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Evaluation of some integrals for the atomic three-electron problem
using convergence accelerators
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An analysis is presented for the evaluation of atomic integrals of the form

~ ~

k I l ~2 ~3
rjrir3r23r31r12e ' 'dr, drzdr, G.eneral formulas are worked out for the two cases (i) l = —2,

m & —1, n ~ —1, and (ii) I = —2, m = —2. A series solution for both cases is obtained. The Levin u

transformation and the Richardson extrapolation techniques are employed to obtain a reasonable num-

ber of digits of precision for the integral with minimum CPU requirements.

PACS number(s): 31.15.+q, 02.60.—x

I. INTRODUCTION

The purpose of this paper is to present an evaluation

scheme for the integrals

I=I(i j,k,—l, m, n, a, P, y)
i j k ( m n

—ar& —
pr&

—Xr3
r jr J2r 3r 23r 31r 1,e dr, d r,dr,

For the situation where l ~ —1, m ~ —1, and n ~ —1 a
considerable literature exists describing effective evalua-
tion approaches [1—8]. These integrals arise in the deter-
mination of various properties for three-electron atomic
systems when a Hylleraas-type basis set is employed
[9—12]. The focus of this paper is to consider the cases (i)
l = —2, m & —1, and n ~ —1; and (ii) I = —2, m = —2,
and n ~ —1. These integrals are required for the calcula-
tion of certain relativistic corrections and also in the eval-
uation of particular lower-bound formulas, when a Hyl-
leraas wave function is used to describe a three-electron
system. Much less attention has been directed towards
the aforementioned two cases [13—15].

Previous work on integrals with l = —2 has employed
the Sack [16] expansion for the interelectronic coordi-
nate. Employing this expansion leads to a simple angular
integration with the complexity of the integral evaluation
tied up in the radial integral. In this investigation, a
different approach is taken. The factors r; are expand-
ed in such a way that the resulting radial integrals are
simpler to evaluate, while this is at the expense of a more
complicated angular-integration problem. The next two
sections give the analysis for the two cases mentioned
above, and Sec. IV deals with the numerical evaluation of
the formulas obtained in Secs. II and III.

II. THE CASE I =—2, m ~ —1, n ~ —1

The analysis presented below is general and applies for
integrals with i ~ —2, j & —2, k ~ —2, l = —2, m ~ —1,

p
1

r23 = g + C„(cos823),—2= 23&

wl=o r23

(2)

r13 g R~~ (r„r3)P~ (cos8») .
w2=0

(3)

Equation (3) is the Sack expansion for the interelectronic
coordinate. R „(r„r3) denotes a radial function and

2

P (cos8») is a I.egendre polynominal. In Eq. (2) r23~
2

denotes the lesser of (r2, r3) and r23p designates the
larger of (r2, r3). C' (cos823) represents a Gegenbauer

1

polynominal. If Eqs. (2) and (3) and an analogous expres-
sion for r",2 are inserted into Eq. (1), then

I—X g X IR(NI, N2, W3)Iq(W1, N2, W3),
w] 0 w2 0 w3 0

where the angular integral is

IA(W1, W2, W3)

Cw cos 23 Pw cos )3 Pw cos

Xd Q,d Q2d Q3

and the radial integral is

IR(wl N2 N3)=IR(wl w2 N3 1 1 k m n t2 ~ g)
'+2 j+2 k+2 l l=J"

&&R (r1,r3)R„(r1,r2)

and n & —1. The most difBcult subcase arises for m and
n both odd. For integrals with one or both of m and n

even, more effective evaluation procedures have been
presented elsewhere [13,14].

To evaluate Eq. (1) the following two expansions are
employed [16,17]:

cxr l Pr~ fr 3Xe ' ' 'dr&dr2dP3 (6)

'Permanent address: Departamento de Fisica Moderna,
Facultad de Ciencias, Universidad de Granada, E-18071 Grana-
da, Spain.

