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The electron-electron distribution function P(rij) has been evaluated in closed form for the 2S 
states of three-electron systems that are described by Hylleraas-type wave functions. The function 
P(rii) can be reduced to the form P(rij) = Xq=, IZ:+ &IK$e-ar’ii. Numerical values of the 
expansion coefficients L&, summation limits gI, and exponents aI are deterrnined for the ground 
states of selected members of the lithium isoelectronic series. A discussion is given on the necessary 
conditions that must be imposed on the basis set in order that P(rij) be given by the 
analytical formula presented above. Expectation values for several moments (r$) and (6(rij)) are 
evaluated. 

I. INTRODUCTION 

The electron-electron distribution function P( rij) plays 
a central role in the discussion of correlation holes in many- 
electron systems.‘-2* Despite this fact, there are relatively 
few compact and convenient to use formulas available to 
calculate this quantity. A notable exception is the work of 
Benesch22 who derived the following result: 

16 
P(r12) = C c,,r’f2e-+ (1) 

a=2 

for two-electron ‘S ground states of the helium isoelectronic 
series that have been described by Hylleraas-type wave func- 
tions. Benesch analyzed the Hart-Herzberg23 wave functions 
and determined values of the c, coefficients. The summation 
limit in Eq. (1) is determined by the particular basis func- 
tions that make up the wave function. Coulson and Neilson’ 
had earlier given analytic expressions for P(rt,) for the 
ground state of the helium atom using some fairly simple 
wave functions. Thakkar and Smith24 developed formulas for 
the calculation of P(r,,) for two-electron atoms which were 
based on more accurate wave functions than those consid- 
ered by Benesch. 

There has been some recent interest in finding theoretical 
bounds on P(rij) and a related function, the intracule 
density.=-” The bounds obtained involve the moments (r-G>. 
Also, it can be shown that a lower bound for the electronic 
density at the nucleus can be obtained in terms of the mo- 
ment ( ri2) .28 

The purpose of the present work is to obtain relatively 
compact formulas for P( rij) for the ground states of selected 
members of the lithium isoelectronic series. Our effort has 
focused on obtaining formulas that are convenient to use 
rather than necessarily obtaining results of the highest pos- 
sible precision. 

Ii. THEORY 

If *‘(x1 J-7. , . . .,x,) denotes an N-electron wave function, 
where Xi denotes a combined space and spin coordinate 
xi=(ri ,.ri), the radial electron-electron distribution function 
is defined by3 

P(rij>= 
dri drj 

rc2)(ri ,rjlri ,rj> dr , 
LJ 

(2) 

where r(‘) is the spin-free 2 matrix defined by 

lYc2)(ri ,rjll( ,rj) 

= 
( il 

T ~(Xl,X2,...,Xi,...,Xj,...,X,) 

XYr*(Xl,X2,...,XI ,...,Xjl ,...,Xn)dSi dsj dxkr (3) 

where dxk denotes combined integration over all coordinates 
except those with k=i and j. The normalization for P(rij) 
employed is thus 

I mP(rij)drij=i N(N- 1). 
0 

(4) 

The case of specific jnterest in this work are the 2S states 
of three-electron systems described by Hylleraas-type wave 
functions. The wave function employed is given by 

N 

w,2,3)=~C c,+,x~ (5) 
/.&‘I 

with 

~/I~.~L(r1,r2,r3rr23,r31,r12) 

= r~~>r$-$~+~: exp( - a,r, - pgr2- yfir3) 

(6) 

and JB is the three-electron antisymmetrizer, C,‘s are the 
variationally determined expansion coefficients, and x, is the 
spin function 
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~,~~,(1,2,3)=a(l)P(2)cr(3)-P(l)a(2)~(3). (7) 

The basis set exponent indices {i,,j,,k, ,l,,m,,n,} are 
each 30. 

