REL-SD 

- 1.78(8) 

- 1.844 

- 1.778 

- I .772(20) 

- 1.406 

- 1.83(7) 

For helium as the buffer gas, the result for fp is 
77.7(10) x 10m9 torr-’ at 387°C [396]. 

If the magnetic Hamiltonian for the *S ground state is 
approximated by 

There has been relatively little theoretical work 
carried out for the calculation of the hyperfine pres- 
sure shifts for Li [414]. One approach employed has 

been to determine f, from (AZ@)), the latter term 
representing a weighted average of Av(R) (see Eq. 
(100)) over all possible values of the internuclear 
separation (R) between Li and the buffer gas atom. 
This type of calculation is limited by the accuracy of 
the interatomic potential used in the weighted aver- 

age. For the buffer gas He, using two different poten- 
tial forms, the results 44.7 x 10e9 torr-’ and 83.3 x 
10e9 torr-’ at 387°C have been obtained [414]. These 
results fall on either side of the experimental result 

given above. This is obviously a much more challen- 
ging problem than the calculation of a hyperfine cou- 
pling constant for a gas phase atomic system. 

H mw = -g&*&S 

then the approximation gJ = g, follows. 

(133) 

The appropriate form for Hmag has been discussed 
in several articles [415-4201. Hmag includes contribu- 
tions from the Zeeman interaction, spin-orbit cou- 
pling contributions, spin-other-orbit contributions 
and some additional relativistic refinements. These 
additional corrections have been evaluated using 
Hartree-Fock theory [415], spin-extended HF theory 
[416], MBPT [417], and using relativistic wave 
functions in a coupled cluster single- and double- 
excitation scheme [419]. Table 14 collects the results 
of these calculations. The results are reported in terms 

of 

sg=g.l-& (134) 

where ge is the free electron g-value. The value of g, 
employed in Table 14 is 2.002 319 304 376(8) 14211. 
The results of the best calculations in Table 14 are in 
reasonably close agreement with the experimental 
value. If additional precision for the experimental 
result becomes possible, this will provide an interest- 
ing challenge for theorists. The calculation of gJ also 
provides a very useful testing ground for the theore- 
tical formulation of magnetic interactions, which has 

fundamental importance in a number of areas. 

11.5. cufdution of gJ 

The magnetic moment of the lithium atom is given 

by 

CL=&& (130) 

and so for a magnetic field B applied in the z-direc- 
tion, the expectation value of the magnetic moment- 
field interaction is (where Hmag denotes the magnetic 
Hamiltonian) 

($iH,,,]$) =($]-p.B]rc/) 

= -gJCLL$(JZ) 

i.e. g, is determined from 

(131) 

(132) 

12. Nuclear magnetic shielding constant 

The nuclear magnetic shielding constant (diamag- 
netic shielding factor) is determined from the formula 

(135) 
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Table 15 

Nuclear magnetic shielding constant for the ground state of Li 

Author(s) Reference Method Od (u) 

Malli and Froese 

King 

King 

Yan and Drake 

Yan and Drake” 

[‘W HF I.0145 x 10-J 

[ll71 602-HY 1.01499043(25) x IO-” 

[361 760-HY 1.01499062(9)x 10m4 

[371 1589.HY 1.01499064(9)x lOA 

[371 I589-HY 1.01498857(9) x IO-’ 

’ Includes finite nuclear mass correction (for ‘Li). 

Since the expectation value (r;‘) is one component 
used to determine the energy, variational calculations 
usually yield fairly precise and well converged values 
for cd. Values of this quantity (or information neces- 
sary for its calculation) have been determined by a 
variety of theoretical methods [29,35-37,112, 

117,422-4281. A summary of some calculated values 
of (Td is given in Table 15. The HF value of (Td reported 
in Table 15 is in reasonably good agreement with the 

high precision nonrelativistic Hylleraas results. 
Relativistic corrections to (Td are generally observed 
to be fairly small for light atoms [429]. The first three 
results in Table 15 based on the Hylleraas method are 
for the infinite nuclear mass approximation. The final 
entry in Table 15 includes the effects of finite nuclear 

mass. 

12.1. Connection with X-ray scattering 

For spherically symmetric states, it can be shown 

that [430] 

(136) 

wheref(k) (also very commonly denoted F(k)) is the 
coherent X-ray scattering amplitude. Eq. (136) opens 

Table I6 

Molar diamagnetic susceptibility for the ground state of Li 

up an experimental route to (Td. For lithium, no experi- 
mental determination of (Td via Eq. (136) appears to 
have been carried out. Since ud can be obtained 
theoretically with high precision, Eq. (136) serves as 
a useful sum rule check on calculated X-ray scattering 
factors. An application along these lines using 

Hylleraas-type wave functions to calculate the scatter- 
ing factors for Li can be found in Ref. [431]. 

13. Diamagnetic susceptibility 

The diamagnetic susceptibility is defined (in u) 

by 

(137) 

The molar diamagnetic susceptibility, x,,,, (in the stan- 
dard employed units of cm3 mol-‘) is given by 

xm =NAdx (138) 

where NA is Avogadro’s constant. Using the available 
values for NA. a! and a0 [ 1971 gives 

Author(s) 

Mendelsohn et al.” 

Mendelsohn et al.” 

King 

King 

Yan and Drake 

Yan and Drake b 

Reference 

14321 

[4321 

[ll71 

[361 

[371 

[371 

Method 

HF 

REL-HF 

602.HY 

760.HY 

I589-HY 

I589-HY 

xrn (cm2 mole’) 

I .47568 x I O-5 

I .47544 x I o-5 

I .45372 x I Omr 

1.4537145(10)x IO_’ 

1.4537135(9)x 10-5 

I .4537274(9) x lo-’ 

a The value from this work has been recalculated using the conversion factor in Eq. (I 39) 

b Includes finite nuclear mass correction (for 7Li). 



34 F. W. King/Jourml of Molecuic~r Structure (Theochew) 400 (1997) 7-56 

Values for x (or the expectation value necessary to 
calculate it) have been determined by a number of 
methods [34-37,l 17,432]. Table 16 presents a sum- 
mary of some values. The Hartree-Fock value is 
observed to be in reasonable agreement (about 1.6% 
too high) with the high precision estimates based on 
Hylleraas-type wave functions. 