The evaluation of I„ is now considered. Expressing
P (cos8,3) and P (cos8, 2) as C' (cos8») and
C' (cos812), respectively, and employing the addition
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theorem for the Gegenbauer polynominals [18] allows I„
to be separated into a product of integrals in the variables

[8;,P; ], i =1 to 3. The resulting integrals can be readily
evaluated, but the final expression is rather complex. The
key observation to obtaining a simple formula for I~ is to
employ the following expansion for the Gegenbauer poly-
nomials:

where the A integral is discussed in the Appendix. In-
serting Eq. (7) (with x =cos823) into Eq. (5) leads to

w1

bw k JPk(cos823)Pw (cos813)Pw (cos812)
k=O

X d Q,d Q2d 03 (10)
C' {x)= g b kPk{x) .

k=0

The expansion coefBcients b k are given by
1

b k= Pk X C X X
2k+1

{7)
On expanding each Legendre polynominal in terms of
spherical harmonics, the following result is obtained:

(4~)3
IA( Wl, W2, W3)= g b k5k„5, (11)

(2W2+ 1) k=o

a result obtained by multiplying both sides of Eq. (7) by
P (x ) (for 0 &j & w, ) and integrating over [—1, 1]. Equa-
tion (8) can be written as

b k
= sin8C (cos8)Ck (cos8)d 8

2k+1 1/2
1 2 0 1

where 5,k denotes a Kronecker delta. Since

w2 )w1 ~Ig =0,
Eq. (4) can be simplified to

wl

& ill(wl w2)IA(wl wz)

(12)

(13)

2k+ 1
A ( 1;w, , 1;k, —,

' ), with

w1=0 W2=0

(4qr )
, b. .(2w2+1)

T

1/2( w1+ w2+ 12) 3

(2wz+1)
( —2)' W1 W2

(w, —r)!

!(w, +wz+1 —2r)!!

for w1+W2 even and w1 w2,

(14)

0 for w1+W2 odd or w2 & w1,

and Eqs. (9) and (All) have been employed in Eq. (11).
In Eq. (14)

+2q n —
w2

—2q

nw ( 1 2)= Xj w nq 13& 12&
q=O

(16)

max ™n~

W1

2

W1 W2 with

where the standard convention [x/2]=x/2 if x is even
and (x —1)/2 if x is odd, has been employed.

To evaluate the radial integral in Eq. (6) (with wz =w3)
the Sack formulas for the R functions are employed.
These take the form

~tuv

u u

2 2

( —,
' ),U!(t+—', )„

1 u

2 2
(17)

w, +2p m —w, —2p
R (rl, r3)= g a zr13'& r13&

p=0
(15)

and (k)l denotes a Pochhammer symbol. If Eqs. (15) and

(16) are inserted into Eq. (6), then

i +2 1 +2 k+2 wl
—

w1
—2 wz+2p m —

w&
—2p

IR(wl, w2)= g g 0 pa q rl r2 r3 r23&r23& r13 r13&
p=0 q=O

w +2q n —w2
—2q —ar

1
—~~2 —]r~3

X r12' r12 e dr1dr2dr3

If the integration range in Eq. (18) is broken up according to 0 & r; & r & rk, then Eq. (18) simplifies to
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a( 1 2} P g w mpaw nq
p=pq=p

X I W(w, +w2+2p+ @+2,w2
—wi+2q+j, n+ m+i+2 —2w2 —2p —2q, y, p, a)

+ W(wi+ w2+2p+ k+2, 2q —2p+rn+i +2,n+ j—w1 w—
2 2q—, y, a,P)

+ W(2w2+2p+2q+i+2, wi —w2 —2p+m+k+2, n+j —wi —
w2

—2q, a, y, p}

+ W(2w2+2p+2q+i+2, w, —
w2

—2q+n+ j+2,m +k —wi —w2 —2p, a,p, y)

+ W(w, +w2+2q+ j+2,2p —2q+n+i +2, m +k —w, —w2 —2p, P,a, y)

+ W(w, +w2+2q+j+2, w2 —w, +2p+k, n +m+i+2 —2w2 —2p —2q, P, y, a)), (19)

where

( —k )1=0, l )k for integer k, (21)

W(L, M, N, a, b, c)
=f"x e '"dxf"y e «dyf"z e "dz. (20)

0 X

The W integrals in Eq. (20} have been discussed exten-
sively in the literature and efficient algorithms are avail-
able for their evaluation [1,2, 19,20].

Eqs. (13), (14), and (19) thus represent the required
solution of the integral. Our attention is now turned to
the summation limits occurring in Eqs. (13) and (19). Be-
cause of the following result for the Pochhammer symbol

1l
min w&, —,n even,

m n
min w —— m and n both even .]s

The last three conditions follow from the definition of
a,„,given in Eq. (17). The w, summation is nonterminat-

ing.

