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Nonlinear programming procedures are employed to carry out constrained variational 
calculations on the helium atom and the hydride ion in the Hartree-Fock approximation. The 
inequality constraints imposed to improve the local behavior of the wave function are based on 
the reduced local energy, evaluated at selected points in configuration space. Improved 
moments (r”) are obtained for the helium atom and the hydride ion using this procedure. The 
calculations provide empirical support for the fact that the reduced local energy does reflect 
errors in the wave function. 

I. INTRODUCTION 

It is well known that wave functions determined by the 
variational technique often lead to non-Hamiltonian expec- 
tation values of poorer quality, relative to the accuracy ob- 
tained for the energy. This is a direct reflection of the local 
inaccuracies in the wave function. An excellent illustrative 
example comes from the work of Pekeris.’ In a classic paper 
he determined the ground-state energy of the helium atom to 
an estimated accuracy of one part in 10” (verified by later 
calculations to be correct), while the same 10784erm wave 

function used to evaluate the energy gave a 5% error in the 
coefficient of the r,* term of the wave function. 

The variational technique is a global procedure; there is 
no explicit functional dependence on any local configura- 
tion-space coordinate. The purpose of this paper is to extend 
the standard variational technique, by including an indirect 
dependence on local configuration-space coordinates. The 
constraint that is employed in this study is based on the re- 
duced local energy. 

The reduced local energy is defined for an N-electron 
system (N)2) by”’ 

E, (r,) = .W*(r,,r2 ,..., r,)W(r,,r, ,..., rNWl dT2 ~TY-~TN . 
pP*(r,,r2 ,..., rN)Y(r,,r, ,.,,, r,>dy, dr2 dr3...drN 

An analogous result holds for the Hartree-Fock formalism, namely,‘-” 

EyF(r,) = 
ST;, (rl,rZ,...,rN)NHF (rl,rZ,...,rN)dyl dr2 dr3...dr, 

’ 

(1) 

(2) 

The calculations in this paper will focus on the Hartree- 
Fock approximation, so it is Eq. (2) that will be utilized. 

The reduced local energy represents a necessary but not 
sufficient condition that must be satisfied by the exact Har- 
tree-Fock wave function. That is, 

as YHF -Y~,Y’, EFF(r) +EHF, (3) 
where E HF denotes the exact Hartree-Fock energy corre- 
sponding to YKi?*. A central issue is how does the quantity 
AE F”( r) defined by 

AEFF(r) = IBFF(r) - EHFl (4) 
reflect errors in the density difference, ApHF (r), defined via 

bHF (r) = j&F (I) -p$%r)17 (5) 

where pHF (r) and pEFt( r) denote the electronic densities, 
determined from Y,, and YE,?‘, respectively. There is no 
question that at particular points of configuration space, 
E y”( r) may be inaccurate andp,, (r) reasonably accurate. 
This situation often occurs (depending on the choice of basis 
functions) in the near-nuclear region of configuration 
space.“” The converse may also occur. That is, lIFF(r) 
might be extremely accurate, butPHF (r ) is much less so, for 

a particular point in configuration space. A working hypoth- 
esis of the present study is that, given a sufficiently large 
region of configuration space, the inaccuracies in E F”( r) 
will be reflected in the inaccuracies in pHF (r). There is no 
known relationship connecting E F’( r) with pHF (r), and it 
appears very unlikely that any simple connection can be 
found. The above conjecture does not imply any simple pro- 
portionality between AE F”(r) and ApHF (r). There is some 
empirical evidence that AE yF(r) does reflect errors in 
Pnr (r) as assessed by monitoring various expectation val- 
ues.9,10*12-16 Similar empirical observations have been made 
for the post-Hartree-Fock case.2V3*1’ Further investigation 
of exactly soluble model problems might shed some light on 
the relationship between AEL (r) and Ap( r) .” 

An alternative procedure that has been suggested is to 
utilize the global variance of the l-reduced local energy ma- 
trix as a quantitative measure of the error in the wave func- 
tion. 18*19 Unfortunately, numerical applications of this idea 
have not been made. 