The forward (19 = 0”) scattering factor for elastic 
electron scattering in the first Born approximation 
can be related to the diamagnetic susceptibility, and 
the forward differential cross section for elastic scat- 
tering is [433-4351 

(140) 

where y * is the factor [ 1 - (v2/c2)] - ’ , v is the electron 
velocity and c is the speed of light. Given accurate 
elastic differential cross section data it is possible to 
extract values of x. This approach will provide a use- 
ful check on the theoretical calculations. 

14. Polarizability and hyperpolarizability 

The theory of polarizabilities is well described in 

several sources [436-4381. The various polarizabil- 
ities can be determined from the perturbation theory 
formulas [125,439]: 

C &s(-Wo;W,)=h-’ c c (gl@,plmXmlOySlg) 

p m(Jx) (w,ng -%I 

(142) 

Yaays(-W,;Wl,W2,w3)=h-3 1 
P 

(143) 

where Ig) is the ground state wave function, im), in) 
and Ip) are excited state wave functions, and pe and 
@,o denote the 01 component of the electric dipole 
moment operator and the CY~ component of the elec- 

tric quadrupole moment operator, respectively. w,,,~ 
denotes a transition frequency and 

wO= cw, (145) 
i 

and the sum runs over the arguments after the semi- 
colon in each expression. Cp denotes an appropriate 
permutation for each expression. The connection 
between the susceptibilities and the polarizabilities 

can be found in several references (see, for example, 
Ref. [440]). 

The static polarizabilities are obtained by setting w, 
equal to zero in eqns (141)-( 144). The calculation of 
the static polarizabilities for the ground state of Li has 
received considerable attention in the literature [441- 
5001. The early literature on measurements has been 
reviewed in Ref. [501] and a compilation of older 
results on ground state atomic dipole polarizabilities 
has been published [502]. Interest has probably 
focused so heavily on the dipole polarizability 
because of its connection with several important 
topics that include van der Waals interactions, refrac- 
tion, collision processes and others. A few measure- 

ments of CY have been reported for the ground state of 
Li [503-5051. 

Table 17 summarizes the results from a large num- 
ber of calculations. Literature values of cx are often 
published in units of A,‘. The conversion factor 1 A” = 
6.748 333 04 u has been employed for Table 17. For 
the static dipole polarizability, Q, also frequently 
denoted as 01(o) or CX~, the best HF level calculations 
are often within 5% of the highest precision theoreti- 
cal estimates. The best theoretical calculations 

[500](b) lead to a value of 164.1 1 l(2) u, which is in 
close agreement with the experimental value of 
164.0(34) u [505]. Unfortunately, the uncertainly 
associated with this experimental value is rather large. 

X I c ~ICLaImXmIC161~XnICc,lpXplClpIg) _ c (RICLollmXml~LglgXgl~ylnXnI~plg) 
m,n,P(#g) (w,g -%)(%g -aI - W2)(qlR -aI 1 ma%,d”R) (%I~ - %)(%g - WI)(W,g + w2) 1 ( 144) 
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Static dipole polarizability OL, quadrupole polarizability C. dipole-quadrupole polarizability B, and hyperpolarizability y for the ground state of 

the lithium atom in u 

Authors Reference Method f.Y C B Y 

Dalgarno and Kingston 

Flannery and Stewart 

Stacey 

Langhoff et al. 

Langhoff et al. 

Lahiri and Mukherji 

Boyle and Coulson 

Drake and Cohen 

Stacey and Dalgarno 

Chang et al. 

Sternheimer 

Stemheimer 

Heaton and Stewart 

Tiwari et al. 

Mukherjee et al. 

Moitra and Mukherjee 

Stevens and Billingsley 

Adelman and Szabo 

Bhattacharya and 

Mukherjee 

Kouba and Meath 

Roy and Bhattacharya 

Werner and Meyer 

Sims et al. 

Tang et al. 

Zeiss and Meath 

Reinsch and Meyer 

Maeder and Kutzelnigg 

Voegel et al. 

Muszynska et al. 

Pipin and Woznicki 

Pouchan and Bishop 

Muller et al. 

Mahapatra and Rao 

Maroulis and Bishop 

Maroulis and Thakkar 

Pipm and Bishop 

Nicolaides and Themelis 

Fuentealba and Reyes 

Themelis and Nicolaides 

Wheatley and Meath 

Wang and Chung 

Kassimi and Thakkar 

Laughlin 

Yan et al. 

Experimental 

Molof et al. 

14411 Oscillator sum rule 

[443] PV 

l4451 CI 

[4491 HF-PT 

l4481 Coupled HF 

l4501 PV 

l45ll SCF 

l4531 PT 

l4541 CI 

[4551 MBPT 

[456] PT 

l4571 PT 

l4581 PT 

l4591 PT 

[4601 PV 

l4621 HF 

l4651 HF 

[463] Coulomb approx. 

l4641 Coupled HF 

l468l Pseudospectral 

147 II Coupled HF 

l4721 PNO-CEPA 

r4731 CI-HY-PV 

l4741 Coulomb approx. 

l4791 Pseudospectral 

l48 II PNO-CEPA 

[483] PP 

l4821 HF 

l4851 Cl-HY-PV 

[llll CI-HY-PV 

l4381 CI-point charge 

l2651 CI 

l4881 MBPT 

l4891 SCF 

l49ll MBPT 

~1251 CI-HY 

[4941 CEA 

[4951(a) PP 

14921 CEA 

[493] CI 

[4961 CI 

[4981 CCSD(T) 

[4991 One-electron MP 

[5001(b) HY 

15051 

165 

169.4 

161.8 

170. I 

I70 

157.9 

163.1 

167.6 

167.0 

168.4 

163 

170.3 

174.0 

171.2 

164 

164.5 

163.8 

164 

163.6(16) 

164.3 

170.1 

163.8 

163.9 

1 W2) 
163.7 

164.5 

164.1 

164.9 

164 

169.3 

162.92 

164.08 

164.2(l) 

163.91 

164.111(2) 

164.0(3.4) 

1.50 x IO’ 

1.45 x IO1 

1.50 x IO3 

I.41 x IO’ 

1.413(26)x IO3 

1.428 x IO1 

1.383 x IO’ 

1.472 x IO’ 

1.428 x IO3 

1.423 x IO’ 

1.45 x IO’ 

1423.266(S) 

7.547 x IO5 

2.4 x IO5 

- 6.73 x IO5 

- 5.821 x IO’ 

- 96.3 x IO’ 

- 5.98 x IO4 

- 5.888 x IO4 -8.64x IOJ 

- 5.493 x I04 4.3 x 102 

- 5.43 x lo4 3 x IO? 

