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An analysis is presented for the evaluation of the one-center integrals of the form 
JI’rjJC+P r” rP,rq rS rf 1 2 3 4 12 13 14 23 24 34 e --aq-br2-cr3-dr4 drl dr2 dr3 dr4 which arise in the solution of the 
atomic four-electron problem when a Hylleraas expansion is employed. A majority of the cases 
that arise can be solved by a reduction of the four-electron integrals to integrals arising in the 
three-electron problem. A second general approach is developed which is able to handle almost 
all cases that arise in practical calculations. 

I. INTRODUCTION 

The ‘S ground state of the Be atom has been the sub- 
ject of recent interest.192 Attention has focused on resolving 
a small discrepancy between the experimental and theoret- 
ical values of the ground state energy.3 The most accurate 
theoretical determinations of the nonrelativistic ground 
state energy (ENR) have all involved CI calculations, and 
have required estimation of the truncation errors to arrive 
at the published values of ENR. h3 

For few-electron systems Hylleraas-type expansions 
lead to much more rapid convergence for the energy. A 
drawback, however, is the complexity of the basic integrals 
that arise. Relatively few investigations of the ‘S Be ground 
state have been carried out using a Hylleraas-type basis 
set.“* All these calculations have placed major restrictions 
on the basis functions that were employed. This was done 
in order to avoid difficult integration problems. The pur- 
pose of this work is to carry out a general analysis of the 
integrals that arise in the evaluation of the Be ground state 
energy ‘(or any other four-electron S-state species) when a 
Hylleraas-type basis set is employed. 

Considerable attention has been devoted to the evalu- 
ation of the integrals 

I(i,j,k,hn,a,b,c) 

= s ~~rZir~~*3~~~~e-arl-br2-Cr3 dr, dr2 dr3 (1) 

and the related auxiliary functions on which it depends.g-24 
In Eq. ( 1) rj represents an electron-nuclear separation and 
rij denotes an interelectronic separation. These integrals 
arise in the atomic three-electron problem for S states. In 
the conventional Hylleraas expansion only positive integer 
exponents are employed, which means only the cases I 
$ - 1, m> - 1 and n> - 1 are required for an energy eval- 
uation. For other properties, such as certain relativistic 
corrections, cases arise in which I, m, or n may equal -2. 
Such integrals are extremely difficult to evaluate.23V24 Given 
that extensive efforts have been devoted to the evaluation 
of the I integrals, the approach adopted in the first part of 
this investigation is to reduce where possible, the required 
four-electron integrals to the I integrals. This reduction 
proves to be possible for a large number of integrals. For 

those integrals that cannot be so reduced, a general for- 
mula is worked out in the second part of this study. The 
next two sections cover each situation. 

II. REDUCTION OF THE FOUR-ELECTRON 
INTEGRALS TO /-INTEGRALS 

For a four-electron S-state atom or ion, the Hylleraas 
expansion takes the form 

Y=A 5 C 4, iu 4, 4, mu %, P,, s, s,, *, 

tl=l 
Url r2 ‘3 r4 ‘12 r13r14r23r24r34 

Xe- a,r, -b,r2--cur3 -dur4 
XUY (2) 

where A is the antisymmetrizer, C, are the variationally 
determined expansion coefficients, xU is a spin function, 
and all powers in the set {i,,j,,k,,I, ,m n p q s t 3 u9 UP I49 us IL7 u 
are each 20. With this choice for Y the basic integral that 
must be evaluated to determine the energy (and many 
other properties) is 

I,(i,j,k,Z,m np qs t a b cd) , ,,,3,3 ,, 

. I 
= ,iri&ip*np r~# rs r* e-arl-br2-cr3-dr4 

1 2 3 4 12 13 14 23 24 34 

x dr i dr2 dr3 dr4. (3) 

