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A Temple lower bound for the nonrelativistic ground state energy of the lithium atom is determined
using large scale Hylleraas-type wave functions. Weinstein lower bounds for the three lowest
nonrelativistic energy levels are also reported. All the component expectation values necessary to
construct the lower bounds are given. Detailed information is given to assess the convergence of the
calculations. ©1995 American Institute of Physics.

I. INTRODUCTION

There has been a long history of efforts focused on the
determination of lower bounds for the energy levels of
atomic and molecular systems. Almost all the published
work has dealt with one- and two-electron systems.1–17 The
determination of accurate lower bounds for the energy levels
of systems with three or more electrons represents one of the
current significant challenges in computational quantum
chemistry. In the present work this challenge is addressed for
the ground state energy of the lithium atom.

The standard variational technique provides an upper
bound estimate for the nonrelativistic energyENR of a sys-
tem. Various extrapolation procedures are often employed to
improvethe computed energy. Since there is no direct experi-
mental comparison possible forENR, estimation of uncer-
tainties in the computed energy are very difficult, if not im-
possible to determine. Knowledge of the lower bounds for
ENR solves this problem.

There has been renewed interest in the determination of
an accurate estimate ofENR for the ground state of the
lithium atom.18–26This work has been driven in part by the
long standing existence of several incorrect empirical esti-
mates of this energy.27–29All the accurate calculations pub-
lished so far utilize the variational approach, with some au-
thors relying on substantial extrapolations to arrive atENR.
To complete the solution of this problem a lower bound es-
timate ofENR is required.

Three classical lower bound formulas that have been dis-
cussed in the literature are the Weinstein30 (EW), Temple

31

(ET), and Stevenson32,33 (ES) results:

E0>EW5^cuHuc&2s1/2, ~1!

E0>ET5^cuHuc&2
s

E12^cuHuc&
, ~2!

E0>ES5a2~a222a^cuHuc&1^cuH2uc&!1/2

5a2@s1~a2^cuHuc&!2#1/2, ~3!

where

s5^cuH2uc&2^cuHuc&2. ~4!

In Eqs.~1!–~4! c denotes a normalized trial wave function,
E0 is the exact nonrelativistic ground energy, andE1 is the
energy of the first excited state having the same symmetry as
the ground state.

The Weinstein bound requires

^cuHuc&< 1
2~E01E1!. ~5!

The Temple bound requires

^cuHuc&,E1 , ~6!

and for practical applications, sinceE1 is not known exactly,
a lower bound estimate forE1 (E1

L) is employed with
E1
L.^cuHuc&. The Stevenson bound requires

a< 1
2~E01E1!. ~7!

Equations~1! and~2! can be shown to be special cases of Eq.
~3! with an appropriate choice ofa. These three bounds have
been discussed extensively in the literature.34–45Most of the
applications of these formulas have been restricted to few-
electron atoms and molecular systems. The principal reason
for this is the considerable mathematical difficulty associated
with the evaluation of̂ cuH2uc&.

A number of additional lower bound formulas for the
energy have been proposed. Those based on intermediate
Hamiltonian methods appear to have shown the most prom-
ise in practical applications, although major problems have
yet to be resolved for this technique to be applied in a routine
manner to many-electron systems.46–60

The lower bound problem for the lithium atom has re-
ceived some attention over the past 20 years, but progress
has been very limited.3,61–67This is to be contrasted with the
situation for atomic two-electron systems where the error in
the lower bound is approximately 1024 cm21 or less.17

Conroy3 appears to be the first to have obtained a lower
bound forENR for the Li atom. Using Temple’s formula he
found a lower bound of27.614 13 a.u. Conroy’s calculation
was based on a wave function with 17 terms. The level of
precision of this calculation is rather surprising, since the
lowest eigenvalue is determined to only three digits of pre-
cision, and matrix elements ofH2 tend not to converge very
quickly. Unfortunately, minimal details are reported for the
wave function that Conroy employed. The only other deter-
mination of a lower bound based on the use of the classical
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formulas given in Eqs.~1!–~3! that is known to the author, is
a recent work of Lu¨chow and Kleindienst68 based on a large
scale Hylleraas wave function.

II. COMPUTATIONAL PROCEDURE

A. Theory

A sketch of the procedure employed is presented below,
additional details may be found in the literature.18,19,69The
trial wave function employed is

c5A(
m51

N

Cmfmxm , ~8!

whereA is the antisymmetrizer,N is the number of basis
functions, andCm are the variationally determined expansion
coefficients. The basis functions are of the form

fm[fm~r 1 ,r 2 ,r 3 ,r 23,r 31,r 12!