Inserting Eqs. (5) and (3) into Eq. (2) leads to the result 

ptr23)= &c c cucv/ [(l -p12-p13) 
u ” 

x~,(1,2,3)~,(1,2,3)1 
dr2 dr3 

x{~~,(l,2,3)~,(1,2,3))dxl ds2 dsg -. 
dr23 

03) 

It is straightforward to show that Eq. (8) simplifies to a sum 
of integrals of the form 

Z(r23) = 
I 

r~r&-$-~3r~~r~2 exp( - art - pr2- yr3) 

X 
drl dr2 dr, 

dr23 - 
(9) 

A convenient way to deal with the above integral is to rotate 
the coordinate system, so that r3 is along the polar axis (the 
z axis).2g When this is done, the set {(ri,f+,+t), 
(r2,e2,~2>,(r,,e3,~3>) becomes {(r,9439413L 

(i-2, &, 423>,(r3,e3 , 43)} and so Eq. (9) simplifies to 

I(r23)= 
I 

rf+2r$$1r~+1r~1rrj’rTq2 exp(-art-pr2-yr3) 

Xsin 8i3 sin e3 de13 d$13 d@23 

Xd6, dd3 dr, dr2 dr3. 

To get Eq. (lo), the result 

(10) 

sin 823 dB2,= 
r23 dr23 

r2r3 
(11) 

has been employed. Equation (11) follows directly from the 
cosine rule. 

To further simplify Eq. (lo), the Sack expansion3’ for 
the factor ry2 is employed. This expansion takes the form 

rY2= ii LAr~,r2PJcos 621, 02) 
u=o 

where P,(cos eta) is a Legendre polynomial and R,,( rl ,r2) 
are the Sack radial functions. Inserting Eq. (12) and the 
analogous expansion for r’;; into Eq. (10) leads to 

Z(r23)= 5 5 1 rff2yj2f1r~+1r~1Z?,,(rl,r2)Rmw(r1,r3) 
w=o u=o 

Xexp(-arl-fir2-yr3)Za drl dr2 dr3, 

where the angle integration is 

(13) 

In= 
I 

P,(COS e12)pw(c0s e13)sin e13 

Xsin 8s dBl3 dd13 d423 de3 d+3. (14) 

In the rotated coordinate system, r23 and r13 do not depend 
on 453 and 413, respectively, so the integration over d ~$13 
and d+23 can be carried out to yield 

I+= I p,(cos 4ddh d&3 

=?- E 1 y:mm,te23db23)yvm, 2v+1 in”=-” 

=~T~P,(COS e13)pv(c0s e23). (15) 

On inserting Eq. (15) into Eq. (14), the following result is 
obtained: 

(16) 

The following expansion for P,(cos e,,) is employed: 
W-J 

“5 r,““ri<c A(w,J,L) 
2L 

, 
J=O L=O 

where 

(17) 

A(w,JL)=(--~)~ VL,[(~-4121-1 

[ 

i Q(s)Pts,L-s) 
s=o 

+A L,[(w-J)12lVL,r(w-J)121 

[(w-W21 

x c Q(s)p(s,L--s)+A~,l(w-~)/~1+1 
s=o 

and 

w-J-L 

X c QtsPtsJ--s) 
s=o 1 

and the notational device 

08) 

(19) 

(20) 

(21) 

cm 

has been employed. The standard notation [x/2] =x/2 if x is 
even and [x/2] =(x- 1)/2 if x is odd, and [x1=x/2 if x even 
and TX]= (x+ 1)/2 if x is odd have been employed in Eq. 
(18). (i) denotes a binomial coefficient in Eq. (19). The par- 
ticular form of the expansion given in Eq. (17) is most useful 
because it allows much of the complexity to be submerged in 
a single coefficient (the A coefficient). Equation (17) was 
obtained by_ employing the cosine rule, followed by 
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a binomial expansion of the resulting numerator and then a 
summation rearrangement was carried out. If Eqs. (16) and 
(17) are inserted into Eq. (13), then 
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S1=i+2+2w+r+s+t+p>2, (28) 

Z2=j+1-2J-2L+n-r-tal, (29) 

S3=k+l-2w+2L+m-s-pal (30) 

have been employed. The w summation terminates at 
w,,=min(m/2,n/2), which follows from the definition of 
bxyz given in Eq. (25) and the result 

1(1.23)=327T3 i 
1 

E 

W-J 

w=o 4ww + 1) J=. 

r: :1+2Jc A(w,J,L) 

L=O 

x r~2p+w-2J-2Lr;+l--w+2L 

I 

X drl dr2 dr3. (23) 

