Lower bound for the nonrelativistic ground state energy
of the lithium atom

Frederick W. King
Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702

(Received 30 January 1995; accepted 21 February)1995

A Temple lower bound for the nonrelativistic ground state energy of the lithium atom is determined
using large scale Hylleraas-type wave functions. Weinstein lower bounds for the three lowest
nonrelativistic energy levels are also reported. All the component expectation values necessary to
construct the lower bounds are given. Detailed information is given to assess the convergence of the
calculations. ©1995 American Institute of Physics.

I. INTRODUCTION In Egs.(1)—(4) ¢ denotes a normalized trial wave function,
E, is the exact nonrelativistic ground energy, éadis the

There has been a long history of efforts focused on the,nergy of the first excited state having the same symmetry as
determination of lower bounds for the energy levels ofy,q ground state.

atomic and molecular systems. Almost all the published

work has dealt with one- and two-electron systémd The

determinatioq of accurate lower bounds for the energy levels (YH|P)<3HEo+E,). (5)

of systems with three or more electrons represents one of the

current significant challenges in computational quantum  The Temple bound requires

chemistry. In the present work this challenge is addressed for

the ground state energy of the lithium atom. (YIH|g)<Eq, (6)
The standard variational technique provides an upper ] o ) )

bound estimate for the nonrelativistic eneryg of a sys- and for practical applications, sinég is not known exactly,

. L . .
tem. Various extrapolation procedures are often employed tgLIower bound estimate foE, (E;) is employed with
improvethe computed energy. Since there is no direct experiE1> (#|H|#). The Stevenson bound requires
mental comparison possible fd,g, estimation of uncer-

tainties in the computed energy are very difficult, if not im-

possible to d_etermine. Knowledge of the lower bounds forEquations(l) and(2) can be shown to be special cases of Eq.

Enr solves this problem. . ) o (3) with an appropriate choice @f. These three bounds have
There has been renewed interest in the determination ¢fae, discussed extensively in the literatfref® Most of the

an accurate estimate diyg for the ground state of the ,,jcations of these formulas have been restricted to few-

lithium atom:==*"This work has been driven in part by the gjactron atoms and molecular systems. The principal reason

long standing existen_%g: of several incorrect empirical estizor this is the considerable mathematical difficulty associated
mates of this energd/~2° All the accurate calculations pub- with the evaluation of |H?| ).

lished so far utilize the variational approach, with some au- o number of additional lower bound formulas for the
thors relying on subst_antial ex_trapolations to arriveEqk. energy have been proposed. Those based on intermediate
To complete the solution of this problem a lower bound esamiltonian methods appear to have shown the most prom-

timate of Eng is required. ise in practical applications, although major problems have

Three classical lower bound formulas that have been disget 1 pe resolved for this technique to be applied in a routine
cussed in the literature are the Weinst&i(Ey,), Templé® [ anner to many-electron systeffs®

The Weinstein bound requires

ai%(Eo-l— El) (7)

33 .
(Ev), and Stevensdf™ (Eg) results: The lower bound problem for the lithium atom has re-
s ceived some attention over the past 20 years, but progress
Eo=Ew=(¢[H[¥)— "%, (1) has been very limited®~®"This is to be contrasted with the

situation for atomic two-electron systems where the error in
o the lower bound is approximately IHcm™? or lesst’
W* 2 Conroy’ appears to be the first to have obtained a lower
bound forEyg for the Li atom. Using Temple’s formula he
found a lower bound of-7.614 13 a.u. Conroy’s calculation
was based on a wave function with 17 terms. The level of
precision of this calculation is rather surprising, since the

Eo=Er=(y[H|¢)—

Eo=Es=a—(a’—2a(y|H|y)+(y|H?|y))*?

=a—[o+(a—(yH|$))* "2, (3 lowest eigenvalue is determined to only three digits of pre-
cision, and matrix elements &f2 tend not to converge very
where quickly. Unfortunately, minimal details are reported for the
wave function that Conroy employed. The only other deter-
o= {Y|H?| ) — (Y|H| )2 (4 mination of a lower bound based on the use of the classical
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formulas given in Eqs(1)—(3) that is known to the author, is with m andn both odd. Such integrals can be evaluated by
a recent work of [ghow and Kleindien§t based on a large truncation of a rather slowly converging infinite serfésr
scale Hylleraas wave function. by using convergence acceleration technicti&s.