5r 1
imr 2

jmr 3
kmr 23

lm r 31
mmr 12

nm exp~2amr 12bmr 22gmr 3!,

~9!

where the exponentsim , j m , km , lm , mm , andnm are each
>0. In Eq. ~8! xm denotes the spin eigenfunction

xm5a~1!b~2!a~3!2b~1!a~2!a~3!. ~10!

A second doublet spin eigenfunction exists, but has not been
employed in the calculations.

The nonrelativistic Hamiltonian employed is

H5(
i51

3 S 2
1

2
¹ i
22

Z

r i
D1(

i51

3

(
j. i

3 1

r i j
, ~11!

with Z53. The mass polarization contribution toH is ig-
nored. Evaluation of the matrix elements^fmuHufn& or
^fmuH2ufn& can be shown to reduce to integrals of the fol-
lowing type:

I ~ i , j ,k,l ,m,n,a,b,g!

5E r 1
i r 2

j r 3
kr 23

l r 31
m r 12

n e2ar12br22gr3 dr1 dr2 dr3 . ~12!

The reduction of the matrix elements to integrals of the
form indicated in Eq.~12! is most conveniently carried out
by taking advantage of the symmetry of the system and
working directly with the coordinate variables
(r 1 ,r 2 ,r 3 ,r 23,r 31,r 12). Evaluation of̂ fmuHufn& requiresI
integrals withl>21,m>21, andn>21. TheseI integrals
have been extensively discussed in the literature.69–80Evalu-
ation of ^fmuH2ufn& is the real bottleneck in the calculation
and is the reason why very little progress has been made on
this problem.I integrals required may havel , m, or n522
or cases where two of thel , m, n set522. These cases lead
to formidable integration problems, which have only recently
been solved.81–84At first glance the shift from factors ofr i j

21

to r i j
22 may not appear to lead to a substantial increase in

complexity for the integrals that must be solved. However,
the expansion ofr i j

22 contains lead-off terms containing fac-
tors of ln~r i1r j )/(r i2r j ), which greatly complicate the so-
lution of the integrals. The most difficult integral cases that
arise in the present calculations have factors liker 23

22r 31
m r 12

n

with m andn both odd. Such integrals can be evaluated by
truncation of a rather slowly converging infinite series,82 or
by using convergence acceleration techniques.83,84

Formidable algebraic operations are involved for the de-
termination of the square of the kinetic energy operatorT2.
Part of the algebra was done by hand,85 and later reworked
using the symbolic algebra capabilities ofMATHEMATICA .86A
more detailed account of these algebraic manipulations will
be discussed elsewhere.85 The evaluation of̂ T2& involves
matrix elements likê fmu¹ i

4ufn& and ^fmu¹ i
2¹ j

2ufn& with
iÞ j @see Eqs.~14! and ~15! below#. These were evaluated
using the mathematically equivalent forms^¹ i

2fmu¹ i
2fn&

and ^¹ i
2fmu¹ j

2fn&, respectively. This represents a consider-
able reduction in computational effort. The reason is that the
matrix element̂ fmu¹ i

4ufn& leads to additional integrals that
cannot be expressed in the form of Eq.~12!, and which are
particularly difficult to evaluate. These integrals will be dis-
cussed elsewhere.85

B. Choice of basis functions

There are several approaches to select the basis set. For
the orbital exponents two extreme choices are fixed expo-
nents:am5bm5a, gm5g all m, or variable exponents. The
orbital indices (im , j m ,km ,lm ,mm ,nm) can be selected in two
major ways. If

v5 im1 j m1km1 lm1mm1nm , ~13!

then all terms leading to particular values ofv are included
with values ofv taken as 0, 1, 2,...,vmax. Alternatively the
indices can be selected based on experience and with the idea
of minimizing the mathematical complexities of the calcula-
tion. The approach involving taking all indices for a particu-
lar v and then systematically increasingv, will most likely
lead to the best convergence behavior. Unfortunately this ap-
proach is not feasible without modification. If no restriction
on the set (im , j m ,km ,lm ,mm ,nm) is made, then someI inte-
grals with a factorr i j

22r jk
22 arise. Methods to deal withI

integrals having such factors are available,83,84 but the solu-
tions involve limited precision, which would not be easy to
extend. If integrals of limited precision are employed, the
resulting matrix elements would be of limited precision,
which would seriously limit the computations, particularly
for large basis sets. The best strategy at this time appears to
be one whereby basis set members leading to such integrals
are deleted from the wave function.