III. THE CASE I =—2, m = —2

Inserting Eq. (2) and the analogous expression for r13
into Eq. (1), as well as the Sack expansion for r",2, leads to
the result

the p summation terminates at (m +1)/2 if m is odd and
m/2 —

w2 if m is even. Similarly the q summation ter-
minates at (n +1)/2 for odd n and n/2 —w2 for even n.
These conditions follow from the definition of a,„„given
in Eq. (17). The w2 summation in Eq. (13) terminates at
one of the following values:

w&, m and n both odd,

I= g g g Ia( wl, w2, w3) IA( w» w~2w3)
w& =0 w2 =0 w3 =0

where

I„(w» w2, w3)

Cw cos 23 w 'co$3] P cos

(22)

m
min ~ w„—. m even,

and

&(dQ, dQ2dQ3 (23)

i+2 j+2 k+2 1 1
2 w2

—
w&

—2 i i 1 ~ 2 /~3~
R( 1 2 3) f "1 "2 3 "23& "23& "13&31& ("1 "2 1 "2 "3 (24)

To simplify Eq. (23), Eq. (7) is employed for each Gegenbauer polynomial; the result is

w) w2

I„(w»w2, w3)= p Q b~ Jb~ k fPJ(cos823)Pk(cos831)P~ (cos8,2)dQidQ2dQ3
j=p k=0

(2Sa)

(4m. }'
W~W3 W2W3

(25b)

and the b coefficient is given in Eq. (9). The radial integral in Eq. (24) can be evaluated by employing the expansion for
the Sack R function; the result is
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Ig(wi, w2, w3)= g a „~[W(w, +wz+k+2, w3 —wi+2q+ j,n +& —w —w —2q y p a)
q=O

+ W(w, +w2+k+2, w, —w2+2q+i, n +j—w, —
w3 —2q, y, a,p)

+ W( wz +w 3+2 q +i +2, w, —w 3
—2q +n +j+2, k —2 —w, —w 2,a, p, y )

+ W(w2+w3+2q+i +2,w, —w2+k, n +j—w, —wi —2q, a, y, p}
+ W(w]+w3+2q+j+2, w2

—w, 2—q+n+i+2, k —2 —w, —w2, pa, y)
+ W(wi +w3 +2q +j+2, w2

—w i +k, n +i —
w2

—
w3

—2q, p, y, a) j (26)

where the W integral is defined in Eq. (20).
Equations (22), (25), and (26) constitute the solution of

the I = —2, m = —2 case. The q summation terminates
at (n +1)/2 if n is odd or n l2 —w3 if n is even [see Eqs.
(17) and (21)]. The w3 summation in Eq. (22) terininates
at min[w„wz j if n is odd and min[w, , w2, nl2j if n is

even. The first part of each condition comes from the re-
sult

gence of the series is to be expected.
To get an idea of the behavior of the series in Eq. (13),

the asymptotic forms for two cases, (i) large w2 (which
must also have wi large) and (ii) large wi with wz small,
are examined. For the first case, w, =wz is employed to
simplify the analysis. From Eq. (33) of Ref. [2], the
asymptotic behavior of the 8'integrals can be evaluated.
From Eq. (19) two different cases arise,

I~ =0 if w3 )N] or N30 w2,

which follows directly from Eq. (25a). The second con-
straint involving n/2 follows from the coefficient a „ in

W3 Ng

Eq. (26). The wi and wz summations are both nonter-
minating. Equation (26) is valid for n ~ —l. Additional
constraints are required on i, j, and k. These may be
found from the conditions required for the convergence
of the W irttegral in Eq. (20}, that is, L ~ 0, L+M ~ —1,
and L+M+X & —2. This leads to the requirement that
i+j+k+3 ~0.

IV. NUMERICAL EVALUATION STRATEGIES

18'-
(Wi+Wp) W 2

1 1

~w( w+ w2 )

n

W2 W2 1

(m +n +2)/2
W2

So Iz(w „wz) behaves like

The a coefficients in Eq. (19) lead to

(28)

(29)

(30)

The evaluation of Eqs. (13), (14), and (19) is considered
first. The function Iz ( w i, w2 } [Eq. (14)] is independent of
any of the arguments [i,j,k, m, n, a, p, y j, so this function
need only be evaluated once. In the present work Eq. (14)
was calculated analytically using the symbolic package
MATHEMATIcA [21], and the final expressions evaluated
numerically. In a similar fashion, an array for the a
coefficients appearing in Eq. (19} was constructed in
MATHEMATIcA. The constraint given in Eq. (14) that
w

&
+w2 must be even simplifies the calculations consider-

ably. For the case when m and n are both odd, which is
the one of principle interest in this work, the summation
limit of the wz sum in Eq. (13}is w i. However, in practi-
cal calculations, this limit can be replaced by a cutoff of
the summation as the terms Iz (w „wz) become increas-
ingly small. This particular simplification was not needed
in the approach employed in this study.