Formidable algebraic operations are involved for the de-
termination of the square of the kinetic energy operatar
Part of the algebra was done by hdidnd later reworked
A. Theory using the symbolic algebra capabilitiesniTHEMATICA 5 A

more detailed account of these algebraic manipulations will
"be discussed elsewhefeThe evaluation ok T?) involves

matrix elements likeg(¢,|Vi|$,) and(¢,|ViVE],) with
} i#] [see Eqs(14) and (15 below]. These Wezre (|eve21Iua>ted

, using the mathematically equivalent for¥i¢,|Vi¢,

‘ﬂ:'r'%;l CrdbuXu ®) and(V{e,|Vie,), respectively. This reprergentsﬂa consider-
able reduction in computational effort. The reason is that the
matrix element ¢,|V{|¢,) leads to additional integrals that
cannot be expressed in the form of Ef2), and which are
particularly difficult to evaluate. These integrals will be dis-

IIl. COMPUTATIONAL PROCEDURE

A sketch of the procedure employed is presented belo
additional details may be found in the literatdfd®®°The
trial wave function employed is

where. 7 is the antisymmetrizefN is the number of basis
functions, andC , are the variationally determined expansion
coefficients. The basis functions are of the form

bu=0u(r1,72,73,T23,T31,T12) cussed elsewhef8.
o du kb, m, o n . i .
=TT S 31T XN @l 1= Bl 2= Vula), B. Choice of basis functions
) There are several approaches to select the basis set. For
where the exponents,, j,, k,,1,, m,, andn, are each the orbital exponents two extreme choices are fixed expo-
=0. In Eq.(8) x, denotes the spin eigenfunction nents:a,=B,=a, y,=v all u, or variable exponents. The
orbital indices (,,,j ..k, ,!,,m,,n,) can be selected in two
Xp=a(1)B(2)a(3) = B(1)a(2)a(3). (10 major ways. If
A second o_loublet spin eigenfunction exists, but has not been w=i,+], Tk, +l,+m,+n,, (13)
employed in the calculations. ) ) )
The nonrelativistic Hamiltonian employed is then all terms leading to particular valuesofare included
with values ofw taken as 0, 1, 2,..@y- Alternatively the
3 1 Z 3 3 1 . . . N .
H= E ( _—y2_ Sy - (11) indices can be selected based on experience and with the idea
=1 2 ) &=:s oy of minimizing the mathematical complexities of the calcula-

tion. The approach involving taking all indices for a particu-
lar w and then systematically increasiag will most likely
I- lead to the best convergence behavior. Unfortunately this ap-
proach is not feasible without modification. If no restriction
on the set,,j,.K,.l,.,m,,n,) is made, then someinte-
1(i,j,k,1,m,n,e,B,7) grals with a factorri}zrj‘kg arise. Methods to deal with
integrals having such factors are availabté? but the solu-
:J rirbrsrbormrl e @1=A2= s dr, dr, dry.  (12)  tions involve limited precision, which would not be easy to
extend. If integrals of limited precision are employed, the
The reduction of the matrix elements to integrals of theresulting matrix elements would be of limited precision,
form indicated in Eq(12) is most conveniently carried out which would seriously limit the computations, particularly
by taking advantage of the symmetry of the system andor large basis sets. The best strategy at this time appears to
working directly with the coordinate variables be one whereby basis set members leading to such integrals
(rq,ro,rs,rss,rz;,r12). Evaluation of(¢M|H|¢V> requiresl are deleted from the wave function.
integrals withi=—1, m=—1, andn=—1. Thesd integrals It is possible to entirely avoid all integrals with
have been extensively discussed in the literater&’Evalu-  r;;? factors by appropriate selection of the indices
ation of(¢M|H2|¢V> is the real bottleneck in the calculation (i, ,j,.k,.l,,m,,n,). A trial calculation along these lines
and is the reason why very little progress has been made omas done as a first attempt, with the initial focus centered on
this problem.l integrals required may havem, orn=—2  the expectation value d¢i. Fixed exponentsselected on the
or cases where two of tHem, n set=—2. These cases lead basis of past experiencevere employed and terms were
to formidable integration problems, which have only recentlyadded in order of increasing values ©f The results were
been solved'~®*At first glance the shift from factors of;*  rather disappointing, although not entirely unexpected. With
to rijz may not appear to lead to a substantial increase 580 terms an energy of 7.477 000 a.u. was obtained. Sim-
complexity for the integrals that must be solved. Howeverply too many basis functions that are important for a good
the expansion otijz contains lead-off terms containing fac- energy determination had to be deleted to avoid the integral
tors of In(rj+r;)/(ri—r;), which greatly complicate the so- problems. While this approach could have been extended, the
lution of the integrals. The most difficult integral cases thatrate of convergence of the calculation would have been
arise in the present calculations have factors fik@r2ir?,  rather poor.