Special cases of this integral have been considered previ- 
ously. Gentner and Burke5 evaluated the case where no 
more than three rij terms appear, and that the power on 
the rij factors did not exceed one. These authors allowed 
for additional factors of the form cos 8, in the integrand. 
Perkins25 also evaluated the case with three rij factors, but 
allowed for general powers on each factor. The most ex- 
tensive discussion is due to Sims and Hagstrom, but these 
authors also restrict to the case of three rij factors to a 
general power (taken to be > - 1). They allow for addi- 
tional angular dependence by including spherical harmonic 
factors for each electron. If a general term in Eq. (2) is 
selected with several different rij factors, then it is neces- 
sary to go beyond these previous investigations and address 
the general integral in Eq, (3). 

The cases that are considered in this work have i> -2, 
j>-2, k>-2, I>-2 and m,n,p,q,s,t each 2-1, with 
a,b,c,d each > 0. The first case considered isp=O and s and 
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t not both odd. The following development supposes s is 
even. If t is even and s is odd, the obvious symmetry rela- 
tion 

14(i,j,k,Z,mnpqstabcd) , , , 9 , , 3 , , 

=14(i,k,j,l,n,mpq tsac bd) 2 2 ,,, 9 9 f (4) 

can be employed. This situation is a little restrictive, but it 
does, however, cover a very large number of possible cases. 
Although the final formulas may look a little involved, 
they can be programmed very efficiently. 

The restriction imposed for the present case allows the 
I4 integrals to be directly reduced to the I-integrals defined 
in Sec. I. Equation (3) for the case under consideration 
can be written as 

I,(i,j,k,Z,m n 0 q s t a b c d) , , , , , , , , , 

= 
s 

r’rj#fl r” r”‘e-ar~-br2-cr3drl dr, dr3 1 2 3 23 31 12 

x &i4ri4e-dr4 dr4. 
s 

(5) 

To handle the integral over r4 we proceed as follows. 
The Sack27 expansions for r ;4 and r$4 are inserted to yield 

J( r2,r3,r23,Z,s,t,d) = 
s 

r$;4d4e-dr4 dr4 

= i. j. J J4R,,(r2,r4)Rtv(r3,r4) 

XPJCOS &4)Pu(COS 634)e- dr4 dr4, 
(6) 

where R,,(r,,r,) is a radial function and P,,(cos 824) a 
Legendre polynomial. Using the standard expansion of the 
Legendre polynomials in terms of spherical harmonics 

pu(cos &4> =& i %u(~2,$2> yum,(~4~~4) 
t?Z,,=-Id 

(7) 

I 

JRh,%Z,s,t,d,u) = s 
1/4+2R,,(r2,r4)R,(r3,r4)e-dr4 dr4 

allows the angle integration in Eq. (6) to be evaluated as 

&= 
s 

p&OS e24)Pv(COS f&)d& 

=& P,(COS e23)6uu, (8) 

where 

s ci?I”(~47$4) y,m,(e4~~4>d~4=~,~m~m” (9) 

has been employed. S,, denotes the Kronecker delta in Eqs. 
(8) and (9). Inserting Eq. (8) into Eq. (6) leads to 

u=o 2u+l 

XR,,(r2,r4)Rt,(r3,r4)e-“4dr4. (10) 

To evaluate the integral in Eq. ( 10) two different expan- 
sions of the Sack radial functions are employed 

&hrd = 
(-t/2) 
c1,21, 

(--s/2), r!$$ 
Gbw-d = c1,2j, (r2+r4)~u--s 

where 
(12) 

(u-t/2),(-1/2-t/2), 
a utz= z!(u+3/2), (13) 

and 

b 
usw 

=4w (~--s/2),(1+~LJ 
w!(2+2u), . (14) 

In 3. (11) r34> denotes the greater of ( r3,r4) and r34< 
represents the lesser of (r3,r4). In Eqs. (ll)-( 14) (P)~ 
denotes a Pochhammer symbol. Inserting Eqs. ( 11) and 
( 12) into the integral in Eq. ( 10) (denoted JR) leads to 