Equation (13) is not suitable for direct numerical evalu-
ation, particularly if a large number of digits of precision
are required. The key expansion employed for r~~ [Eq.
(2)] is deceptive in one sense. An alternative expansion in
terms of Legendre polynomials can be written, but the ra-
dial factor now involves a logarithmic function of r2 and

r3 [13,14,22]. This logarithmic behavior must be imbed-
ded in the series expansion of Eq. (13), so a slow conver-

1

W
(m +n+ 6)/2
2

(31)

For the case wi =w2 only one term remains in Eq. (14),
with the result that

(32)

Combining Eqs. (31) and (32) leads to the result

1I—
(m+n+9)/2

W2
(33)

[see Eq. (Al 1) with k =0]. Using Eq. (29}for the asymp-
totic behavior of the W integral (worst-case convergence)
leads to

(35}

The worst case involves I= —1 and n = —1, where
I-wz . So it is clear that a rather large number of
terms are needed to obtain an accurate result for I. The
second situation, where wz is small (we set wz =0 to sim-

plify the analysis) is now examined. When ~=~,„
(34)
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It should therefore be clear from the combination of re-
sults, Eq. (33) and in particular Eq. (35), that a direct
summation strategy is not feasible.

In place of a direct summation approach, two conver-
gence acceleration techniques were applied to Eq. (13).
The first acceleration method employed was Levin's u
transformation [23,24]. This is widely regarded as a very
effective procedure to accelerate a series with logarithmic
convergence characteristics [25,26]. This transformation
has been applied in other atomic and two-center integra-
tion problems [15,27].

A sequence of partial sums are defined,

„=+A
w=O

(36)

and these converge to some limit S. Then an improved
approximation to the sum is given by

. k
( —1)J . (j+I)" S)AJ

'

Qk= (37)
k

y (
—1 }J ( +1)"-'A,-'J'

A~ +
wl =0 wl = 1

(wl even) (w, Wd)

(38)

and the u transformation applied separately to each series
in Eq. (38), then a fairly significant improvement in con-
vergence is obtained. The other important factor is that
this improvement is obtained for only a modest number
of terms in each series in Eq. (38). Some representative
test cases are presented in Table I. The principal draw-
back of the application of the u transformation is that the
number of digits of precision obtained for the sum is criti-
cally tied to the computer precision available. All the re-
sults reported in this work were carried out on a Cray
YMP in double precision.

The Richardson extrapolation technique [29] was also
tested on Eq. (13). As for the previous technique, this
was also applied to Eq. (13) in the form of Eq. (38). The
Richardson extrapolation is given by

so=
S ( +k)Ã( 1)k+N

k!(N —k)!
(39)

where $0 is an approximation to the total sum in Eq. (13).
The results of a representative test case are shown in

where (") denotes a binomial coefficient. A well-known
difficulty associated with the application of Eq. (37) is
that serious cancellation errors occur when k becomes
large [27,28].

The series expansion of Eq. (13) shows it to be com-
posed of two monotonically decreasing series, one for w,
even, the other for w& odd. Since the A„values for the
separate series are significantly different in size, a direct
application of Eq. (37} is not expected to be very satisfac-
tory, and that turns out to be true for the test cases exam-
ined. However, if Eq. (13) is split as

Table II, where SO is presented as a function of N and n.
The Richardson technique is also subject to the loss of
numerical precision (for higher N, n values) similar to
that found for Levin's u transformation.

Evaluation of the I integral for the case I= —2,
m = —2 by direct summation of the series in Eq. (22) is
not viable. Because of the presence of two factors r,.j
and rjk there is a product logarithmic dependence (in the
variables r; + r and rj + rk) imbedded in the series given
by Eq. (22). For this reason, a direct summation of the
series will not be feasible.