37 x 10’ 

- 5.55 x IO’ 65 x IO’ 

2.9(3) x lo3 

3.93 x IO’ 
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The refractive index n(w) is related to a(w) [454]. 
For gaseous Li, the refractive index has been evalu- 
ated as a function of wavelength 14.541. Higher preci- 
sion values of n(w) could be determined from the 
more recent calculations of a(w) [ 1251. 

Refinements of the above expression for the dipole 
polarizability of alkali metal vapors have been treated 
theoretically. The interested reader can pursue this 

topic in Ref. [506]. 
For the quadrupole polarizability, C, sometimes 

denoted (yq, the best calculations lead to a value of 

1423.266(5) u [500](b). No experimental value 
appears to be available for this quantity. The same 
authors calculate the octupole polarizability to be 

39 650.49 u [5001(b). 
For the dipole-dipole-quadrupole polarizability, 

B, there are fewer reported calculations. The best 
results available [125,491] give B as -5.43 x IO” to 
-5.49 x 10J u, with the former value probably being 
the better estimate. Once again, no experimental result 
appears to be available. The static B(0) can be related 

to the static hypermagnetizability anisotropy, 

the experimental quantity of interest in the Cotton- 
Mouton effect [437]. For values of B, C and 01 at 

several different values of w, the reader is directed 

to the tabulation of Ref. 11251. 
For the hyperpolarizability, y, the scatter of the 

theoretical results is rather noticeable. Until recently, 
even the correct sign for y was not resolved. The 
approximate methods of calculation indicated in 
Table 17 either give the wrong sign, or are often in 
error by two orders of magnitude. The best calcu- 
lations currently available give values of 3 x 10’ u 
[ 1251 and 2.9(3) x 10” u [498]. No experimental result 
is available for comparison. 

15. Shielding constants 

The dipole shielding constant PI (the notation Yd is 
also commonly employed) is usually defined [507] as 
the induced electric field at the nucleus due to the 
perturbed electronic charge distribution divided by 
the electric field at the nucleus due to the external 
charge alone. This definition gives 

(146) 

where q. is the unperturbed wave function and $i” is 
the perturbed wave function arising from the presence 
of an external charge. In a similar fashion, the 2L-pole 
shielding factor is defined as the ratio of the change in 
the Lth-order electric field gradient at the nucleus due 
to the electronic charge distribution to the Lth-order 
gradient due to the external charge alone. The quad- 
rupole shielding factor yr (often denoted yq) is 

y,=2 
( 

#jZ’I x 
Iv Pz(cos 8’),$,, 

i=l r,’ ) 

and the general 2L-pole shielding factor is 

(147) 

(148) 

A positive value of y?‘. corresponds to shielding and a 
negative value to antishielding. 

The dipole shielding factor has been evaluated in a 
number of applications for the ground state of Li 
[450,455,456,459,460]. Since it can be shown that 
fir satisfies 

p’+ (149) 

the principal interest in this quantity is that it provides 
a check on the accuracy of the wave functions q0 and 

$\‘I. 
A number of calculations of yZ (yJ have been 

reported [444,448,459,460,508]. The results are sum- 
marized in Table 18. The higher 2L-pole shielding 
factors have received less attention. A few values of 
the octupole shielding factor (?J are also included in 
Table 18. For yX there is a significant spread in values. 
From the results available, it appears that yl lies in the 
interval 0.7-0.9, with the lower end of the range being 
most likely nearer the exact result. 

16. Oscillator strength sums 

The dipole oscillator strength sum is defined by 

S(k) = 1 ‘fI,& (150) 
n 

wherefno is the dipole oscillator strength for the tran- 
sition 0 - n (0 is taken to be the ground state): 

(151) 
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Quadrupole and octupole shielding factors for the ground state of the lithium atom 

Author(s) Reference Method Shielding factors 

Langhoff and Hurst 

Langhoff et al. 

Tiwari et al. 

Mukherjee et al. 

Mahapatra and Rao 

[4441 

[4481 

[4591 

[4601 
[SO81 

Uncoupled-HF 

Coupled-HF 

Uncoupled-HF 

Coupled-HF 

MBPT 

Y*(Yq) Yo 

I .08 0.536 

0.703 
0.912 

0.743 

0.9 

2.81 

0.7 156 

and En0 is the corresponding transition energy. The 
prime on the summation signifies II # 0 (only impor- 
tant for negative k), and the summation is over all 
states, both discrete and continuous. Oscillator 

strength sums are of interest because they determine 
various properties that include the dipole polarizabil- 
ity, scattering properties of atoms and dispersion coef- 
ficients, as well as providing an important test for ab 
initio calculations. 

The following relationships can be readily derived 
[509]: 

S(0) = N (152) 

S(2)= y $ol if W;No ( > (155) 

S( - 2) = a(0) (156) 

In Eq. (152), N is the number of electrons in the sys- 
tem. This expression represents a useful check on the 
quality of the wave functions when the sum is expli- 
citly evaluated. This relationship might also to be 
taken as a useful condition to impose on the 
calculations. S(1) is related to the kinetic energy 
plus a term that appears in the evaluation of the 
mass polarization correction to the energy (see Sec- 
tion 6). S(2) is directly related to the electron density 

at the nucleus, and S(-2) determines the static 
dipole polarizability. In addition, the dipole-dipole 
dispersion coefficient, Cc, can be related to various 

values of S(k) [510], as can several other properties 
[511]. 

For the ground state of atomic lithium, results for 
S(k) are available for integer k values from -14 to 2, 
and some fractional values of k [ 125,5 10,5 12-5 191. 
A selection of these values are presented in Table 19. 