= w 
u 

=go autz wto b,, S-Iz2w (sv2,-2w) 

xd-(~+3+2U+V+W+2Z)r~-U-V-W~r~-U-2Z(Z+2+ 2u+u+w+2z)![ 1-Z(Z+2+2u+v+w+2z,d,r3)] 

+r~+2zd2u+42-*(Z+2+v+w+t-2z)!Z(Z+2+u+w+)~ (15) 

with 

’ (drd’ 
Z(p,d,r3) =eFdr3 2 - . 

zdl z! 

In F&q. ( 15) (z) denotes a binominal coefficient. 
To show the explicit dependence of J [in Eq. (6)] on r23, the following decomposition of the Legendre polynomial is 

required: 
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[u/Z] u-2Y u-2Y-p 

P*(cos e,,> = c % c o,,~,r2~-2~-21.1-2~y3-u+2~+2~~2~2~ 
v=o /Go K=O 

with 

(17) 

w 
(-1)“+~(“,2”>(U-~-~)(21-22y)! 

uvpc= 4U-“~!(zs-~)!(~-2y)! ‘- (18) 

and [u/2] =~/2 for u even or (U - 1)/2 for u odd. Inserting Eqs. (6)) ( lo), ( 15), and ( 17) into Eq. (5) leads to 

I~(i,j,k,h,n,O,q,s,t,a,b,c,d) =4r uto h, ‘?I ‘2” ‘-..:’ 2 
v=o p=o 

2 s-~~~2w ~u,,p~,,rpusw(s-2~-2w) 
z=o w=o 

Xd-(f+3+2U+U+W+2Z) Jlr~3Jj-u+2v+2K~3+2~~~~2~-arl-br2-cr3 

s 

X{$“-2”sl![ l-Z(3:l,d,~)] +y;lf2zd2u+4”-$2!Z(~2,d,Y3)}drl dr2 dr3, 
where the notational simplifications 

(--s/2),(-t/2), 
hUSf=(2u+1)[(1,2),12’ 

&=1+2+2U+u+W+2z, 

g2=1+2+v+w+t-22, 

$3=j+s-u-w-2(v+p+K) 

have been employed. If the additional notational simplifications are utilized 

3:4=k+t+2(v+/c-u-z), 

1s=k+2(v+K+z), 

then 
. . 

I4(z,J,k,l,m,n,O,q,s,t,a,b,c,d) 
m [u/2] u-2Y u-2v-p m m s-2u-2w 

=4~ c x c Kzo c 2 “z. d~(ylfl)fbvpKstku I(i,~3,14,q+2rU,n,m,a,b,c) u=o v=o p=o z=o w=o 
31 & 

1 

I2 & 

- A.o ;i~I(i,g3,~:4+/Z,q+2.iu,iz,m,a,b,c+d) +@2u+4r--t c -I(i,g3,~:5+A2,q+2p,n,m,a,b,c+d) A=0 2 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

where I(i,j,k,Z,m,n,a,b,c) is defined in Eq. (1). Equation 
(27) represents one of the principal results of this investi- 
gation. Two issues need to be addressed for this formula. 
The U, z, and w summations all terminate at finite values. 
On noting the property (for integer k) of the Pochhammer 
symbol 

( -k)l=O I> k, (28) 

the z summation terminates at t/2---u if t is even and (t 
+ 1)/2 if t is odd [see Eq. (13)]. The w summation termi- 
nates at s/2-u [see Eq. ( 14)] and the u-summation ter- 
minates at min[s/2,t/2] if t is even, or s/2 if t is odd. Both 
these conditions require s to be even, which was a basic 
restriction mentioned towards the start of this section. 