In this study, the He atom and the H- ion are examined. 
These were both selected because of the relative ease of car- 
rying out the nonlinear optimizations described in the next 
section. Both species offer the advantage that there are fairly 
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accurate values for the moments (f ) (for a range of values 
of n) available for comparison. H- offers an interesting tar- 
get. Despite the fact that the Hartree-Fock method does not 
yield a bound state for this system, the H- ion has been well 
studied with this procedure. The H- ion presents a situation 
where the energy-important region of configuration space is 
somewhat more diffuse, in comparison with the He atom. 
This provides an additional challenge in the constrained op- 
timization task, since a much larger region of configuration 
space must be incorporated in the calculations. 

II. THEORY 

The following optimization problem is the focus of this 
investigation. Minimize 

subject to the following constraints: 

E HF - EFF(r,) <a,, 

EHF - EFF(r2)ga2, 
: 

EHF - EFF(ri)>ai, 

EHF- EFF(rj)>aj, 
: (7) 

by varying adjustable parameters appearing in the wave 
function Y HF. The optimization task presented in Eqs. (6) 
and (7) is a nonlinear programming problem. 

There is an extensive literature on nonlinear program- 
ming. *‘**I Nonlinear programming problems of fundamen- 
tal importance arise in a diverse number of fields,** and for 
this reason, we may expect to see continued progress in the 
development of robust algorithms to solve such problems. In 
a previous work in this area, l6 the gradient projection meth- 
od developed by Rosen23*24 was employed. Rosen’s method 
suffers the disadvantage of being inefficient when implemen- 
ted with nonlinear inequality constraints of the type em- 
ployed in Eq. (7). In the present work, the more recently 
developed generalized reduced gradient method as imple- 
mented by Lasdon et a1.25 is employed. Concisely, the strate- 
gy employed is to convert the inequality constraints to equa- 
lities (by the introduction of appropriate slack variables). 
For a problem with n variables, the algorithm solves for m 
basic variables satisfying equality constraints in terms of 
n - m independent (nonbasic) variables. The objective 
function [in the present calculation this is Eq. (6) ] can then 
be transformed to a function of the nonbasic variables. The 
new objective function is called the reduced objective and its 
gradient the reduced gradient. The independent variables 
are varied so as to rapidly obtain the minimum of the objec- 
tive function. Solution of the constraint equalities at each 
step is done using a variant of Newton’s method. Lasdon et 
a1.25 should be consulted for details on the nonlinear pro- 
gramming technique as employed in this study. For those 
not familiar with nonlinear programming, Himmelblau’s 
book*’ gives a very readable introduction. 
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The number of constraints imposed in Eq. (7) is not 
restricted; however, practical limitations dictate using a few 
well-selected constraints. The choice of constraints, that is, 
their location ri and the values for the bounds a,, were initial- 
ly made on the basis of trial calculations. For a Y,, with few 
expansion terms, it is very easy to impose constraints in such 
a way that no feasible solution can be found. This can be 
done by choosing a few constraints with small values for the 
bounds a,. 

If the programming problem presented by Eqs. (6) and 
(7) were convex, determination of a global minimum would 
be relatively straightforward. However, it is expected that 
Eqs. (6) and (7) will present a nonconvex optimization 
problem, and determination of a global minimum depends 
on choosing a starting search point on the face of the deepest 
valley. 

Ill. COMPUTATIONAL APPROACH 

The orbital basis functional form chosen was 

qS(r) = CC,N,r”‘e - Zr cosh(a,r) Yoo, (8) 

where 2 is the nuclear charge, Ni is a normalization factor, 
and a, are the parameters determined in the nonlinear opti- 
mization problem. If the restriction n, # 1 (ni>O) is em- 
ployed, then the functional form given in Eq. (8) has the 
advantage that the cusp condition on the orbital function*“,*’ 

Wr) 
i I ar r-o 

= -Z&O) (9) 

is exactly satisfied. The ai parameters satisfy 

Iail <z* (10) 
This range restriction on the ai parameters allows the non- 
convexity of the problem to be addressed in part by carrying 
out trial calculations with different starting sets for the ai. 