Since the ground state expectation values appearing 
in eqns (153)-( 155) are known with high precision 
[29,35,37,117], the most precise values of S(-1), 
S( 1) and S(2) appearing in Table 19 are based on 
these relationships, rather than a direct evaluation 
of S(k) using Eq. (150). These values should 
provide useful benchmark tests for calculations 
carrying out the direct summation. The most precise 
values of S(-3), S(-4) and S(-5) are those of Ref. 
[ 1251. 

Under appropriate circumstances, the refractive 
index n(w) can be developed in terms of an infinite 
power series of terms involving S(k), for k = -2, -4,.... 
From this expansion, the Verdet constant (which is 
proportional to &z(w)/&) can be readily extracted. 
This line of research has been explored for several 

systems, but does not appear to have attracted much 
attention for atomic lithium. 

16.1. 2(-p& oscillator strength sums 

The generalization of Eq. (15 1) beyond the dipole 
approximation is 

(157) 



38 

Table 19 

F. W. King/Journal of Molecular Structure (Theochem) 400 (1997) 7-56 

Dipole oscillator strength sums for the ground state of the lithium atom 

Author(s) Reference S(k) (u)” 

S(2) S(1) SC- 1) S( - 3) S( - 4) S( - 5) 

Stacy and Dalgarno ]4541 12.17 2354 3.4191 x 104 
Kramer h 15101 II.91 2357 3.425 x lo4 

Zeiss and Meath ]4791 3.5038 x IO4 

Kouba and Meath ]5l41 12.32(23) 2450(3) 3.5999(22) x IO4 
Zeiss et al.’ ]4771 180.0 IO.44 12.14 2385 3.504 x IO” 
Tang et al.d ]4741 3.53 x IO4 
Kouba and Meath ]4801 12.09(14) 2383(2) 3.501 l(21) x IO4 
Cummings ]5l51 173.855 9.91035 12.422 1072.7 
Pipin and Bishop ]l251 12.13 2394 3.517 x 104 5.176 x 10’ 
King ]ll71 173.941r 10.373 21 f 12.1441” 

King and Bergsbaken ]ll81 173.9524’ 10.373 204’ 

Ltichow and Kleindienst [29] 10.373 204 16’ 

Y an and Drake ]371 173.9505’ 10.373 204 18’ 12.1440036S8 

a See Table 17 and Eq. (156) for S(-2). 

b This author also gives S(k) for k = -l/2, -3/2, -5/2 and -7/2. 

‘These authors also give S(k) fork = -6, -8, -10, -12 and -14, as well as the fractional values -l/2. -3/2 and -5/2. 
d These authors also give values for S(6) and S(-8). 

’ Computed using Eq. (I 55). 

’ Computed using Eq. (154). 

g Computed using Eq. (153). 

where j$ is the 2(-pole oscillator strength defined 

by 

&$‘=2 
I( 

$01 if r,YP&os e;hb, 
>I 

2 

En0 (158) 

Most investigations of Eq. (157) have dealt exclu- 
sively with the case 4 = 1. Far less work is available 
for other cases. For the case where 4 = 2, there are 

some quadrupole sum rules of interest [468]: 

S@)=e 
> 

(162) 

Table 20 

Quadrupole oscillator strength sums for the ground state of the lithium atom 

S2(-1)=2 
( ( 

$01 ijirjP*(COSBi) 21$o 

) ) 

(160) 

Sz(-2)=cYg (161) 

Values of S*(O) can be determined from the 5(-l) 
entry given in Table 19. In Eq. (161), CQ denotes the 
static quadrupole polarizability, and values for this are 
given in Table 17 under the entry heading C. A sum- 
mary of some available values of S*(k) is presented in 

Table 20. A result is available for Se(O) [517]: 

Authors Ref. S?(k)” 

S,(l) S2( - 1) S?( - 3) Sz( - 4) Sz( - 5) Sz( - 6) 

Kouba and Meath ]46gl 10.54 217(4) 9.38(23) x 10’ 6.32(22) x lo4 4.29(19)x 10’ 2.94(15) x IO’ 

Proctor and S&valley b [5 171 6.019 215.9 

a For S2(-2) see Eq. (161) and Table 17, and for S2(0) see Eq. (159) and Table 19. 

h These authors use a valence electron model. They also report the octupole oscillator sums Sz(-1) and S?(l) 
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16.2. Log-weighted oscillator strength sums 

By analogy with the definition of S(k) given above, 
a log-weighted dipole oscillator sum can be defined as 

L(k) = c ‘fno&&(&olu) (163) 
n 

If S(k) is considered to be a function of a continuous 
variable k, then L(k) is the derivative dS(k)ldk. L(k) is 
useful for the evaluation of several qualities. The stop- 
ping power for fast charged particles depends on L(O), 
and is discussed in terms of the mean excitation 

energy IO, defined by 

1, = eUo)Is(o) (164) 

Calculated values of IO for Li [454,477,512, 
516,520,521] range from 33 eV [454] to 38.8 eV 
(5221, with the experimental value being 37.4 eV 
[ 5221. Some values of L(k) are presented in Table 2 1. 

The mean excitation energy which is required in the 
theory of the Lamb shift is connected with L(2) as 

follows: 

(165) 

Relatively little work has been carried out on the 
evaluation of estimates of L(2) for the Li atom 
[477]. None of the values of L(k) reported in Table 
21 are of high precision, but they might serve as 
approximate reference 
sion calculations. 

results for future high preci- 

17. Electronic density and spin density 

Although the electronic density is a key variable in 
modern quantum theory, relatively little attention has 
been directed towards finding compact expressions 
for this quantity. For highly correlated densities, 
there is only a modest amount of published work, 
and this is also the situation that prevails for the 
lithium atom. For the ground state of Li, the following 
result has been obtained [35]: 

Do(r)= E % AIKrKema” 
/=I K=O 

(166) 

where Do(r) is the radial electronic density function 

&(r) = (167) 

and 

p(r)=N 
s 

$*(x,,x*,-q, -~,M~,r%X, . ..%) 

x ds,dx&+.&, (168) 

In Eq. (167) the standard notation dQ = sin 0dBdp is 
employed, and in Eq. (168) x, denotes a combined 
spatial and spin coordinate. The form given in Eq. 