with Z=3. The mass polarization contribution kb is ig-
nored. Evaluation of the matrix elementg,|H|¢,) or
(¢,|H?|¢,) can be shown to reduce to integrals of the fo
lowing type:
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The second basis set employed started with a strippedesirable to examine the convergence of the individual com-
down version of a previously constructed wave functionponents. This provides a check for any possible cancellation
which had involved extensive optimization of the nonlinearof errors.
parameteré! This 273 term function yields an energy of The following notation is employed for reporting expec-
—7.478 059 a.u. which is just ghartree from the expected tation values:
ground state enerdy:?°An additional 487 terms were added,

in large part based on their expected impact on the energy. <Oi>5<¢|§: Ol ¥, (14)
With hindsight, a feasible alternative to the construction i—1

of the basis set may have been more cost effective. If fixed s 3

exponents had been employed a store and retrieve strategy <O”>E<¢|E > il ). (15)

becomes effective for thé integrals. This approach does
however have some limitations. The most serious is that the
low lying excited states would be obtained with lower preci- O )= i i i O.
sion. A good description of these states is necessary to apply (Oiji)=(¥ ikl ),
the Temple formula. With the integral evaluation methods
recently introduced only the casks —2, m andn bothodd 1 5.8 & 3

(or any permutation of these three exponent indjcie® <Oijkl>:§ <¢|2 E > E O jjial #)- (17)
really time consuming to evaluat&:®*A store and retrieve 1= k=1l

strategy for just this group of integrals would lead to a sig-
nificant reduction in required CPU resources. This savingsor (#|H|) the following three components are reported:
would have to be balanced against the much larger basis set (Ty=(—% _2> (18
that would be required, caused in part by the fact that repeats 2,

i=1 j>i

(16)
i=1j>i k=1

(k=i,I=] excluded

of key terms such a®©01002 with different exponent scales 1
would be excluded in the fixed exponent approach. (Vee) = <r_> (19
ij
C. Accuracy controls Z
. . (Ven=1{ — = (20
Careful attention was paid to accuracy controls for both Fi

the integral evaluations and the matrix element calculations,,q for<://|H2|¢,//> the following contributions are tabulated:
The | integrals were all determined with around @ bet- (ri2) <(fifj)_1) <ri72> <(rijrik)—1> and

ter) digits of precision, except for the cades —2, m andn

both odd, which were evaluated with approximately 16—17 (me>=Zz{<rf2)+2<(rirj)*l>}, (21

digits of precision. These levels were checked by computing ) s .

a large number of test cases by independent methods. <Ve9:<rij )+ 2((rijra) ™), (22
The individual expectation values were calculated by _ _1

separately combining all the positive contributidie., posi- (VeeVen)= = Z{(rijri) %), (23

tive factors of the fornC;C;(¢;|O|¢;)) and all the negative 3

contributions. With this procedure it is possible to demon-  (VZ[VZ)=2> (VZy|VZy), (24

strate that there is a potential for a loss of up to 12 digits of i=1

precision for the determination of a final expectation value. 3 3

This procedure points to the necessity of computing the basic  (VZ[V2)=>, > (VZy|V2y) (25)

integrals[Eq. (12)] to_a fairly high level of precision, so the =1 j>i

matrix elements ¢;|O|¢;) are determined with the highest ¢ \vell asgV2), (Vo T), (VeeT), (VT), (T2, and(H?). The
possible precision. This problem is likely to be more signifi- g.g|e factory defined by

cant with larger basis sets.

The loss of precision that occurs for the evaluation of an (V)
individual matrix element is not a significant factor in deter- 7~ AT (26)
mining the precision of a particular expectation value. This ) . ]
has been carefully checked in prior calculations. as well as the variance, defined in E4), are also reported

The calculations were carried out in either double preciin Table I. Both—1 ando should approach 0 for a wave

sion on a Cray YMP or quadruple precision on a RISC/600dunction of improving quality. All expectation values have
workstation. been appropriately scaled using the values;dhdicated in

Table I.

Some of the above components may be of interest for
other applications. For example, the expectation value in Eq.