The basis functions in Eq. (8) were selected with the 
expectation that they would be particularly advantageous in 
minimizing errors in the region of configuration space close 
to the nucleus. In the large r limit, the choice of basis func- 
tions given in Eq. ( 8) would be less suitable. However, this is 
likely to be a problem only for the very diffuse region of 
configuration space. Support for this assertion is based on 
our ability to produce wave functions in the nonlinear pro- 
gramming calculations for the long-range region, which lead 
to accurate moments (Jt) for large values of n. 

To simplify the calculations, the numerator and de- 
nominator of Eq. (6) were integrated with respect to the 
polar angles (13,,4,). This leads to a reduced local energy 
depending only on the radial coordinate. 

The nonlinear programing aspect of the problem was 
solved using GRG2 (generalized reduced gradient)-a soft- 
ware package commercially available from L. S. Lasdon, 
University of Texas, Austin, Texas. The GRG2 code ap- 
peared to be rather robust in applications, and is well 
documented. 

All the calculations were carried out in double preci- 
sion. The final results are all reported in atomic units. 
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TABLE I. Expectation values (Y]r/‘]Y) for He.” 

2891 

Fischer Clementi- 
n numerical HF Roetti 

-2 5.995 50 
-1 1.687 28 

1 9.272 73[ - l] 
2 1.184 83 
3 1.94064 
4 3.887 95 
5 9.221 20 
6 2.527 84[ l] 
7 7.865 25[ I] 
8 2.738 45[2] 
9 1.054 83[3] 

10 4.453 56[ 31 
11 2.045 10[4] 
12 I.014 76[5] 
13 5.41043[5] 
14 3.084 70[6] 
15 1.872 72[7] 

5.995 92 
1.687 33 
9.272 51[ - l] 
1.184 66 
1.939 80 
3.883 84 
9.2tXl75 
2.517 37[ I] 
7.809 76[ l] 
2.707 95[2] 
1.037 40[3] 
4.349 79[4] 
1.980 70141 
9.730 90[4] 
5.129 15[5] 
2.886 76[6] 
1.727 58[7] 

Energy 
optimized 

5.995 05 
1.687 27 
9.272 73[ - l] 
1.184 83 
1.940 64 
3.887 94 
9.221 04 
2.527 64[ l] 
7.863 oO[ I] 
2.736 16[2] 
1.052 65[3] 
4.433 73[3] 
2.027 76[4] 
l.OtM 14[5] 
5.292 62[5] 
2.996 30[6] 
1.815 31[7] 

Short-range 
optimized 

5.993 62 
1.687 10 
9.275 75[ - l] 
1.187 91 
1.971 86 
4.212 56 
1.267 62 [ 1 ] 
6.287 40[ l] 
4.966 59[2] 
5.023 47[3] 
5.623 94[4] 
6.605 76[5] 
8.009 60[6] 
9.979 93171 
1.276 51[9] 
1.676 15[10] 
2.26023[11] 

Intermediate- 
range optimized 

5.994 95 

Long-range 
optimized 

5.994 88 
1.687 26 1.687 26 
9.272 73[ - l] 9.272 73[ - l] 
1.184 83 1.184 83 
1.940 64 1.940 64 
3.887 98 3.887 98 
9.221 50 9.221 53 
2.528 10[ 11 2.528 12[ I] 
7.867 13[ 11 7.867 34[ l] 
2.739 72[2] 2.739 98[2] 
1.055 58[3] 1.055 89[3] 
4.457 19[3] 4.460 68 [ 31 
2.046 04[4] 2.049 92[4] 
1.013 97[5] 1.018 13[5] 
5.392 33[ 51 5.435 30[5] 
3.061 90[6] 3.104 85161 
1.849 60[7] 1.891 20[7] 

‘The notation [m] designates x 10”. 