(166) is based on analysis of Hylleraas-type wave 
functions of the form given in Eqs. (14), (16) and 

(20). The parameters ayI, gl and arK have been 
tabulated for the ground state of Li and other three- 
electron systems [35]. Because the Hylleraas wave 
functions employed to determine the parameters in 
Eq. (166) included relatively few basis functions 
describing the large r-region of configuration space, 
the resulting accuracy of p(r) at large r is expected to 
be poor. This can be confirmed by comparing the 
moments (ry) for large y2 computed from Eq. (166) 

and those available from more accurate calculations 
1361. Comparison of moments (rl) (and other expecta- 
tion values) is an imperfect test, because of the 
possibilities of cancellation of errors from different 
regions of configurational space when the integral 
involving p(r) is evaluated. The work leading to Eq. 
(166) was motivated by earlier efforts on two-electron 
systems [523], which was subsequently extended to 
higher precision in several investigations [524-5261. 

Assessing the quality of Do(r) is difficult. The cusp 
condition [527] 

(169) 

provides a stringent test. Other than the expected 
asymptotic behavior [528-5301 and the subharmonic 
character of p(r) beyond a certain radial distance 
[531], there are unfortunately few rigorous checks to 
test the local accuracy of p(r). Although there are 
many bounds known for p(r) [532-5461, none are 
sufficiently sharp to serve as a stringent quality con- 
trol test for electronic densities determined from 
highly correlated wave functions. Whether such 
bounds can be found is still an open question. 
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The pseudoconvexity behavior of the lithium elec- 

tronic density has been studied with both HF and 

highly correlated wave functions [547]. These authors 
have also investigated the separate spin-a, spin-/3 con- 
tributions, pu and pp, to the curvature of the Li elec- 
tronic density. 

A large scale CI study of p(r) has been under- 
taken [34]. The moments (ry) obtained from this 
study are in generally good agreement with high 
precision estimates [36]. These authors have also 

evaluated the spin density for the ground state of 
Li and this work is the best currently available 
for the spin density as a function of the radial 

coordinate. 

17.1. The Hiller-Sucher-Feinberg upproach 

The electronic density can be computed from the 
relationship 

0) =($I@.; -r)l$) (170) 

which can be expressed in the form 

0) =WW)M (171) 

Eq. (17 1) is analogous to the result given earlier in Eq. 
(12 1). For the case r = 0 (see Eq. (I 22)) 

(172) 

The result in Eq. (172) was independently derived at 
almost the same time [533], and had been found ear- 
lier for restricted cases [548,549]. For the lithium 
atom, SCF calculations of p(r) converge more quickly 
using the HSF identity compared to the Dirac 6 func- 

tion approach. A similar situation prevails for CI cal- 
culations of p(O) [381]. 

18. Intracule functions 

The radial electron-electron distribution function 

is given by [550] 

P(rji) = 
drib, r(2)(rj,rjl’i, ‘j) - 
dr, 

(173) 

where I”” is the spin-free 2-matrix defined by 

N 
r’2’(r. r.1 

I9 I r,,rJ .)= ( )i \k(x, ,x2, . ..xj. . ..xj. . ..x/.g) 
2 

X ~(XI,X~, ...Xi, ...x~, . ..X.v)dSidS,dYk (174) 

where dxk denotes combined integration over all 

N 
coordinates except those with k = i and j, and 

0 

is 
2 

a binomial coefficient. The normalization for P(r,,) 

employed is 

J 

X 
P(rij)dr,- = iN(N - 1) (175) 

0 

The spherical average of the intracule function is 
given by [551,552] 

(176) 

A cusp condition for h can be written as [55 1,552] 

Ft,=,,=h(O) 
‘J 

(177) 

Starting from a restricted Hylleraas-type expansion, 
the following result has been obtained for the ground 
state of three-electron systems [553]: 

P(r;,)= i F A,Kr~e-afr~J 
/=I K=l 

(178) 

Numerical values for the parameters QI/, gI and .RIK 
(which are not related to those reported in Eq. 
(166)) have been tabulated. This work was developed 
in the same spirit as earlier work on two-electron 

systems [523]. 
An important difficulty arises when the jump from 

two- to three-electron systems is made. Severe restric- 
tions on the choice of basis functions must be made if 
a simple compact analytical form for P(r,) such as Eq. 
(178) is to be obtained. The problem arises with basis 
functions involving odd powers of the interelectronic 
coordinate. Unfortunately, these are important terms 
if high precision estimates of all properties are 
required. The accuracy of moments (r;) computed 
from Eq. (178) is typically around O.l-0.2%, except 

for (r,T2), and the expectation value (6(r,j)). Both of the 
latter two expectation values are more difficult to 
evaluate. The cusp condition (Eq. (177)) was not 
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satisfied for the Hylleraas wave functions employed, 
and since 

P(ri,) 
h(o)= 47r12, ‘,,_. [-I = (W;,)) (179) 

it is probably not too surprising that the expectation 

value of (6(rij)) is obtained with less precision than the 
other expectation values. 

A recent investigation [554] has discussed the eva- 
luation of the intracule density, I(R), using 

I(R) = 0 : ($lWij -@I+) (180) 

If the 6 function operator in Eq. (180) is replaced by 
an operator less sensitive to a specific region of con- 

figuration space, i.e. if the appropriate HSF identity is 
employed, then the hope is that better precision will 

result for the intracule density. For I(O), this situation 
was realized for calculations on the ground state of Li 
and for several other systems [554]. 

19. Moments (ry) 

The moments (rr) can be calculated from 

(r:‘)= j J’p(r)dr (181) 

The case II = - 1 leads to the electron-nuclear poten- 

tial energy and the nuclear magnetic shielding 

Table 22 

Moment (r:) for the ground state of Li 

Moment (r:) Result(u) Reference 

6-3 
6-T’) 
(r,) 
b-3 
b-3 
(f-3 

30.240965 15(25) 

5.718 I lO88361(13) 

4.989 523 148 59(75) 

18.354614517(72) 

92.603 6 
550.04 

550.07 

3 695.8 

27 649 

27 729 

2.2784 x IO’ 

2.050 x IO6 

2.073 x IO’ 

2.001 x IO’ 

2.103 x IO* 

2.16 x lOR 

1371 

1371 

[371 

[371 
fl171 

[341 

[361 

f341 

[341 

[361 

f341 

f341 

f361 

f341 

f341 

f361 

constant; II = 2 is required to evaluate the diamagnetic 
susceptibility, and some of the moments can be 
related to various oscillator strength sums. A sum- 
mary of some of the more precisely known values is 
presented in Table 22, which are all nonrelativistic 
values based on the infinite nuclear mass approxima- 

tion. These results, particularly those for the smaller n 
values, could serve as benchmark expectation values 

for other calculations. 