It is possible to entirely avoid allI integrals with
r i j

22 factors by appropriate selection of the indices
( im , j m ,km ,lm ,mm ,nm). A trial calculation along these lines
was done as a first attempt, with the initial focus centered on
the expectation value ofH. Fixed exponents~selected on the
basis of past experience! were employed and terms were
added in order of increasing values ofv. The results were
rather disappointing, although not entirely unexpected. With
680 terms an energy of27.477 000 a.u. was obtained. Sim-
ply too many basis functions that are important for a good
energy determination had to be deleted to avoid the integral
problems. While this approach could have been extended, the
rate of convergence of the calculation would have been
rather poor.
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The second basis set employed started with a stripped
down version of a previously constructed wave function
which had involved extensive optimization of the nonlinear
parameters.21 This 273 term function yields an energy of
27.478 059 a.u. which is just 1mhartree from the expected
ground state energy.24,25An additional 487 terms were added,
in large part based on their expected impact on the energy.

With hindsight, a feasible alternative to the construction
of the basis set may have been more cost effective. If fixed
exponents had been employed a store and retrieve strategy
becomes effective for theI integrals. This approach does
however have some limitations. The most serious is that the
low lying excited states would be obtained with lower preci-
sion. A good description of these states is necessary to apply
the Temple formula. With the integral evaluation methods
recently introduced only the casesl522,m andn bothodd
~or any permutation of these three exponent indicies! are
really time consuming to evaluate.81–84A store and retrieve
strategy for just this group of integrals would lead to a sig-
nificant reduction in required CPU resources. This savings
would have to be balanced against the much larger basis set
that would be required, caused in part by the fact that repeats
of key terms such as~001001! with different exponent scales
would be excluded in the fixed exponent approach.

C. Accuracy controls

Careful attention was paid to accuracy controls for both
the integral evaluations and the matrix element calculations.
The I integrals were all determined with around 20~or bet-
ter! digits of precision, except for the casesl522, m andn
both odd, which were evaluated with approximately 16–17
digits of precision. These levels were checked by computing
a large number of test cases by independent methods.

The individual expectation values were calculated by
separately combining all the positive contributions~i.e., posi-
tive factors of the formCiCj^f i uÔuf j&! and all the negative
contributions. With this procedure it is possible to demon-
strate that there is a potential for a loss of up to 12 digits of
precision for the determination of a final expectation value.
This procedure points to the necessity of computing the basic
integrals@Eq. ~12!# to a fairly high level of precision, so the
matrix elementŝf i uÔuf j& are determined with the highest
possible precision. This problem is likely to be more signifi-
cant with larger basis sets.

The loss of precision that occurs for the evaluation of an
individual matrix element is not a significant factor in deter-
mining the precision of a particular expectation value. This
has been carefully checked in prior calculations.

The calculations were carried out in either double preci-
sion on a Cray YMP or quadruple precision on a RISC/6000
workstation.

D. Convergence considerations

In order to get some idea of the convergence of the cal-
culations the various expectation values were determined us-
ing basis sets of varying size up to the maximum size of the
final basis set. Since both^cuHuc& and^cuH2uc& are a com-
bination of contributions of opposite sign, it is extremely

desirable to examine the convergence of the individual com-
ponents. This provides a check for any possible cancellation
of errors.

The following notation is employed for reporting expec-
tation values:

^Oi&[^cu(
i51

3

Oi uc&, ~14!

^Oi j &[^cu(
i51

3

(
j. i

3

Oi j uc&, ~15!

^Oi jk&[^cu(
i51

3

(
j. i

3

(
k51

3

Oi jk uc&, ~16!

^Oi jkl &5
1

2
^cu(

i51

3

(
j. i

3

(
k51

3

(
l. i

3

O

~k5 i ,l5 j excluded!

i jkl uc&. ~17!

For ^cuHuc& the following three components are reported:

^T&5^2 1
2¹ i

2&, ~18!

^Vee&5 K 1r i j L , ~19!

^Ven&5 K 2
Z

r i
L ~20!

and for ^cuH2uc& the following contributions are tabulated:
^r i

22&, ^(r i r j )
21&, ^r i j

22&, ^(r i j r ik)
21&, and

^Ven
2 &5Z2$^r i

22&12^~r i r j !
21&%, ~21!