IV. RESULTS 

An initial set of calculations were made to determine an 
energy-optimized wave function for both the He atom and 
the H- ion. For both systems, a seven-term basis set was 
employed. The resulting energies were - 2.861 679 921 a.u. 
for He and - 0.487 929 69 au. for H-. For comparison, the 
Hartree-Fock ground-state energy for He is 
- 2.861 679 995 61 a.u.,‘* and a result due to Silverstone 

quoted in Ref. 29 gives - 0.487 929 734 35 a.u. for the H- 
ion. Roothaan and Soukup have published similar values.30 
The Hartree-Fock wave functions employed are at least in 
the energetic sense of fairly high quality. The energy opti- 
mized wave functions determined in this study are available 
from the Physics Auxiliary Publication Service (PAPS) .3’ 

Since a principal objective of the present investigation 
was to explore the effect of the nonlinear programing tech- 
nique on computed expectation values, optimizations were 
carried out on three separate regions of configuration space: 
the short-range near-nuclear region of configuration space, 
the intermediate region of configuration space, and the long- 
range region. The tabulated wave functions and the nonlin- 
ear constraints employed are available from PAPS3’ 

For each wave function, expectation values of 
WHF IfV’J’,,) h ave b een determined, and these are present- 
ed in Tables I and II. For comparison purposes, the mo- 
ments for the helium atom calculated from the Clementi- 
Roetti wave function3’ and from the numerical Hartree- 
Fock wave function of Fischer33 are also included in Table I. 
For the hydride ion, the wave functions ofGupta and Boyd29 

TABLE II. Expectation values (v]r”]q) for H-. 

Gupta and Curl and Energy Short-range Intermediate- Long-range Fischer’ 
n Boyd’ Coulsonb optimized optimized range optimized optimized numerical HF 

-2 1.081 51 1.081 49 1.081 34 1.081 38 1.081 37 1.081 22 1.081 49 
-1 6.856 71[ - 1 ] 6.857 85[ - l] 6.856 63[ - l] 6.856 541 - l] 6.856 62[ - l] 6.856 53 - 1 2.503 96 [ 6.856 - 1 2.526 ] 08 72[ l] 

2.503 96 2.504 07 2.504 03 2.503 96 2.503 96 
2 9.411 07 9.712 22 9.411 05 9.413 61 9.412 94 9.411 10 9.411 10 
3 4.870 06[ I] 5.286 77[ l] 4.869 90[ l] 4.875 34[ I] 4 4.874 35[ l] 4.870 07[ l] 4.870 3.261 39[2] 3.861 93[2] lO[ I] 

3.260 75[2] 3.272 62[2] 3.271 15[2] 5 2.700 38[3] 3.261 38[2] 3.615 71[3] 3.26144[2] 2.698 12[3] 
2.725 02[3] 

2.672 53[4] 
2.722 55[3] 

6 4.160 73[4] 
2.700 19[3] 2.700 30[3] 

2.665 03[4] 2.728 39 [ 41 2.671 7 3.083 99[ 51 2.723 03[4] 2.671 46[4] 5.674 17[5] 3.059 32[5] 64[4] 
3.213 75[5] 3.078 8 4.082 9616) 3.198 82[5] 8.904 58[6] 3.078 49[5] 81[5] 3.995 61[ 

61 4.383 57[6] 9 6.207 34[7] 4.336 27[6] 4.051 4.052 1.572 37[8] 54[6] 26161 
5.834 66[7] 6.836 00[ 71 10 6.681 14[7] 5.998 1.149 27[9] 3.072 48[9] 5.996 33[7] 60[7] 
9.389 35[8] 1.203 84[9] 1.153 36[9] 9.865 11 3.192 641 IO] 6.562 17[ lo] 9.856 50[ 81 36[8] 1.645 12[ 

lo] 2.362 44[ lo] 2.19975[10] 1.780 
12 1.672 441121 1.517 67[ 121 

93[ lo] 
3.10705[12] 

1.78463[10] 
5.093 95[11] 4.573 87[11] 3.50624[11] 3.521 13 1.401 30[ 141 3.773 52[ 131 80[11] 

6.273 48[ 131 1.190 26[ 131 14 1.024 42[ 131 7.529 1.435 63[ 161 1.002 88[ 151 7.463 941121 04[ 121 1.345 
12[ 141 2.976 70[ 141 2.446 33[ 141 1.706 1.733 15 1.61406[ 181 2.835 60[ 161 27[ 141 40[ 141 3.046 lO[ 

151 7.88603[15] 6.177 12[ 151 4.162 74[ 151 4.27581[15] 

‘Evaluated from the wave function given in Ref. 29. 
“Evaluated from the wave function given in Ref. 34. 
‘Reference 33. 
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FIG. 1. Reduced local energy vs the radial coordinate for the short-range 
optimized wave function for the H- ion. The Gupta-Boyd function is 
shown as - - -. The Curl-Coulson function is shown as - - -. The energy 
optimized function is shown as - - - . The short-range optimized function 
lies directly over the exact local energy (they agree to four significant 
figures). 