I 

If t is odd then I must be ) - 1, otherwise g2 < 0 is 
possible and Eq. (27) does not hold. In its place a compli- 
cated integral having the exponential integral as part of the 
integrand arises. For the case of odd t and I= -2 the 
method of the next section should be applied. An exami- 
nation of Eq. (24) for the case of odd t reveals the required 
condition 

k>s- 1 (29) 

otherwise the I integrals in Eq. (27) depending on g4 will 
diverge when 54+il < -2. A possible way to work around 
this constraint is to employ the following result in Eq. ( 19) 

1-Z(s1,d,r3) =e--dr3(dy3)s1+1 i W-d’ 
a=0 (A+s:l+ l>! . (30) 
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The result is that the factor in square braces in Eq. (27) is 
replaced by 

do”+1 i dA 
n&l (A-t&+1)! 

I(i,s3,81 +s4+A+ 1,q 

+Q.w,m,a,b,c+d). 
This factor is well behaved for k, I, and t values satisfying 

k-+-&t>-5, (31) 
though this is at the expense of a good deal of additional 
computational labor. 

III. THE GENERAL CASE 

In this section the general case having m,n,p,q,s,t each 
> - 1 is considered. If the Sack expansion for each factor 
$1 is inserted into Eq. (3), the resulting integral is 

1,==giipii 
m,=o a,=0 p*=o q1=0 s*=o f,=O 

X~~R(ml,nl,pl,ql,S1,tl)~~(ml,nl,pl,ql,sl,tl), (32) 

where 1o denotes the angular integral 

~~~ln(ml,nl,pl,ql,sl,tl) 

= 
s 

~m,bs ~12>eps e13)~p,(cos &4Pq* 

X(COS &3)ps,(COS $4)pt,(COS &,>di& d&d& da.+ 

(33) 

and IR denotes the radial integral 

~~~~~R(ml,nl,pt,ql,sl,tl) 

= ~~~2,~+2J;+2JdC2e-arl-br2-c’3-dr4 

s 

xRmmI (rl,r2)Rnnl(rl,Y3)Rppl(Y1,Y4) 

XRqq,(r2,r3)Rss,(r2,r4)Rttl(r3,r4)drl dr2 dr3 dr4. 

(34) 

Employing Eq. (7) and the result 

= I 
(2(,+1)(2z~1f1)(2z3~+l)]1’2(~ ; 2) 

X ( 
4 12 13 

ml m2 m3 1 

allows Eq. (33) to be simplified to 

“d ;) 2 2 2 (-l)M+N+Q 

M=-m, N=-q Q=-q, 

“‘e j&J I( &f$r &/f -G-Q ’ 1 

(35) 

(36) 

In Eqs. (35) and (36) ($) denotes a 3 j symbol. To evaluate the radial integral in Eq. (34), the Sack expansion for each 
of the radial functions [Eq. (1 1 )] is inserted, leading to 

co co 
IR=f (m,n,p,q,s,t,m~,n~,p~,ql,sl,tl) i 2 2 Ii C C g(m,n,p,q,s,f,ml,nltpl,ql,sl,tl,m2,n2,p21q2,S2lt2) 

??I*=0 IQ=0 pyo qz=o y=o t2=0 

a 9 710 ‘11 ‘12 
12<r~>r~<r~>r~<r~>r~<r23>r24<r24>r34<r34>e 

-=*I --b’i-CQ-dr4 drl dr2 dr3 dr4, (37) 

where 

f =f (m,ng,q,S,t,ml,nl,p~,ql,sl,tl) - (38) 

and 

(39) 
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and the a.+ coefficient is defined in Eq. ( 13). The abbreviations 