To handle the radial integral in Eq. (23), the Sack expansions 
for Rmw(rl ,r3) and R,,(ri ,r2) are utilized. The Sack ex- 
pansion employed is3’ 

(m/2)-w 

&drl d-3) = C bmws(r1r3)W+S(r1 +r3)m-2w-2s, 
s=o 

(24) 

where 

b mws 
=4s (-m/2hv(w--W2)),(1 +w>s 

(1/2),s!(2+2w), . (25) 

In Eq. (25) (cz)~ denotes a PO&hammer symbol. The particu- 
lar choice made in Eq. (24) forces the restriction that m be 
even. Employing the analogous expansion for Rn,(rl ,r2) 
also forces the restriction that n be even. An alternative Sack 
expansion for R,&rl ,r3) is possible, which is terminating 
for m even or odd, but involves the variables r13< and r13,, 
where ri3< denotes min(ri ,r3) and r13, designates max 
(rl ,r3). Unfortunately, the alternative Sack expansion leads 
to a radial integral that is difficult to deal with. 

Inserting Eq. (24) and the analogous expansion for 
R,Jrl ,r2) into Fq. (23), and employing a binomial expan- 
sion for each of the factors (rl +r3)m-2w-2s and 
(r, +r2)‘*-22,“-2r, leads to the result 

‘“max 1 W-J 
Z(r23)=32yr3C 

w=. 4vw+ 1) 
rz1+2Jc A(w,J,L) 

L=O 

(m/2)-w (n/2)-w 

X c bmws c bwr 
s-o r=O 

m-2w-2s 

P 

Cij(Z,m,P,Y)=[(P+ Y)‘+m-i-i-’ 
-(- l)j-‘(p- y)~+m-i-j-l] 

min(m,j-I) 
x c 

(- l)“(i+j-Z-n)! 
(26) n=O n!(j-I--n)!(m-n)! (34) 

and 

(i+j-Z-m)! 
D’i(l,m,P,Y)=m!(j-l-m)! [(- l)i-l+m 

X(P- Y) Ifm-i-j- I_ (p+ y)I+m-i-j-l]e 

(35) 

(27) 

x”vg2r (n-2;-2r) 

X-$$h-~C~2,b,P,xr23). 

where 

= rg2r’ 
I 

‘J ,“3 exp( - flr2- yr3)dr2 dr3, 

and the notational simplifications 

(-k)l=O, for integer k and l>k. (31) 

The radial integral over r1 in Eq. (23) can be carried out 
simply because it is independent (in the transformed coordi- 
nate system) of r13 and r12. The integral in Eq. (27) can be 
evaluated as 

r23 . 
.%Ti.j,P, y,r23)= I 0 

rie-@2dr2 
I 

r23+r2rj3e-Y’jdr3 
‘23- r2 

I 

m 

+ r.$e - P’2dr 
‘23 I 

2 
r2+r23~e-Yr3&.3. 

‘2-‘23 

(32) 

For the case /3# y, Eq. (32) evaluates to 

~~i,j&r,r23) 
i+j min(j,i+j-m) 

=j! e 
i 

-&3 C rT3 2 Cij(l,m,P, Y) Y-l-’ 
m=O I=0 

+emyr23 C ry3 ,I, ‘Fl Dij(l,m,P, Y> Y-‘-’ (334 

=e -fir23i! i rT3’$ Dji(l,m,y,P)P-‘-’ 
m=O I=0 

m=O I=0 

with 
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Some summation rearrangement is necessary to obtain Eq. 
(33a) in the form given above. Equation (33a) can be con- 
verted to Eq. (33b) on noting the relationships 

i-l-j-m 

C Cii(Z,mrP, y) y-‘-‘=O, for m=i+ l,..., i+j 
I=0 

and 

j-m 

=(j!li!) C Dij(Z,m,/?,y)y-‘-‘. 
I=0 

When p= y, Eq. (32) evaluates to 

.-%Ti,j,P,P,r23) 

[ 

i+j min(j,i+j-m) 

=j!e-P’23 C rT3 C Eij(l,m,P)P-‘-’ 

m=l I=0 

i 
+ 2 r~~+l-mFij(m)p-m-’ 

m=O 

mm%, r!i’3Jg Gij(l,m,P)P-‘-’ , I=0 I 
where 

min(m,j-1) 
x c 

(-l)n(i+j-Z-rz)! 