FIG. 3. Reduced local energy vs the radial coordinate for the long-range 
optimized wave function for the H- ion. The long-range optimized function 
is shown as the solid curve. The other functions are defined in Fig. 1. 

that such a strategy is not likely to lead to a solution of the 
programming problem. Some experimentation is required in 
the selection of appropriate bounds. Some violations of con- 
straints were found, but these were rather minor. It is of 
course entirely feasible to adopt a procedure where the 
bounds for the inequality constraints are set rather tight, and 
the number of terms in the basis set progressively expanded, 
until a solution of the nonlinear programming problem is 
obtained. Since the principal objective of the present investi- 
gation was to see what improvements could be achieved for a 
fixed-size basis set, the aforementioned strategy was not 
utilized. 

and of Curl and Coulson34 (see footnotes 32 and 33 of Ref. 
29) have been utilized to calculate moments, and the nu- 
merical Hartree-Fock (HF) results of Fischer33 are also 
included. 

The reduced local energies calculated from the wave 
functions optimized for the short-, intermediate-, and long- 
range regions for H- are shown in Figs. l-3. Graphical re- 
sults for He are available from the authors. For comparison, 
the reduced local energy calculated using the energy opti- 
mized wave function (no constraints imposed), as well as 
the Gupta-Boyd and Curl-Coulson wave functions, are also 
displayed. 

V. DISCUSSION 

When carrying out the nonlinear programming phase of 
the calculations, it is tempting to make the bounds on the 
inequality constraints as tight as possible. The drawback is 

z 

E-O.4875 
El 
-I 
z-0.4880 
0 
-I 

E-O.4885 

RADIAL DISTANCE (A.U.1 

FIG. 2. Reduced local energy vs the radial coordinate for the intermediate- 
range optimized wave function for the H- ion. The intermediate-range op- 
timized function is shown as the solid curve. The other functions are defined 
in Fig. 1. 
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The nonlinear optimization calculations lead to a slight 
increase in the energy for each of the six wave functions 
determined in the present work. However, the changes com- 
pared with the energy optimized results are very minor. 

The expectation values (Y HF 1 r” 1 ‘P,, ) give an indica- 
tion of how the nonlinear optimization has affected the local 
behavior of the radial density, and indirectly, the wave func- 
tion. The higher moments depend on the more diffuse part of 
the electronic charge cloud. To get a good idea just what 
region is sampled for the evaluation of a particular moment, 
we have examined plots of the integrandp( r)? + ’ as a func- 
tion of r, where P(T) is the electronic density. For the He 
atom, some functions are shown elsewhere.16 For the larger 
moments there is, as expected, a significant contribution to 
the integrands from the long-range region, but there is also a 
rather significant contribution from the intermediate-range 
region. For the moments with smaller values of n, it is the 
near-nuclear and intermediate-range regions of configura- 
tion space that make the largest contributions to the inte- 
grands for the moments. The function E F”( r)p( r)? vs the 
radial coordinate has also been examined. This gives direct 
information on the energy important region for use in the 
nonlinear programing calculations. It should be clear from 
the preceding remarks that the constrained optimization cal- 
culations may lead to changed values of (Izr) by altering the 
structure of the wave function in one or more regions of 
configuration space. It is also possible that changes in one 
region of configuration space may offset changes in another 
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TABLE III. ValuesofD [see Eq. (II)] and thelimitsEyF(r- m) and EyF(r-.O). 

2693 

He H- 

Wave function 

Energy optimized 
(unconstrained) 

D 

2.27x 10-h 

E yF(r-O) 

- 2.901 31 

EyF(r+ 00) 

- 2.799 40 

D 

2.64x lo-’ 

EyF(r+O) 

- 0.503 850 

EyF(r+ CO) 

- 0.526 089 

Short range 

Intermediate 
range 

7.06x 10-5 - 2.861 69 - 2.247 72 3.13x lo-’ - 0.487 939 - 0.512 888 

2.64x 10-h - 2.903 90 - 2.799 40 1.01 x lo-’ - 0.499 075 - 0.516 522 

Long range 3.33 x 10-n - 2.907 16 - 2.799 43 8.37x lo-’ - 0.512 115 - 0.545 334 

Clementi and Roetti 6.63x lo--’ - 2.947 9 1 

Gupta and Boyd 2.87 x lo-’ -0.444519 

region, leading to only a small change in the computed value 
of (Jt). 