Tl=m1+2m2 T7=q1+2q2 

r2=m--r1 rg=q---‘r7 

r3=n1+2n2 r,=s1+2s2 

r4=n-r3 71o=s-rg 

q=p1+2p2 711=t1+2t2 

r6=p-r5 r12=t-711 

I=i+2, J=j+2, K=k+2, L=1+2 (40) 
have also been employed in Eq. (37). If the integral in Eq. (37) is broken up into different regions according to 
O<ri<ri<r&rl< 00, then I, simplifies using the additional abbreviations 

a1=1+71+73+75 a5=I+r2+r4+r6 

w2=J+r1+r+rg 4j=J-t-r2+r8+rlo 

o.h=K-t?fr7+r11 m7=Kfr4+rgfr12 

04= L+T5frg+r11 ~8=L+~6+r10+r12 

to yield 
(41) 

IR=f i t$ 2 i ? t$ g~W4(Wl,Jfr2+r7+rg,Kfr4+rg+r~1,~g,a,b,c,d) 
m2=0 n2=0 pz=O q2=0 q=O t2=0 

+ W4(~lpJ+r2+r7+Tg,L+r6+T10i-rll,w7,a,b,d,c) + W4(0~,K+r~+T7-tr~1,Ji-r2+T8-+rg,Wg,a,C,b,d) 

f ~4(~1,K-tr4+r7+r11,L+r~+r9+r12,~g,a,c,d,b) + ~~(0~,L+r~6+r~+r11,J+r2+r7+T10,~7,a,d,b,c) 

f W4(~i,L+T6+rgfri1,K+r4+r7+r12,%,a,d,c,b) + ~4(m2,1+r2+r3+r5,K+r4+r7+r11,w8,b,a,c,d) 

+ W4(%,I+r2+r3+r5,L+r6+r10+r11,u7,b,a,d,c) + W4(W2,K+r~+r~+r11,1fr2+r4+r5,~8,b,c,a,d) 

+ ~4(W2,K+r3-I-r88fr11,L+T~+r10+r~2,~~,b,c,d,a) + W4(%,L+r5+r10+r11,1+r2+r3+r,+~7,b,d,a,c) 

+ W4(W2,L+r~-1-rlo-trl~,K+r3+rg+r~2,Wg,b,d,c,a) + W4(0~,I+T1+74+r~,J+r~+rg-i-Tg&,C,a,b,d) 

+ W4(~391+T1+r~+r~,L+r~+rg+r12,~~,c,a,d,b) + ~4(W3,J+rl+T8+rg,1+T2-t-r4+r5)W8,c,b,a,d) 

-t W4(%J+r1+r8+rg,L+T~+r~o+r&~~,c9b,d,a) + W4(~3,L+r~+rg+r12,1+r1+r4+r~,~6,c,d,a,b) 

-t- W4(W31L+r~+rg+T121J+r~+r8+T10,W~,c,d,b,a) + W~(~~,I+r~+r~+r~,J+r~+r7+T10,~7,d,a,b,c) 

-I ~4(W4,~+ri+r3+r6,K+r4+r7+ri2,0g,d,a,c,b) + W~(@&+r1+r7+T~0,1+r2+r3+r4,u7,d,b,a,c) 

-I- W4(~.+9J+r1+r7+rio,K+r3+rg+r12,~5,d,b,c,a) + ~4(ti~,K+T3+r7+r12,1+r1+Tq+r6,c+,,d,c,a,b) 

(42) 

In Eq. (42), tV, denotes the integral Hagstrom. 26 These authors have given a recursion relation 
for the integral, as well as values for some special cases of 

W.&,J,K,L,a,b,c,d) = 
I 

m x’e-” dx 
0 s 

xw #eubY dy 
the integral. 