^Vee
2 &5^r i j

22&12^~r i j r kl!
21&, ~22!

^VeeVen&52Z^~r i j r k!
21&, ~23!

^¹ i
2u¹ i

2&5(
i51

3

^¹ i
2cu¹ i

2c&, ~24!

^¹ i
2u¹ j

2&5(
i51

3

(
j. i

3

^¹ i
2cu¹ j

2c& ~25!

as well aŝ V2&, ^VenT&, ^VeeT&, ^VT&, ^T2&, and^H2&. The
scale factorh defined by

h52
^V&
2^T&

~26!

as well as the variance, defined in Eq.~4!, are also reported
in Table I. Bothh21 ands should approach 0 for a wave
function of improving quality. All expectation values have
been appropriately scaled using the values ofh indicated in
Table I.

Some of the above components may be of interest for
other applications. For example, the expectation value in Eq.
~24! is required to evaluate one of the principal relativistic
corrections. The expectation value^r i j

22& appears in a for-
mula for a lower bound to the atomic electronic density at
the nucleus,87 and ^r i

22& appears in a number of formulas
bounding the electronic density.87,88
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III. RESULTS

Table I summarizes the results for the individual expec-
tation values that are required for the evaluation of^H& and
^H2&. The most apparent feature from Table I is that many of
the component expectation values required for the evaluation
of ^H2& are converging at slower rates compared to what is
observed for the various components needed to evaluate^H&.
This is not a totally unexpected behavior. Several of the ex-
pectation values involved in the calculation of^H2& are de-
pendent on the quality of the wave function in the near
nuclear region. This is one region of configuration space
where it is more difficult to improve the accuracy of the
wave function.

The second feature to be noted from Table I is the break-
down in convergence of several expectation values when the
size of the basis set is very large. This convergence behavior
has been explored for a number of additional wave functions
not present in Table I. The most probable explanation for the
observed convergence behavior is a combination of the fol-
lowing two factors. As the size of the basis set increases the
possibility for significant figure loss in the construction of
the expectation values increases, a fact that can be noted by
examination of the sum of the positive and the sum of the
negative contributions to a particular expectation value. This
is coupled with the precision limits available for the compu-
tation of some of the most difficult integrals~the cases such
as l522 andm andn both odd discussed earlier!. The fact
that most of the convergence problems show up for expecta-
tion values dependent on the more difficult integral cases

lends support for this argument. Because of the convergence
accelerator techniques employed to compute some of the
more difficult integrals, its not easy to extend the precision
available for these integral cases.84

As estimate of the converged value of several of the key
expectation values along with reasonable estimates of the
likely errors~based on Table I and many additional values of
the expectation values not reported in this table! are

^¹ i
2u¹ i

2&5628.44160.003,

^¹ i
2u¹ j

2&551.782960.0002,

^Ven
2 &5430.379260.0001,

^VeeVen&5243.097 2360.000 01,

^r i j
22&54.381260.0001,

^~r i j r jk!
21&51.101 68760.000 002,

^VenT&52259.000660.0008,

^VeeT&520.07660.002,

^Vee
2 &56.584660.0001,

^V2&5350.769360.0004,

^T2&5183.00160.002, ^H2&555.921460.0001.

For the other expectation values the 760 term values are the
most reliable, and the reader can gauge the error estimates by
examination of the convergence trends.

TABLE I. Expectation values employed in the evaluation of the lower bounds. All values are in a.u. The notation[m] signifies310m.

Expectation

value

Number of terms

50 100 200 300 404 521 600 695 760

^T& 7.477 948 7.478 020 7.478 057 7.478 0592 7.478 0595 7.478 0598 7.478 059 86 7.478 059 97 7.478 060 0

^Vee& 2.198 378 2.198 172 2.198 215 2.198 212 2.198 2119 2.198 2123 2.198 212 25 2.198 212 32 2.198 212 32

^Ven& 217.154 273 217.154 212 217.154 328 217.154 330 217.154 3309 217.154 3319 217.154 331 98 217.154 332 27 217.154 332 33

E 27.477 948 27.478 020 27.478 057 27.478 0592 27.478 0595 27.478 0598 27.478 059 86 27.478 059 97 27.478 060 0

h21 5.65@25# 3.47@25# 5.24@27# 3.16@27# 2.39@27# 1.69@27# 1.58@27# 1.30@27# 1.19@27#