20. Moments (r-G> 

The moments of the interelectronic separation can 
be determined from the formula 

(182) 

Unfortunately, P(r,j) is not currently available with 

sufficient precision, so the moments ($> are deter- 
mined directly from the wave function. A small selec- 
tion of results for n = -2, -1, 1 and 2 are given in 

Table 23. These are all nonrelativistic values com- 
puted in the infinite nuclear mass approximation. 
The most difficult moment to determine is (r,?‘). If 
the wave function is of Hylleraas type, as was 
employed to determine this entry in Table 23, then 
difficult cases of the three-electron integrals discussed 
in Section 4 must be evaluated. 

21. Electron correlation studies 

The lithium atom is the simplest system which 

affords the opportunity to study both intra- and inter- 
shell correlation effects; not surprisingly, this system 
has proved to be a popular test case for studying such 
effects [555-5771. 

Table 23 

Moments (ri) for the ground state of the lithium atom 

Moment (r;)” Result (u) Reference 

(rij’) 4.381 2 [361 
(r,l’) 2.19821200247(71) 1371 

8.668 396 8 I3 4(36) f371 

36.848 033 170139) f371 

’ Lower precision values for (t-5) and (r:) can be found in Ref. 

[553]. 
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Table 24 

Impact of electron correlation on the calculation of various one- and two-electron properties for the ground state of the lithium atom 

Expectation value HF result Correlated result 

(-iv?, 1.432 726 816 7.478 060 325 26 

(r,?) 30.217 30.240 965 IS 

tr,- ’ ) 5.71548 5.718 11088361 

(r,) 5.01975 4.989 523 148 59 

(rZ, 18.622 18.354614517 

(r,‘, 94.583 92.603 6 

(rf) 564.32 5.50.07 

P(O) 13.835 13.842 543 

(4ab(r,)uz) 2.094 2.90592 

(r,; ’ ) 2.281 2 2.19821200247 

k!,) 8.687 7 8.668 396 8 I3 4 

(r,z,, 37.23s 7 36.848 033 170 

W;V,) 0 - 0.301842 809 

G, .r,) 0 - 0.069 402 068 

(Ilr,r,) 8.988 6 8.789478 

’ See Eq. (I 83). 

h The first reference is the HF result and the second is the correlated result. 

A (8)” Reference h 

0.60 [129,37] 

0.79 [573,37] 

0.04 (578.371 

- 0.61 1574,371 

- I.52 [S63,37] 

_ 2.14 [563,36] 

- 2.59 [563,36] 

0.05 [57X37] 

27.9 [33 I .384](b) 

- 3.78 [565,37] 

- 0.22 [S6_5,37] 

- I.05 [S65,37] 

100 1371 

100 [371 

- 2.265 [S65.36] 

Activity in this area of research can be broken down 

into seven broad areas. These are: (1) studies of 
atomic correlation energy contributions [555-5601. 
(2) studies of electron correlation effects for the elec- 
tronic density [318,561], (3) work on the coulomb and 
Fermi hole structure, and local structure of various 
correlated wave functions [562-5681, (4) studies on 

statistical correlation effects via correlation coeffi- 
cients [568,569], (5) the impact of electron correlation 
on the calculation of various expectation values [570- 

5731, (6) natural orbital analysis of correlated wave 
functions [563,574], and (7) Z-dependent perturbation 
treatments [555,575-5771. 

For the ground state of Li the correlation energy is 
now known with high precision (see Section 5.3). This 
should serve as a benchmark value for more approx- 

imate computational schemes. In Table 24 some 
representative expectation values are reported based 
on Hartree-Fock calculations [129,331,563, 

565,573,578] and from highly correlated wave func- 
tions [36,37,117]. From a comparison of the two sets 
of data, an approximate idea of the importance of 
electron correlation on the calculation of the various 
one- and two-electron expectation values can be 
determined. The comparison is not a perfect illustra- 
tion of the significance of electron correlation effects, 

because some of the HF wave functions employed to 

evaluate several of the expectation values were 
tailored to produce precise HF energies, and are less 
well suited to the calculation of several properties that 
depend on regions of configuration space not empha- 
sized in the standard variational approach. All the 
values listed are in u and are based on the infinite 

nuclear mass approximation. Table 24 also reports 
the percentage deviation, A, defined by 

(183) 

For the one-electron expectation values reported in 
Table 24, the deviation (as measured by A) between 
the HF and correlated results is small (though of 
important significance when spectroscopic accuracy 
is considered) for those expectation values emphasiz- 
ing the energy important region of configuration 
space. For the higher moments (r;‘) and (r:), the devia- 

tions increase, but this may be tied to HF calculations 
that are not well converged, rather than a true reflec- 
tion of correlation effects. A key one-electron prop- 
erty not well described with the HF formalism is the 
Fermi contact entry in Table 24. Electron correlation 
effects play an important role for this property, which 
has been discussed in numerous accounts in the 



44 F. W. King/Journal of Molecular Structure (Theochem) 400 (1997) 7-56 

literature. For two-electron expectation values, the 
biggest differences arise for (Vi.Vj) and (ri.rj), both 
of which are zero in the HF formalism. These two 
expectation values are sensitive measures of the 

inadequate description of electron correlation. This 
has been discussed extensively in the literature, parti- 

cularly for (Vi.Vj), an important quantity which enters 
into the determination of both the specific mass shift 

correction to the total ground state energy, and to the 
transition isotope shift (see Section 6). 

22. Momentum space properties 

High precision calculations of momentum space 
properties for the Li atom have received relatively 
little attention in comparison to work carried out in 
position space. The highest precision results currently 
available are based on large scale CI calculations 

[242]. The same authors have also considered spin- 
dependent momentum-space properties. 