Since the integral 

X 
s 

m 8eBcz dz 
Y I 

O” wLevdw dw. 
W(IJKabc) 3,) 3 3 

z 
* de-” dx 

(43) = 0 s 
~mfembydy~m fie-“dz (4.4) 

x Y 

arises in the context of the three-electron problem, and has 
The W4 integral has been discussed previously by Sims and been discussed extensively in the literature,gJ12”3”6 it is ad- 
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TABLE I. Values for some representative I4 integrals evaluated using Eqs. (27) and (32). All entries have a=3.6, b=3.8, c=O.8, and d= 1.3. 

i j k I m n P 4 s t 4 

1 
1 
1 
I 
1 
1 
1 

-1 
1 
1 
1 
1 
1 

-1 
-1 

I 
1 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 
2 

-1 
2 
2 
2 
2 
2 

-1 
1 
2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 
3 

-1 
3 
3 
3 
3 

-1 
-1 

1 
3 
3 
3 
3 
3 
3 

4 2 0 
4 1 0 
4 0 2 
4’ 0 2 
4 2 0 
4 1 3 
4 0 1 

-1 2 0 
4 3 3 
4 0 2 
4 2 2 
4 2 2 

-1 -1 2 
-1 1 2 
-1 3 -1 
-1 3 1 

4 1 1 
-1 2 2 
-1 1 2 
-1 2 2 
-1 2 1 

0 
0 
0 
2 
1 
0 
1 
0 
2 
2 
0 
0 
0 
0 
2 
0 
0 
2 
2 
1 
1 

0 
0 
0 
0 
0 
0 
0 

-1 
0 
0 
1 
2 

-1 
-1 

2 
2 
1 
2 
2 
2 
2 

0 2 5.067 939 409 842 65 1008 3 12 359 39 x lo* 
0 1 2.25420734523631861747113507X107 
2 2 5.48039393499186626477187889X10" 
0 2 5.368 252.390 484 503 824 239 842 74x 10” 
0 2 3.066 337 409 317 699 286 041 877 26x 10’ 
0 2 2.889 914 740 840 552 356 252 969 39x 10” 
0 2 7.61867846582558275105456474X10y 
2 -1 1.144435513036587426635712 19x10' 
2 0 1.679228 373 678 646793 368058 65X lOI 
2 2 3.354413036967296133 16419624X1O'3 
2 2 2.39367571369274484986360020x10" 
2 1 1.983 354428 418 357 876328 875 68~10'~ 
2 2 7.509 027 797 562 537 372 664 899 09x lo3 
2 -1 3.60571037674644055779066132x102 
0 1 2.76445205406427595695621725x105 
2 1 3.629 849 893 779 623 694 349 389 10x lo9 
1 2 1.406 388 379 915 098 238 400 955 30x 10” 
2 2 2.46171645052774258733820415X10'2 
2 2 1.11532030488414074486069079~10'~ 
2 2 6.64611419953140344487976052x10" 
2 2 4.898 202 794 184 977 140 224 588 93x 10” 

vantageous to exploit previous work and reduce the W, 
integral directly to the W integrals. Two cases arise‘: ~0 
and L < 0. For L)O the W, integral can be easily reduced 
to the form 

(45) 

For the case when L < 0, a rearrangement of the order of 
integration allows the following result to be obtained: 

am 
W4(I,J,K,L,a,b,c,d) =- WJAL,b,c,d) - i -i m=O m. 

X W(J+m,K,L,a+b,c,d) . 
1 

(46) 

Equation (46) applies when 00, J+K> - 1, and J+K 
+ L) -2, and when the differencing does not result in the 
loss of too many digits of precision. Equation (46) is not 
expected to be numerically stable for general application. 
In its place the following result is employed 

W&,JX,L,a,b,c,& 

=I! 2 m=. ,m+9mtl,, W(m+I+J+l,K,L,a+b,c,d). 

(47) 

Equation (32) represents the general solution of the 
integral given in Eq. (3), with Io given by Eq. (36) and IR 
given by Eq. (42). All the summation limits in Eq. (42) 
terminate at finite values. This follows from the properties 
of the PO&hammer symbol [see Eq. (28)] and the defini- 
tion of g given in Eq. (39). For m even in Eq. (37) the m2 
summation terminates at m/2-ml [see Eqs. ( 13) and 

(39)], and for m odd the m2 summation terminates at 
(m + 1)/2. A simiiar argument applies for each of the sum- 
mation limits in Eq. (37). 