From the results of Table I, the impact of the con- 
strained optimization on the energy (unconstrained) opti- 
mized wave function is readily apparent. The availability of 
the numerical HF values of Fisher certainly helps clarify the 
situation. The short-range, intermediate-range, and long- 
range constrained optimized functions all give fairly accu- 
rate values for (JI) for n = - 2 to 2. For higher values of n, 
the short-range function gives poor values for the moments, 
a fact not entirely unexpected. For the highest values of n, 
both the intermediate-range and the long-range optimized 
functions give better results than the energy-optimized func- 
tion, and much superior results to the Clementi-Roetti func- 
tion. The values for (r”) for the intermediate-range and 
long-range optimized functions are in good agreement with 
the results of other Hartree-Fock calculations.35 

For the case of H- the changes are more dramatic, un- 
doubtedly this is tied to the much more diffuse nature of the 
charge cloud. For the smallest values of n (n = - 2 to 3) all 
the cash-type wave functions give similar values for the mo- 
ments (Jt). As n increases, the intermediate-range, long- 
range, and energy-optimized functions all lead to moments 
that are now significantly different from one another. After 
the optimization calculations for H- were completed, 
Fischer13 sent us the results of her numerical Hartree-Fock 
work on this system. It is apparent from the results presented 
in Table II that the long-range optimized results show signif- 
icant improvements over the results obtained from the ener- 
gy- (unconstrained) optimized wave function, particularly 
for the larger moments. The agreement with the numerical 
Hartree-Fock results is gratifying. The Gupta-Boyd mo- 
ments for large n deviate significantly from those obtained 
with the cash-type wave functions. 

The functional form for the basis set allows a rather 
accurate E ,“‘( r) to be calculated in the near-nucleus region 
(see Fig. 1). For both He and H-, the unconstrained opti- 
mized function does not lead to a particularly accurate 
E y”( r) in this region, though it is much more accurate than 
the other results presented based on Slater-type orbital basis 

sets. It can be noted from Tables I and II that these inaccura- 
cies do not have any significant impact on the expectation 
values of (r”) for small n. An important consideration in 
these cases is that the rZ factor from the volume element 
tends to iron out any inaccuracies in the wave function near 
the nucleus. 

For the intermediate-range and for the long-range con- 
strained optimizations, the computed E,“‘(r) generally ap- 
proaches the exact E F” more closely than the other func- 
tions indicated in Figs. 2 and 3. In these cases, expectation 
value of (f ) apparently reflect these differences. 

One way to assess the closeness of E y( r) to the exact 
value of E y’ is to use a global measure defined by” 

D= om [E% I - E:F(r)]2p(r)3 dr. (11) 

In the limit that the exact Hartree-Fock wave function is 
obtained, D + 0. Values of D for the different wave functions 
employed are tabulated in Table III. The values of D give an 
indication that the wave functions are all rather accurate, at 
least in the intermediate region of configuration space. Since 
the integrand of D is weighted by ? at small r, and the den- 
sity p (r) has a “leveling” effect at large r, the value of D will 
not strongly reflect errors in each of these regions of configu- 
ration space. A better way to examine these regions is to look 
at the asymptotic behavior EFF( r--r 03 ) and the limit 
E FF(r+O). These values are also reported in Table III. 
None of the values EFF( r+ CO ) are particularly accurate, 
and only the short-range constrained values of E F”( r-0) 
are accurate. 

Vi. CONCLUSIONS 

The results of the present study provide support for the 
hypothesis that the reduced local energy does reflect the lo- 
cal inaccuracies in the wave function, and indirectly, in the 
electronic density. The constrained variational calculations 
are shown for the case of He and H- to lead to improved 
values for the moments (Y), in comparison with the results 
from unconstrained optimization calculations. 
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