n=O n!(j-Z-n)!(m-n)! ’ 

j-l 

Fij(Z)=(-l>‘-‘C 
(-- 1)" 

n=O n!(j-Z-rz)!(i+j+l-Z-n)! ’ 

and 

Gij(l,m,P)= 
cw ‘+m-l-i-j(i+j-l-m)! 

m!(j-Z-m)! ’ 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

The following restrictions are employed for the orbital 
exponents in the Hylleraas expansion [Eq. (6)] 

cYp= pp= ff 
Yp”Y I all P- (42) 

Without the restrictions indicated in Eq. (42), the possibility 
of constructing a simple compact formula for P( r,,) is lost. 
There are two permutation sums in Eq. (8). Table I shows the 
effects of the different permutations on the orbital exponent 
factors. The net effect is that three distinct exponential fac- 
tors will occur in Eq. (26). The permutation combinations 
where Eq. (38) must be employed are indicated by an aster- 
isk, otherwise Eq. (33b) is employed in Eq. (26). 

If Eq. (26) is now inserted into Eq. (8), then 

TABLE I. Exponential factors that arise from the different permutations in 
Eq. (43). 

Permutations 
(99 Q=CX,+.(y, 

Exponents 

P-P,,+P” Y-YlifY” 

(123)(123) 
(123)(132)* 
(123)(213) 
(123)(312)* 
(123)(321) 
(123)(231) 
(213)(123) 
(213)(132)* 
(213)(213) 
(213)(312)* 
(213)(321) 
(213)(231) 
(321)(123) 
(321)(132) 
(321)(213) 
(321)(312) 
(321)(321)* 
(321)(231)* 

2cr 
2cr 
2a 
2a 

a+-Y 
a+Y 
2ff 
2a 
21y 
2n 

as-Y 
a+Y 
fffY 
a+Y 
a+Y 
a+Y 

2Y 
2Y 

2cY 
fffY 
2cr 

n+Y 
2cu 
2Ly 
2a 

a+Y 
2cr 

a+Y 
2a 
2cr 
2&. 

a+Y 
2a 

fffY 
2ff 
2u 

2Y 
ff+y 
2Y 

a+Y 
CffY 
a+Y 
2Y 

ff+y 
2Y 

a+Y 
ff+y 
a+Y 
d-y 
2a! 

a+Y 
2a 
2a 
2cr 

fYr23)=3271.3C C x~d C C,C, 
9.9 uu 

%C C C C C C C awJLsrpt 
wJLsrpt 

1+1+2J (43) 

with 

A(w,J,L)b b mws nwr m-2w-2s 
awJLsr~tc 4~(2~+ l)a%+~ P 

The a coefficient defined in Eq. (44) and the g2, %G3 argu- 
ments in Eq. (43) depend on the particular permutations car- 
ried out. In Eq. (43), Zp, denotes (1 -P,,-P23), 
X9 =J6~5, and ,QB!Y, denotes the appropriate spin matrix 
element. From Eqs. (33b) and (38), 

g3 

+ eey’23 C a2(252 ,2&3)r~3 j 

m=Cl 

.3%2+-z,+ 1 

=e -P’23 c a3(~2r~3)rT3 9 
m=O 

(45) 

(46) 

where the coefficients ai can be identified from Eqs. (33b) 
and (38). The coefficient a3(Bz,s3) will have a dependence 
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on the delta factors introduced in Eqs. (21) and (22). With i.e., 
the information in Table I, Eq. (43) can be reduced to the 
form 

(4% 
I=1 K=l 

K=l K=l The reduction procedure is similar to what the authors have 
83 

+ c J63Kr~3e-2yr23, 
done previously for the electronic density function.31 The 

(47) J& coefficients can be obtained from Eq. (43) using the 
K=I information of Table I. For example, 

~6,=32=-3I$ T CC, Ijil +C C C C C C C C awJLsrpta3 

i w J L s T p t m 

+ 2 %PC C C C C C C C‘awhpta2+ itI S9--*a,,srDta~\. (49) 
+I w J L s r p t m 

In Eq. (49), each sum over .P designates the set of permuta- 
tions giving rise to ,B= y with ycr+ y, or p+ y and 
ICY+ y, or PZ y and @+a+ y. S, denotes the appropriate 
spin matrix element for each combination of permutations 
with the parity factors from the permutations incorporated 
with this factor. Similar expressions can be written for -d2, 
and .A3K. It should be kept in mind that the multiple sum 
combinations over w, J,... depends explicitly on the particu- 

* lar combination of permutations made, and hence these eight 
nested summations cannot be simply factored in Eq. (49). 
The summation limits gI that appear in Eq. (48) are deter- 
mined by the exact choice of basis functions employed in the 
Hylleraas expansion. 