K 1ri2L 30.226 155 30.236 252 30.240 595 30.240 910 30.241 002 30.240 958 30.240 963 30.240 969 30.240 959

K 1rir jL 8.788 448 8.788 686 8.789 450 8.789 470 8.789 474 8.789 4771 8.789 4773 8.789 4776 8.789 477 5

^Ven
2 & 430.227 46 430.322 62 430.375 46 430.378 64 430.379 54 430.379 21 430.379 26 430.379 32 430.379 22

K 1rij2L 4.382 870 4.381 848 4.381 284 4.381 271 4.381 290 4.381 223 4.381 161 4.380 695 4.382 075

K 1

rij r jk
L 1.101 566 1.101 488 1.101 676 1.101 683 1.101 6848 1.101 6863 1.101 6864 1.101 6874 1.101 687 5

^Vee
2 & 6.586 003 6.584 825 6.584 635 6.584 636 6.584 660 6.584 596 6.584 533 6.584 070 6.585 450

^VeeVen& 243.096 685 243.094 341 243.097 256 243.097 214 243.097 220 243.097 237 243.097 238 243.097 237 243.097 232

^V2& 350.620 096 350.718 765 350.765 580 350.768 853 350.769 764 350.769 330 350.769 315 350.768 914 350.770 211

^VenT& 2258.613 68 2258.879 09 2258.984 68 2258.998 83 2259.002 58 2259.000 27 2259.000 67 2259.001 15 2259.000 60

^VeeT& 20.076 67 20.076 70 20.075 40 20.076 05 20.075 93 20.075 96 20.076 04 20.076 20 20.087 05

^VT& 2238.537 00 2238.802 40 2238.909 28 2238.922 77 2238.926 65 2238.924 30 2238.924 62 2238.924 95 2238.913 56

^¹ i
2u¹ i

2& 626.037 2 627.722 9 628.333 4 628.428 8 628.455 5 628.437 8 628.440 4 628.444 4 628.440 9

^¹ i
2u¹ j

2& 51.742 82 51.757 67 51.782 73 51.782 12 51.782 47 51.782 60 51.782 46 51.782 64 51.782 94

^T2& 182.380 71 182.809 56 182.974 70 182.998 26 183.005 11 183.000 74 183.001 33 183.002 42 183.001 70

^H2& 55.926 80 55.923 53 55.921 72 55.921 56 55.921 57 55.921 47 55.921 40 55.921 44 55.944 480

s 7.10@23# 2.75@23# 3.9@24# 1.9@24# 1.9@24# 8.8@25# 2.2@25# 5.4@25# 2.3@22#
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One measure of the improving quality of the wave func-
tion in different regions of configuration space can be ob-
tained by an examination of the convergence of the moments
^r i

n& for different values ofn. Table II shows the values of
the ^r i

n& for positiven, for n522 see Table I, and forn5
21, examine2 1

3^Ven& ~from Table I!. The moments for
smalln are generally converging fairly satisfactorily though
not monotonically. The higher moments (n58,10) arecon-
verging much more slowly. This behavior for the higher val-
ues ofn is not unexpected, since the 760 term wave function
employed does not have a large number of basis functions
emphasizing the diffuse regions of configuration space.

The lower bound results obtained in this work are sum-
marized in Table III. For the ground state of Li the Temple
lower bound is as expected better than the Weinstein lower
bound. The Temple bound for the ground state employed the
value E1

L obtained from the Weinstein formula. Unfortu-
nately, Temple lower bounds could not be obtained for the
3 2S and 42S states because values ofE2

L and E3
L, lower

bounds for the energies of the 42S and 52S states, respec-
tively, were not obtained with sufficiently high accuracy to
meet the generalization of the constraint given in Eq.~6!. For
both these excited states there is a fairly rapid breakdown in
the convergence of the expectation values required for the
calculation of ^H2&. For the components required for the
evaluation of̂ H& for the excited states, the convergence of
the expectation values is well behaved. In fact the value of
ENR for the 3 2S state obtained from the 760 term wave
function is within 2.3mhartree of the lowest upperbound
estimate of this quantity published to date.26

A key observation from Table III is that the upper bound
estimate forENR is obtained to a much higher level of pre-
cision than the lower bound estimate. This finding is consis-

tent with many other calculations in the literature~mostly on
two-electron atomic systems!. In the present case, its clear
from the values presented in Table I why this observation is
to be expected. Simply focus on the convergence of some of
the key components of̂H2&.