The moments of the electron momentum density 
are given by 

($)=47r jp”+‘ii@)dp 
s 

(184) 

where % is the spherically averaged momentum den- 

sity defined by 

ii-(P) = 
s 

$p,P’),,=,,,dQ (185) 

and $p,p’) is the spin-traced one-particle density 
matrix. In Table 2.5 a summary of the moments 6”) 
for n = - 2 to 4 is shown based on CI calculations, and 
the values can be compared with the results from UHF 
calculations. The accuracy of some of the CI results 

Table 25 

Some expectation values based on the momentum density for the 

ground state of Li (in u) 

Expectation value CI resulta 

cp-? 26.134 

t? 

5.1519 

4.9196 

$ 

14.955 
7 I .643 

629.120 

a From Esquivel et al. [242]. 

UHF result” 

26.539 
5.18496 

4.90563 

14.8655 

70.98 1 I 
622.626 

can be ascertained by comparison with results pre- 
sented in Table 8 for (p”) using Eq. (73), and Table 
24 for (p’). Two forms of the relativistic kinetic 
energy have also been discussed by the same authors 
[242]; they are (in the notation used by these authors) 

and 

(186) 

(187) 

The interested reader can consult this work for further 
discussion. Information on the isotropic Compton pro- 

file is also given by these authors. 
The influence of correlation effects in momentum 

space for the ground state of Li has been studied 
[566]. This work leads to an understanding of the 
effects of intra-shell and inter-shell correlation effects 
on the interparticle momentum distribution. Addi- 
tional values of several momentum related expecta- 
tion values for the Li ground state can be found in this 
work. 

23. Form factors 

The atomic scattering (form) factor F(k) is deter- 
mined from the result [579,580] 

F(k)= $lj$ exp(ik.rj)]$ 
( ) 

(188) 

which can also be expressed as 

F(k) = 
s 

p(r)exp(ik.r)dr (189) 

Integration over the angles in Eq. (189) gives 

s az 

F(k) = 
0 

D(r) ydr (190) 

where D(r) is the radial electronic distribution, 
4ar2p(r), and k= iki is the magnitude of the momen- 
tum transfer vector. Several tabulations of F(k) are 
available [43 1,58 l-5881, including results calculated 
from a large scale CI wave function [581] and from a 
highly correlated Hylleraas-type wave function [43 11. 
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Table 26 
Form factors for the ground state of the lithium atom 

&G’) F(k) 

RHFa 

0 3.000 00 

0.10 2.96941 

0.20 2.883 00 

0.30 2.75498 

0.40 2.604 02 

I .oo 1.901 92 

2.00 1.51081 

3.00 1.14612 

4.00 0.820 27 

5.00 0.574 56 

6.00 0.40 I 96 

8.00 0.203 09 

10.00 0.10908 

’ Results from Schmider et al. [581] 

h Results from Meyer et al. [589]. 

UHF” CI” 

3.000 00 3.00000 

2.96943 2.969 85 

2.883 04 2.884 60 

2.75505 2.758 07 

2.604 I2 2.608 49 

1.902 02 1.905 09 

1.51076 1.509 34 

1.14609 1.14495 

0.820 24 0.81962 

0.574 53 0.574 39 

0.40193 0.402 I2 

0.203 12 0.203 48 

0.109 13 0.10941 

k (A-‘, S(k) h 

0.20 0.066 

0.40 0.240 

0.60 0.467 

0.80 0.688 

1 .oo 0.869 

2.00 1.276 

3.00 1.562 

4.00 1.863 

5.00 2.136 

6.00 2.362 

8.00 2.668 

10.00 2.831 

40.00 3.000 

A concise tabulation of a few representative results is 
given in Table 26. The HF results are observed to be in 
rather close agreement with the CI results for a range 
of k values. 

The integral of F(k) over all k provides a route to od 
(see Eq. (136)). Also, knowledge of F(k) provides a 
pathway to the radial density D(r) [579], and to the 
intensity of elastically scattered radiation [579]. For 
the latter quantity, the tabulated form factor [43 158 l] 
allows this quality to be readily calculated. 

Working in the first Born approximation the inelas- 
tic scattering factor S(k) for an N-electron atom is 
determined by 

S(k) = C lF,(k)l* (191) 
E 

where F,(k) is a generalized form factor given by 

F,(k) = $,I j$ exp(ik.rj)l$ > (192) 

and $, designates an excited state. Using the closure 
property in Eqs. (191) and (192) S(k) can be 

expressed as [580] 

S(k)= $1 “c 5 exp[ik(r, -r,)]l$ - IF(k 
m=ln=l > 

(193) 

The spherically averaged inelastic scattering factor is 

given by 

S(k) = -& S(k)dO 
J 

(194) 

For the ground state of Li values of S(k) have recently 
been determined from CI calculations [589]. A few 
representative values are tabulated in Table 26. 

From the available published data for F(k) and S(k), 

values of the elastic, inelastic and total X-ray scatter- 
ing cross sections (within the first Born approxima- 
tion) can be determined. The interested reader can 

pursue the cited references for further details. 

23. I. Magnetic form factors 

The spherically averaged magnetic form factor 
M(k) is given by [581] 

M(k)=4n p,(r)j,(kr)r2dr 
s 

(195) 

wherejo is the spherical Bessel function of the first 
kind GO(X) = x-‘sin x) and p,(r) is the spin density. 
This definition has an obvious analogy with Eq. 
(190). For the ground state of the lithium atom, 
M(k) has been evaluated from large scale CI calcula- 
tions [581]. This work represents the best results 
available, and no other high precision calculations 
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appear to be available for this quantity. The same 
authors have also examined the momentum space ana- 
logs of F(k) and M(k). The interested reader is directed 
to the original work for further details. 