Ill. EXPECTATION VALUES (r;) 

The moments (rt) are defined by 

Given the formula for P(rij) in Eq. (48), then 

=;: 2 Jm,,(n+K)!a,l(n+K+l), 
I=1 K=l 

for n>-1. (51) 

P=l . 1 

(ri)= i 5 &IK/fr~-2e-aIrijdrij - 
I=1 K=l 

= i JjIJ~rij1e-9’adrij 

I=1 

3 

+c 2 &&t+K)!~;(n+K+l). 
I=1 K=2 

The first term in Eq. (52) can be simplified by noting 
3 

c J&=0, 
I=1 

which is proved in the Appendix. Then 

drij 

= E .A& ln(aglczl). 
I=1 

IV. CALCULATION OF h(0) AND THE CUSP 
CONDITION 

(52) 

(53) 

(54) 

The spherical average of the intracule function is given 
by3’ 

h(rij)=& rij2 P(rij), 

For the special case n = -2, and hence 
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TABLE II. Exponents and nonrelativistic energies for the wave functions employed in the present study. 

Species 

Li 
Be+ 
B2+ 
l?+ 

Ne’+ 

Number 
of terms 

120 
91 

111 
110 
110 

Orbital exponents Energy (a.u.) 

a Y Present work Literature 

2.16 0.65 -7.414 060 -7.478 060* 
3.80 1.15 - 14.3 19 997 - 14.324 760b 
4.65 1.60 -23.419 437 -23.424 604’ 
8.97 3.77 -82.324 900 -82.330 336’ 
9.97 4.28 - 102.676 684 - 102.682 229’ 

“Value from Ref. 36. 
bValue from Ref. 37. 
CValues from Ref. 38. 

P(rij) h(O)=-& lim 2 
rij-+O [ 1 ‘ij (56) 

and the use of Eq. (53) has been employed to obtain Eq. (56). 
The expectation value ($rij)) is given by 

(@rijl)=[ $$$]r~,40=h(o)' 

U 

The cusp condition for h can be written as33V34 

Wrij) 

drij rij+O 
=h(Tij)Irij-+o* 

Evaluation of the derivative leads to 

(57) 

(58) 

If the cusp condition is satisfied, then the following result 
should hold: 

-&3-(l+a,)Ja,,+( a,+$)&]=O. (60) 

For the basis set selected in the present study, the cusp 
condition does not hold. In fact 

dhtrij) 
drij =o 

rij-+O 
(611 

for the wave functions employed. This result can be demon- 
strated rigorously in the following manner. From Eq. (33), it 
can be shown that 

~ti,j,P,y.r23)=alr23+a2r~3+a3r~3+... (62) 

and an analogous result also holds for the case p= y in Eq. 
(38). In Appendix B, it is demonstrated that the coefficient of 
rg3 is zero. Now an examination of Eq. (26) leads to the 
result 

Jh(r23) a 
ar23 

‘23-+O 

-r2Fo G Cr3G1+2J) 

X(alr23+a2r~3+**e)l. (63) 

For DO, the right-hand side of Eq. (63) equals zero, so the 
only case of interest is J=O, and hence 

Wr2.3) 
af-23 

- lim [alZr~~‘+a2(Z+l)r~3+~~~]. 
r23-+0 r2330 

(64) 
The right-hand side of Eq. (64) vanishes for 122; that leaves 
the cases I=0 and I= 1 to consider. The case I= 1 is excluded 
by the restriction imposed on the basis functions so that Eq. 
(24) could be employed. For the case Z=O, Eq. (61) holds 
because a,=0 (see Appendix B), which means the cusp con- 
dition cannot be satisfied. That is, a wave function with all 
even powers of the interelectronic coordinates cannot satisfy 
the cusp condition given in Eq. (58). 