The final values of̂ H2& reported in Table I appear to
have convergence to more digits of precision than is justified
by the component expectation values. That is, there is some
fortuitous cancellation of errors in the construction of^H2&.
Its obviously going to take a very carefully constructed wave
function to produce values of all the separate expectation
values converged to better than61 mhartree.

IV. CONCLUDING REMARKS

Several issues obviously need additional attention if
highly accurate lower bounds are to be obtained. Probably
the pressing~and the most difficult! problem is to find sup-
erior methods to evaluate the integrals that have factors such
as r i j

22. Such new methods should offer the possibility to
compute the integrals to high precision, but at the same time
be cost effective in terms of CPU resources. The second
issue to resolve is how to build better wave functions that are
highly accurate in the near nuclear region, without using ba-
sis functions that lead to intractable integration problems.
Finally, there would be considerable interest if new lower
bound formulas could be found which totally avoid the prob-
lem of working with^H2&.

It might be possible to improve the quality of the lower
bounds by a variance minimization technique. This topic is
under investigation by the author.
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TABLE II. Expectation values for the moments^( i51
3 r i

n&. All values are in
a.u. The notation [m] signifies310m.

Number
of terms

Expectation value

^r i
2& ^r i

4& ^r i
6& ^r i

8& ^r i
10&

50 1.837 472@1# 5.516 864@2# 2.783 37@4# 2.0795@6# 2.178@8#
100 1.836 830@1# 5.520 525@2# 2.814 66@4# 2.2293@6# 3.102@8#
200 1.835 439@1# 5.500 872@2# 2.775 75@4# 2.0880@6# 2.262@8#
300 1.835 477@1# 5.500 799@2# 2.772 71@4# 2.0718@6# 2.163@8#
404 1.835 471@1# 5.500 814@2# 2.773 16@4# 2.0755@6# 2.206@8#
521 1.835 465@1# 5.500 749@2# 2.772 90@4# 2.0725@6# 2.163@8#
636 1.835 4630@1# 5.500 732@2# 2.772 91@4# 2.0734@6# 2.187@8#
695 1.835 4623@1# 5.500 728@2# 2.772 89@4# 2.0730@6# 2.177@8#
760 1.835 4627@1# 5.500 736@2# 2.772 89@4# 2.0726@6# 2.164@8#

TABLE III. Lower bound estimates forENR . All values are in a.u.

State
Number
of terms

Weinstein
lower bound

@Eq. ~1!#

Temple
lower bound

@Eq. ~2!#

Lowest
upper
bounda

2 2S 600 27.4828 27.478 30 27.478 060
3 2S 450 27.3860 27.354 095
4 2S 500 27.3858 27.318 445

aThese energies are obtained from the wave function with 760 terms.
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53P. O. Löwdin, J. Chem. Phys.43, S175~1965!.
54T. M. Wilson, J. Chem. Phys.47, 3912~1967!.
55T. M. Wilson and C. E. Reid, J. Chem. Phys.47, 3920~1967!.
56T. M. Wilson, Int. J. Quantum Chem. Symp.1, 511 ~1967!.
57P. S. C. Wang, J. Chem. Phys.48, 4131~1968!.
58C. E. Reid, inQuantum Science Methods and Structure, edited by J.-L.

Calais, O. Goscinski, J. Linderberg, and Y. O¨ hrn ~Plenum, New York,
1976!, p. 315.

59W. Stenger, inThe Uncertainty Principle and Foundations of Quantum
Mechanics, edited by W. C. Price and S. S. Chissick~Wiley, New York,
1977!, p. 277.

60R. N. Hill, J. Math. Phys.21, 2182~1980!.
61C. E. Reid, Int. J. Quantum Chem.6, 793 ~1972!.
62D. W. Fox and V. G. Sigillito, Chem. Phys. Lett.13, 85 ~1972!.
63D. W. Fox and V. G. Sigillito, Chem. Phys. Lett.14, 583 ~1972!.
64D. W. Fox, SIAM J. Math. Anal.3, 617 ~1972!.
65D. W. Fox and V. G. Sigillito, J. Appl. Math. Phys.23, 392 ~1972!.
66C. E. Reid, Chem. Phys. Lett.26, 243 ~1974!.
67D. M. Russell and W. M. Greenlee, Phys. Rev. Lett.54, 665 ~1985!.
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