We now turn to the summation limits in Eq. (32). If 
any of m, n, p, q, s, and t are even, the corresponding 
summation limit terminates at finite values [see Eq. (38)]. 
For example, if t is even, then the t, summation limit is 
bounded above by (t/2). The second condition that sets 
the summation limits is the triangle condition on the 3j 
symbols in Eq. (36). For example, 

l~l-~ll~~l~~l+41~ (48) 

IPI-+ I ~tl~Pl+sl (49) 

and all cyclic permutations for the sets (ml ,nl ,pl , ), 
(ml ,ql ,sd, (nl ,ql ,tl), and (PI ~1 ,tl). From these consid- 
erations it is clear that the tl summation terminates at the 
value min{t/2 if t even, nmax+qmmax, p,,+s,,) where 
n max denotes the maximum summation index for the ytl 
summation and similar definitions apply to qmax , pmax , and 
s m&y. So if t is odd, then n and q both even, orp and s both 
even, would be sufficient to terminate the tl summation at 
finite values. If neither of these latter two conditions are 
satisfied then the t, summation may still terminate at finite 
values. This would follow if m, 12, and s are each even or if 
m, p, and q were each even. These two conditions following 
from triangle inequalities on the 3 j symbols in Eq. (36). A 
similar argument applies to each of the summation limits 
in Eq. (32). The most difficult case to deal ‘with occurs 
when m, n, p, q, s, and t are all odd. In this case an 
appropriate computational strategy would be to rearrange 
the summations in Eq. (32) according to the speed of con- 
vergence for representative test values of a, b, c, and d. 
From a practical point of view, it would be more appro- 
priate to select the basis functions in Eq. (2) in such a way 
that integrals involving the all odd case do not arise. The 
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triangle inequalities in Eqs. (48) and (49) and the others 
obtained by various cyclic permutation of the sets indi- 
cated after Eq. (49 ), lead to lower bounds on the summa- 
tion limits in Eq. (32). For example, the tl summation 
starts at max{ 1 n1 -ql I, Ip1 -sl 13. 

IV. RESULTS 

In Table I a representative sample of I4 integrals are 
tabulated. The first 17 entries were calculated using Eq. 
(27) and checked using Eq. (32). The last four entries can 
only be evaluated by the method of Sec. III. For the first 16 
entries the number of digits of precision reported reflects 
the number of digits that agreed for the two computational 
methods. Entry 17 was calculated to 22 digits of precision 
using Eq. (32), and these agreed with the result obtained 
from Eq. (27). For the last four entries, the number of 
digits of precision is assumed to be simil&. All the calcu- 
lations were carried out on a Cray YMP in double preci- 
sion. 

V. CONCLUDING REMARKS 

A computationally viable scheme has been presented 
for the evaluation of atomic integrals for the four-electron 
problem involving up to six interelectronic separation fac- 
tors r;j. The methods of Sets. II and III can both be ex- 
tended to integrals involving more than four electron co- 
ordinates, but the results will become increasingly 
involved. To apply the Hylleraas method to systems with 
more than four electrons, a judicious selection of basis 
functions with perhaps no more than two distinct rii fac- 
tors for each basis function may prove to be a viable strat- 
egy. In this case the methods of Sec. II might prove to be 
very useful. 

To evaluate certain relativistic corrections or matrix 
elements of the square of the Hamiltonian (which are re- 
quired for some lower bound formulas) for four-electron 
systems using a standard Hylleraas expansion, then I4 in- 
tegrals with r1T2 factors arise. Such integrals can be at- 
tacked by an extension of the methods developed else- 
where.23,24 

The solution of the four-electron integrals presented in 
this work should allow a general Hylleraas wave function 
to be constructed, leading to a much improved determina- 
tion of ENR, without the need for extrapolation estimates. 
Work is in progress on this problem. 
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