V. COMPUTJTIONAL DETAILS 

The method set out in Sec. II was applied to the ground 
state of the Li atom and some members of its isoelectronic 
series that included Be+ 9 B”+ , F6+, and Ne7+. The size of the 
wave functions and a rough idea of their quality (in the en- 
ergetic sense) is given in Table II. The fixed set of exponents 
employed for the wave functions are also indicated in Table 
II. The sets of coefficients ..&rK and exponents cr, for each 
system can be obtained from the Physics Auxiliary Publica- 
tion Service.35 

The particular basis sets employed can be obtained by 
writing the authors. All the calculations were carried out in 
double precision. 

VI. RESULTS AND DISCUSSION 

Table III reports a selection of moments (r;) for n in the 
range -2 to 4. Also reported in Table III are values for the 
expectation value (S(rij)). For the moments (rt) for 12 = - 1, 
1, and 2, it was possible to compare values determined from 
Eq. (50) with those computed from P(rij) using Eq. (51). 
This provided a valuable check on both the algebraic formu- 
lation and the computer code. 

In Table III, a comparison is made for the moments (r:) 
for n = - 1, 1, and 2 computed using Eq. (51) with values 
obtained from large scale Hylleraas-type wave functions. 
The comparisons are generally fairly satisfactory and im- 
prove with increasing nuclear charge. The quality of the mo- 
ments ( rG2) is less certain. The only point of comparison 
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TABLE III. Expectation values determined from Eqs. (51). (52), and (57). 

Expectation values 

Species 0%‘) (r;‘) 

Li 4.50 2.204 Bet 9.09 3.254 

B2+ 15.3 4.287 F6+ 56.0 8.391 

Ne’+ 70.2 9.415 

(rii’hit * (rid (rijhi* a (4 (r&t a (4 b-f,J (S(r;j)) 

2.198 8.680 8.668 36.95 36.84 i92.8 1161 0.6354 3.246 5.270 
5.267 13.09 13.07 39.49 136.7 1.776 

4.278 3.837 3.836 6.829 6.825 14.70 36.21 31815 8.380 
1.863 1.863 1.576 1.576 1.603 1.860 26.18 

9.405 1.652 1.652 1.237 1.237 1.113 1.141 36.65 

‘Literature values taken from Refs. 37 and 38. 

available is an unpublished value for the ground state of Li, 
(rZT2)=4.38, obta’ med from a fairly compact Hylleraas-type 
wave function. The value reported in Table III is approxi- 
mately 2.7% higher. Values of (r-i”) for the Li I series are 
rather difficult to compute when a Hylleraas-type expansion 
is employed because of the tough integration problems that 
emerge. A number of these problems have recently been 
resolved.3g-42 It is probably wise to treat the reported values 
of (r;“) with some caution because the basis sets employed 
may not give a totally satisfactory description of the near- 
nuclear region of configuration space. 

The general central processing unit (CPU) cost of deter- 
mining moments (r$ directly from the wave function [Eq. 
(50)] is significant and this is particularly so for the case of 
(ri2). The approach outlined in this work allows all the 
moments (rc) (excluding (ri’} which is needed to obtain 
the variational expansion coefficients) and (8(rij)) to be de- 
termined at minimal CPU costs. 

A check was made that Eq. (61) holds for the basis sets 
employed in this study. Equation (61) was verified for each 
species, allowing for minor round-off errors. 
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APPENDIX A 

This appendix proves the result 

i J&=0, 
I=1 

(Al) 

which is used in the evaluation of the moment ( rij2) and the 
cusp condition. Consider first the case of Eq. (26) when 
/3= 7. Examining Eq. (38) and keeping in mind the minimum 
values of the arguments i and j [see Eqs. (29) and (30)] 
indicates the series behaves like r23+higher powers of r23. If 
this is combined with the result from Eq. (26), then 
P(r,,)-rz3+higher order terms. This implies Eq. (Al). For 
the case /3#y, Eq. (26) indicates that the first term behaves 
like r23, so it is necessary to demonstrate that the coefficient 
aO=O for the expansion 

s(ZZ2,s3 ,p, 7,~~~) =ao+ulr2,+ higher order terms. 
642) 

By inspection of Eqs. (34) and (35), it follows that 

cij(z,O,P,Y>=-D~j(z,o,~,~). (A3) 
Now if the factors emp’23 and e-yr23 in Eq. (33) are ex- 
panded as a power series, then 

BCi,j,P, y,r23) 

i 

j 

-j! C [C~j(Z,O,P,Y)+D~j(Z,O,P,Y)IY-'-' 
I=0 I 

+ higher order terms in r23. 