In order to get some idea of the convergence of the calf24) is required to evaluate one of the principal relativistic
culations the various expectation values were determined ugorrections. The expectation valge;; 2) appears in a for-
ing basis sets of varying size up to the maximum size of thenula for a lower bound to the atomic electronic density at
final basis set. Since bothy|H| ) and(|H?| ) are a com-  the nucleu$’ and (r; ?) appears in a number of formulas
bination of contributions of opposite sign, it is extremely bounding the electronic densft{®

D. Convergence considerations
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TABLE |. Expectation values employed in the evaluation of the lower bounds. All values are in a.u. The npmaligignifies X 10™.

Number of terms

Expectation
value 50 100 200 300 404 521 600 695 760
(T) 7.477 948 7.478 020 7.478 057 7.478 0592 7.478 0595 7.478 0598 7.478 059 86 7.478 059 97 7.478 060 0
(Vee> 2.198 378 2.198172 2.198 215 2.198 212 2.198 2119 2.198 2123 2.198 212 25 2.198 212 32 2.198 212 32
(Ven> —17.154 273 —17.154212 —17.154328 —17.154330 —17.1543309 —17.1543319 —17.15433198 —17.15433227 —17.15433233
E —7.477 948 —7.478 020 —7.478 057 —7.478 0592 —7.478 0595 —7.478 0598 —7.478 059 86 —7.478 059 97 —7.478 060 0
71 5.69—5] 3.47-5] 5.24-7] 3.1§-7] 2.39-7] 1.69-7] 1.5-7] 1.30-7] 1.19-7]
1
<;> 30.226 155 30.236 252 30.240 595 30.240 910 30.241 002 30.240 958 30.240 963 30.240 969 30.240 959
i
1
P 8.788 448 8.788 686 8.789 450 8.789 470 8.789 474 8.789 4771 8.789 4773 8.789 4776 8.7894775
i'j
(Vgn) 430.227 46 430.322 62 430.375 46 430.378 64 430.379 54 430.379 21 430.379 26 430.379 32 430.379 22
1
<r7> 4.382 870 4.381 848 4.381 284 4.381271 4.381 290 4.381 223 4.381 161 4.380 695 4.382 075
ij
1
m 1.101 566 1.101 488 1.101 676 1.101 683 1.101 6848 1.101 6863 1.101 6864 1.101 6874 1.1016875
7]
(V§e> 6.586 003 6.584 825 6.584 635 6.584 636 6.584 660 6.584 596 6.584 533 6.584 070 6.585 450
(VeeVen) —43.096 685 —43.094341 —43.097256 —43.097214 —43.097220 —43.097237 —43.097 238 —43.097 237 —43.097 232
(V2> 350.620 096 350.718 765 350.765 580 350.768 853 350.769 764 350.769 330 350.769 315 350.768 914 350.770 211
(VenT) —258.61368 —258.87909 —258.98468 —258.99883 —259.00258 —259.00027 —259.000 67 —259.001 15 —259.000 60
(VeeT) 20.076 67 20.076 70 20.075 40 20.076 05 20.07593 20.075 96 20.076 04 20.076 20 20.087 05
(VT) —238.53700 —238.80240 —238.90928 —238.92277 —238.92665 —238.92430 —238.924 62 —238.924 95 —238.913 56
(V,Z\ Viz 626.037 2 627.7229 628.333 4 628.428 8 628.455 5 628.437 8 628.440 4 628.444 4 628.440 9
(V?\ij 51.742 82 51.757 67 51.782 73 51.782 12 51.782 47 51.782 60 51.782 46 51.782 64 51.782 94
<T2> 182.380 71 182.809 56 182.974 70 182.998 26 183.005 11 183.000 74 183.001 33 183.002 42 183.001 70
(H2> 55.926 80 55.923 53 55.921 72 55.921 56 55.921 57 55.921 47 55.921 40 55.921 44 55.944 480
o 7.10-3] 2.79-3] 3.9-4] 1.9-4] 1.9-4] 8.4 -5] 2.7-5] 5.4 5] 2.93-2]
Ill. RESULTS lends support for this argument. Because of the convergence

. N accelerator techniques employed to compute some of the
Table | summarizes the results for the individual expec- . ploy P

. | h ed for th luati q more difficult integrals, its not easy to extend the precision
tatlzon values that are required for the eva ua‘qor{hﬁbﬁ an favailable for these integral cas¥s.
(H?). The most apparent feature from Table | is that many o

) . ) As estimate of the converged value of several of the key
the component expectation values required for the evaluat'S)prectation values along with reasonable estimates of the