The Levin u transformation was applied to evaluate
Eq. (22). Suppose the cutoff for the w, and w2 summa-
tions in Eq. (22) is denoted by N. Then it proves to be
most useful to restructure Eq. (22) in the form

00 00 N N

W), W2 ~ W), W2

wl =0 w2=0 wl =0 w2=0

g f(w —wz, wz), (40)
w=O w2=0

(even w)

where f(w„w2) can be identified as the sum over w3 in
Eq. (22). The even condition on w in Eq. (40) follows
directly from the product of the b coeScients given in
Eq. (25b) and from Eq. (14}. The Levin u transformation
was applied to the sum over w in Eq. (40). Table III
presents a couple of representative test cases showing the
nature of the convergence obtained using Levin's trans-
formation. Table IV collects some additional test values.
The first four entries included in Table IV have been re-
ported by Luchow and Kleindienst [15], though to a
smaller number of digits of precision. Generally 13 to 14
digits of precision are obtained from the application of
the Levin u transformation to Eq. (40). The level of pre-
cision starts to fall significantly for values of k higher
than those reported in Table III. This was found for all
the entries reported in Table IV as well.

V. DISCUSSION

The results froin the application of the Levin u trans-
formation shown in Table I indicate that approximately
16 to 17 digits of precision have been obtained. The op-
timum value of k appears to be around k =22. The possi-
bility of convergence to an incorrect value was excluded
by computing several of the test cases by an independent
method and also by employing the Richardson extrapola-
tion technique.

The precision starts to drop off after the optimal k
value is reached. The precision of the results reported in
Table I is limited by the substantial round off that occurs
in the use of Eq. (37). This problein could be avoided in
part by the use of a multiprecision arithmetic package.

Particularly noteworthy is the convergence of the case
m = —1, n = —1. It is extremely difBcult to evaluate in-
tegrals of this form to even a modest number of digits of
precision by any other available procedure.

The Richardson extrapolation also performs fairly
we11. The test case reported in Table II agrees with the
value found using the Levin u transformation to approxi-
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TABLE II. Results for the Richardson extrapolation [Eq. (39)] applied to the integral I(0,0,0, —2, —1,—1,2.7,2.9,0.65).

1

5
9

13
17

N=2

15.070
15.255
15.267 07
15.26948
15.27028

N=4

15.263
15.270 85
15.271 033
15.271 053 19
15.271 057 41

N=6

15.270 89
15.271 057 53
15.271 059 333
15.271 059 452
15.271 059 467 84

N=8

15.271 057 07
15.271 059 459
15.271 059 472 016
15.271 059 472 525
15.271 059472 572 13

N =10

15.271 059 450
15.271 059 472 519
15.271 059 472 579 63
15.271 059 472 580 907
15.271 059 472 580 976

TABLE III. Convergence of some integrals as a function of k for the Levin u transformation applied
to Eq. (40).

0
1

2
3
4
5
6

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

I(0,0,0, —2, —2,4,2.7,2.9,0.65)

59.19
63.78
57.39
65.67
49.79
68.70
79.60
72.58
74.08
73.62
73.727 5
73.703 5
73.708 227
73.707 395
73.707 537
73.707 514 84
73.707 517 55
73.707 517 108
73.707 517 17098
73.707 517 172 34
73.707 517 174 187
73.707 517 174 106
73.707 517 174 1139
73.707 517 174 1603
73.707 517 174 197 1

73.707 517 174217 5
73.707 517 174 228 6
73.707 517 174234 9

I(0,0,0, —2, —2, 6,2.7,2.9,0.65)

41.54
42.20
41.81
42.56
42.04
43.34
41.40
45.26
75.68
47.90
49.72
48.96
49.169
49.11022
49.125 49
49.121 78
49.12262
49.122 442
49.122 476 9
49.122 470 5
49.122 471 65
49.122 471 467
49.122 471 495 6
49.122 471 491 33
49.122 471 491 95
49.122 471 491 866
49.122 471 491 875 5
49.122 471 491 874 1

TABLE IV. Some I integrals evaluated from Eq. (40).

1.42
6.52
3.97
3.97
2.7
2.7
2.7
2.7
2.7
2.7

6.52
6.52
3.97
3.97
2.9
2.9
2.9
2.9
2.9
2.9

6.52
1.42
6.52
6.52
0.65
0.65
0.65
0.65
0.65
0.65

2.648011637084x 10-'
1.775 862 983 358 X 10
1.239 128 937 797x 10
2.417 774 258 610X 10
3.696 961 214 545 X 10
2.076 347965 559 X 10'
9.284 583 074 892 X 10
3.875 442 706 644 x 10'
2.340 828 566 559x 10'

7.604960853 6948 x 10'
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mately 16 digits of precision. The other integrals evalu-
ated by the Richardson approach yielded a similar level
of precision.