24. Some miscellaneous results 

Table 27 contains a number of miscellaneous 
expectation values, most of which have been evalu- 
ated from highly correlated wave functions. All values 
are based on the nonrelativistic Hamiltonian discussed 
in Eq. (11). The following notation has been 

employed: V,, denotes the electron-electron potential 
operator, V,, represents the electron-nuclear potential 
operator, V is the total potential operator and T is the 
kinetic energy operator. All other high precision 
expectation values not included in Table 27 (that 

Table 27 

Some miscellaneous expectation values for the ground state of Li 

Expectation value Result (u) 

(- 3:) 7.478 060 320 8 

7.47806032526 

WC,) 2.19821200247(71) 

(U - 17.15433265083(39) 

w - 14.956 120642 

- 14.956 120 648 36 

(1 /r,r,) 8.789 478 

(W,)) = P(0) 13.842 7 

13.842 543(53) 

W,,)) L h(O) 0.544 329 O(37) 

(Vi.Vj) - 0.301 842 799 

- 0.301 842809(15) 

(I/r& I.101 687 

CC, 6.584 6 

(VW VA - 43.097 23 

w,z,, 430.379 2 

W) 350.769 3(4) 

0% T) - 259.0006(g) 

(V,,T) 20.076(2) 

(VT) - 238.925 

(V$y) 628.441(3) 

(Vf Iv;, 51.7879(2) 

(T*) 183.001(2) 

(r;r,(r,r,)-‘) - 0.239 5 

G;r,(r,r,)-‘) - 0.064 I I 

G;r,)” - 0.069 402 068 

(rr) 
‘2’7 

4.752 

(r, r;) 15.949 

’ See Eq. (I 96). 

Reference 

~291 

1371 

1371 

[371 

~291 

[371 

[361 

[I 181 

[371 

[371 

[291 

[371 

[361 

[361 

[361 

[361 

[361 

L361 

[361 

[361 

[361 

1361 

[361 

[5651 
15651 

1371 

15651 

15651 

could be found) are presented in the preceding tables 

of this work. 
Several of the expectation values in Table 27 are 

rather sensitive to the near-nuclear region of config- 
urational space. In particular, (V,‘), (7”) and (VT), 

which are required to evaluate (H’), have a sensitive 
dependence on the quality of the wave function in the 
near-nuclear region. These values should serve as use- 
ful benchmarks for the construction of wave functions 
to describe Li. Unfortunately, the precision levels for 
several of these values is significantly below those of 
a number of other entries in Table 27. 

The last pair of entries in Table 27 are available 
only at the HF level and so the level of precision for 

these expectation values is limited. The two expecta- 
tion values of the form (ri.rj(rir,)“) for n = - 1 and n = 

-2 have been computed [565] using a fairly compact 
CI wave function, so the precision for these expecta- 
tion values is also somewhat limited. A hint of the 

level of precision can be obtained by comparing the 
expectation value (r,.r,) computed in the same work 
[565] with the value reported in Table 27. This table 
entry was computed indirectly using the result 

(196) 

and the high precision results for (r,‘) and <Y$ were 
taken from Ref. [37]. 

The photoelectron spectrum of atomic lithium has 
been measured, and this technique provides valuable 
information on a number of excitation processes from 
the ground state. This topic has recently been 

reviewed in detail (5901. 

25. Some future directions 

It should be clear that the theoretical treatment of 
some properties of atomic lithium has advanced to the 
point that the results could serve as a calibration guide 
for experimental work. The list is subjective, but per- 
haps it might include the polarizability, the transition 
isotope shift, the nuclear magnetic shielding constant, 
and a few other properties. At the other extreme, for 
some properties the theoretically determined value is 
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in only modest agreement with the current experi- 

mental result. A classic example of a property in 
this group is the hyperfine coupling constant, where 

the experimental result is known with about five addi- 
tional digits of precision. This situation becomes 
worse for the next member of the isoelectronic series 
(Be+) where the gap between theory and experiment is 
larger [59 1,592], in part due to the very high accuracy 
ion-trap measurements that have been made on this 
system [592]. For the hype&e coupling constant, a 
theoretical match with experiment is only likely when 
a diverse group of topics including nuclear structure, 
QED, relativistic effects and of course electronic 
effects are adequately understood. There are a host 

of properties for which no experimental results are 
available, which is more problematic when there is a 
spread of theoretical values for a particular property. 

Future theoretical progress on the lithium atom will 
probably (according to my crystal ball!) take place on 
three major fronts. Methods will be developed which 
allow for the more efficient evaluation of three-elec- 
tron correlated integrals (including some of the more 
difficult cases discussed in Section 4). These will take 
advantage of the very low cost associated with large 
storage available on desk top work stations. This will 
be an essential ingredient in improving the perfor- 

mance of codes that do any significant exponent opti- 
mization. The next major effort will focus on the 
excited states of Li. These states are of intrinsic inter- 
est, as attested by the considerable attention they have 
already received in the literature, e.g. [37,99,125, 
593-6091; these will provide a pathway to a large 
number of additional references, which is a subject 
for a future review. Accurate determination of excited 
state wave functions is essential if high precision cal- 
culations of various ground state polarizabilities and 
nonlinear susceptibilities are lo be undertaken. A third 

likely avenue for future exploration concerns the pos- 
sibility of working with improved correlated basis 
functions that handle the electron-electron and elec- 
tron-nuclear cusp conditions, as well as incorporating 
the correct asymptotic behavior at large r. The inte- 
gration problems associated with this will be severe, 
but the expected accelerated convergence will be a 
significant pay off. Hand in hand with this third ave- 

nue of research will be the need for mathematical 
investigations of the appropriate structure of the 
required basis functions for three-electron systems. 

This area of investigation has been dormant far too 

long [557]. 

On the experimental front, there is a considerable 

list of desirable properties to be determined, as well as 
properties for which a higher precision determination 
would be of considerable interest. If some recent signs 
of experimental progress are noted [219,220], one can 
be optimistic that experimentalists will take up the 
challenge of working with this rather reactive ele- 
ment. A measurement of the gas phase molar Kerr 
constant would be welcome, as this would allow an 
assessment of recent attempts to calculate the atomic 

hyperpolarizability. Refined measurements of the 
dipole polarizability with higher precision would 
provide the next level of challenge for this property, 

where relativistic and perhaps small quantum electro- 
dynamics corrections must be accounted for. Mea- 
surements of the gas phase refractive index as a 
function of frequency would be welcome. A refined 
determination of the ionization potential would pro- 
vide additional theoretical challenges, but this would 

largely be a task for the relativistic computationalists 
and QED theorists. An improved measurement of the 
electron affinity for Li would provide additional 

impetus to achieve high precision calculations for 
four-electron atomic systems. Advances in laser cool- 
ing and trapping of neutral atoms [610] will open up 
significant possibilities for high precision work on 
various atoms, of which lithium would be a most 
interesting target. 

The lithium atom has served quantum theoreticians 
well for over 60 years as a benchmark system. I expect 
this situation to be maintained for some years to come. 
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