2 .
of (H") are converging at slower rates compared to what Iﬁikely errors(based on Table | and many additional values of
observed for the various components needed to evaltiBte the expectation values not reported in this taliee
This is not a totally unexpected behavior. Several of the ex-

pectation values involved in the calculation @12) are de- (V?|V?)=628.441+0.003,
pendent on the quality of the wave function in the near P
nuclear region. This is one region of configuration space (Vi |Vi>:51'7829i0'0002’
where it is more difficult to improve the accuracy of the <V2 )=430.3792-0.0001

wave function. en '

The second feature to be noted from Table | is the break-  (VgeVe)=—43.097 23:0.000 01,
down in convergence of several expectation values when the
size of the basis set is very large. This convergence behavior <rij )=4.3812+0.0001,
has been ex_plored for a number of additional wave functions ((r; ij)_l>= 1.101 687-0.000 002,
not present in Table I. The most probable explanation for the
observed convergence behavior is a combination of the fol- (Ve T)=-—259.0006-0.0008,
lowing two factors. As the size of the basis set increases the
possibility for significant figure loss in the construction of (Veel)=20.076£0.002,
the expectation values increases, a fact that can be noted by (v2)=6.5846+0.0001,
examination of the sum of the positive and the sum of the
negative contributions to a particular expectation value. This  (V?)=350.76930.0004,
is coupled with the precision limits available for the compu- on o0
tation of some of the most difficult integralthe cases such (T¥)=183.001+0.002, (H%)=55.9214-0.0001.
asl=—2 andm andn both odd discussed earljefThe fact For the other expectation values the 760 term values are the
that most of the convergence problems show up for expectanost reliable, and the reader can gauge the error estimates by
tion values dependent on the more difficult integral casegxamination of the convergence trends.
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TABLE Il. Expectation values for the moment&?_,r?). All values are in  tent with many other calculations in the literatyrsostly on

a.u. The notationt] signifies X 10™. two-electron atomic systemslin the present case, its clear
: from the values presented in Table | why this observation is
Expectation value .
Number to be expected. Simply focus on the convergence of some of
ofterms () (rf) (rd) A9 the key components diH?).
. 2 .
50  1.83747p1] 5.5168642] 2.783374] 2.07956] 2.17§8] The final values ofH“) reported in Table | appear to

100  1.836830L] 5.5205252] 2.814664] 2.22936] 3.1018] have convergence to more digits of precision than is justified
200  1.83543f1] 5.50087§2] 2.7757%4] 2.08806] 2.2648] by the component expectation values. That is, there is some
300  1.83547[] 5.500792] 2.772714] 2.07186] 2.1638]  fortuitous cancellation of errors in the construction(&f?).

404  1.83547M] 5.5008142] 2.773164] 2.075%6] 2.2068] ; :
521 183546] 55007482] 2.772904] 2.07256] 2.1638] Its obviously going to take a very carefully constructed wave

636  1.8354630] 5500732 2.772914] 2.07346] 2.187g]  function to produce values of all the separate expectation
695  1.835462@] 5.500 7282] 2.772894] 2.073(6] 2.1778] values converged to better tharl uhartree.
760  1.835462] 5.5007362] 2.772894] 2.07266] 2.1648]

IV. CONCLUDING REMARKS

Several issues obviously need additional attention if

One measure of the improving quality of the wave func-highly accurate lower bounds are to be obtained. Probably
tion in different regions of configuration space can be ob-the pressingdand the most difficu)tproblem is to find sup-
tained by an examination of the convergence of the momentgrior methods to evaluate the integrals that have factors such
(r{"y for different values o. Table Il shows the values of as ri]z. Such new methods should offer the possibility to
the (r{") for positiven, for n=—2 see Table I, and fon= compute the integrals to high precision, but at the same time
—1, examine— 3V, (from Table ). The moments for be cost effective in terms of CPU resources. The second
smalln are generally converging fairly satisfactorily though issue to resolve is how to build better wave functions that are
not monotonically. The higher moments#£8,10) arecon-  highly accurate in the near nuclear region, without using ba-
verging much more slowly. This behavior for the higher val-sis functions that lead to intractable integration problems.
ues ofn is not unexpected, since the 760 term wave functiorFinally, there would be considerable interest if new lower
employed does not have a large number of basis functiongound formulas could be found which totally avoid the prob-
emphasizing the diffuse regions of configuration space.  lem of working with(H?).

The lower bound results obtained in this work are sum- It might be possible to improve the quality of the lower
marized in Table Ill. For the ground state of Li the Temple bounds by a variance minimization technique. This topic is
lower bound is as expected better than the Weinstein lowennder investigation by the author.
bound. The Temple bound for the ground state employed the
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