Using Eq. (A3) in Eq. (A4) leads to the result that 

B( i,j,p, ~.r~~) = a 1r23 + higher order terms, 

i.e., ao=O, and hence Eq. (Al) follows. 

(A4) 

APPENDIX B 

This appendix demonstrates that the coefficients a2 and 
ui in each of the following equations: 

3@i,j,a,/3.r23)=ulr23+u2r~3+u3r~3+**- , 031) 

.98(i,j,a,a,r23)=u~r23+u~r~3+u~r~3+~~~ 032) 

is equal to zero. We consider Eq. (Bl) first. Expanding the 
exponential term in Eq. (33) leads to Eq. (Bl) and allows u2 
to be identified as 

min(j,i+j-2) j-2 

u2= c C(Z,2)p-“-‘+ 2 D(Z,2)p-“-’ 
I=0 l=O 

min(j,i+j-I) j-l 

-a c c(z,l)p-“-‘-PC D(z,l)p+’ 
I=0 l=O 

2 min(j,i+ j) 

+c l-o c(z,o)p-“-‘+~ i D(z,o>p-‘-I. 

* I=0 

(B3) 
In Eq. (B3) and the remaining equations in Appendix B, the 
additional ij label on the C, D, E, F, and G functions will be 
dropped, as well as the functional dependence on p and cr. 
Keeping in mind that i and j take a minimum value of 1 [see 
Eqs. (29) and (30)], then Eq. (B3) can be written as 
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a,=‘$ p-q C(z,2)+D(z,2)-aC(z,1)-~D(z,l) 
l=O 

+; (cr2-p2)C(Z,0) +/I-j-‘[A,,,C(j,a) 
I 

-cxc(j,1)+f(&p2)c(j,o)] 

+~-‘[c(j-1,2)-CyC(j-l,l)-~D(j-1,1) 

+$(a2-P2)C(j- l,O)]. (B4) 

Using the definitions of the C and D functions given in Eqs. 
(34) and (35), it is possible to prove that 

C(Z,2)+D(Z,2)-crC(Z,1)-~D(Z,l)+~(a2-~2)C(Z,0) 

=0, for ZSj-2, (B5) 

Ai,2C(j,2)-LuC(j,1)+~(cu2-~2)C(j,0)=0, 036) 

and 

C(j-1,2)-cuC(j-1,1)-/3D(j-1,1)+~(a2-/32) 

XC(j-l,O)=O, (B7) 

which for the case cu#p proves 

a2=0. OW 

Expanding the exponential term in Eq. (38) allows us to 
establish a; in Eq. (B2) as 

min(i,i+j-2) 

ai= C = E(Z,2)a-‘-‘+ 8j,lF(j)a-i-’ 
I=0 

j-2 min(j,i+j- 1) 
-c G(Z,2)a-“-I- 2 E(Z,i)n-’ 

I=0 I=0 

j-l 

+c G(Z,l)a-’ (W 
I=0 

j-2 

=zo (Y-‘-*[E(Z,2)-G(Z,2)+aG(Z,l)-aE(Z,l)] 

+a-j-‘{Aj2E(j,2)+aE(j-1,2)+S,,~F(j) 

-aE(j,1)+cr2[G(j-l,l)-E(j-l,l)]}. @lo) 

Utilizing the definitions given in Eqs. (39), (40), and (41), it 
can be shown that 

E(Z,2)-G(Z,2)+crG(Z,l)-cuE(Z,l)=O, for ZSj-2 
0311) 

and 

A,,2E(j,2)+S,,1F(j)+a[E(j-1,2)-E(j,l)] 

+Cy2[G(j-l,l)-E(j-l,l)]=O. 031% 

Hence from Eq. (BlO), 
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