For the more difficult case of I= —2, m= —2, the
Levin u transformation also does a particularly satisfac-
tory job at producing a converged value for the integrals.
The optimum value of k for these cases appears to be
around k =26.

A particularly significant feature of the present work is
that both techniques employed to evaluate Eq. (38) are
computationally fast. The acceleration techniques avoid
the problem of having to deal with some rather difficult
integration problems. These procedures are feasible for
application to large scale ab initio calculations.
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If m +n is odd then 2 =0. Equation (Al) is recast as
1

A = (1—x )" '~ Cg(x)q(x)dx,—1

(A2)

with

q(x)=(1 —x ) "C„(x) . (A3)

(A5)

If a —2p is even and ~ 0, then q (x) is a polynomial of de-
gree x —2p+n. For the case u —2p+n &m, A =0. This
follows from the well-known result in the theory of or-
thogonal polynomials that

wxp„xqx =0, (A4)
a

where p„(x) is an orthogonal polynomial on the interval
[a,b] with weight function w (x) and q (x) is a polynomial
of degree less than n

If a —2p+n ~ m, then substituting the Rodrigues for-
mula for Cg(x) [30],

CP (x) ( 1 x 2) 8+1/2 —
[( 1 x2)P™—1~2]1

a" dX

APPENDIX

In the appendix we consider the evaluation of the in-
tegral

with

m!I (2p, )I'(m+p, + —,
'

)
al' =( —2)

I (p+ —,
' }I(m+2p)

(A6)

A(a;m, p;n, v)= f sin 8Cg(cos8)C„"(cos8)d8
0

= I (1 —x ) C" (x)C'(x)dx . (Al)

The case p =y =a/2 is the standard orthogonality condi-
tion for the Gegenbauer polynominals.

into Eq. (A2), yields, on integration by parts,

(1 — ') " '" d . (A7)aI' dX

From Eq. (A3) q (x) is evaluated to be

Q 2p,

2

q(x)= g ( —1)

Q 2p
2 f

—
1

( —1)'I (v+n —7) „+2 2,X
. ,=Ol (v)2 ' "r!(n —2r)!

(A8)

Inserting this expression for q(x } into Eq. (A7) leads to a sum of P functions. The final result is

A(a;m, p, n, v)= [1+(—1} +"]el'(m +2p, )

4i'm! I'(p )I'( v)

Q 2p
2

min

Q 2p
2

. ( —4)

max
(
—1)'I (v+ n —r)(n+2o —2r)!

(A9)
~=0 n —m n+m

r!(n —2r)! +o —r !I +@+cd—&+1
2 2

with

m —n
o min max 0,

n n —m=min — +o.
max 2

'
2

(A10)

The duplication formula for the I" function has been em-
ployed to obtain the final result given in Eq. (A9).

If a —2p is odd or less than 0, then the above pro-
cedure could be repeated if u —2v is even and ~ 0, be-
cause of the symmetric nature of A with respect to the
interchange m+ n and p~v. If neither condition on
n —2p or a —2v is satisfied, a formula involving a double
sum can be obtained by employing explicit expansions for
both Gegenbauer polynomials C" (x) and C„"(x}.

The special case of A required in Eq. (9) is A(1; wi, 1;
k, —,'). The condition iai+k even must hold; otherwise
A =0. Because of the factor 5k in Eq. (11), the condi-

I
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max ( —1)'(wi —r)!

tion w, +w2 even emerges in Eq. (14). With the substi-

tutions a= 1, m =k, )it= —„n =wi, v=1 in Eq. (A9), the

following result is obtained:

A(1;w„l;k, —,')

For the cases a —2)tt )0 and even, or a —2v) 0 and even,
the procedure employed above leads to a more efficient
formula than the use of explicit expansions for both
Gegenbauer polynomials. For the particular case of in-
terest just discussed, the number of terms required for ex-
pansion of both Gegenbauer polynomials is

7.=0
gf

w —k1 Ni+k
!I —~+3

2 2 2 2
k
2

(A 1 1) while from Eq. (Al 1) the number of terms is governed by

with +max mm '
m —k1

2

Wi
w,„=min '

w —k1

2
There will be considerable reduction in computational
effort for the latter case when w, and k are both large.
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