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Abstract. Some upper bound estimates for the atomic Hartree-Fock electronic density 
are presented. The bounds are derived in terms of the total kinetic energy, and some 
results also depend on one of the expectation values of r-' or r-'. The bounds have been 
numerically evaluated for He, Ne and Ar. The upper bound estimates obtained are found 
to be satisfactory for small to moderate values of the radial distance, but not very close 
to the nucleus. 

1. Introduction 

Although reasonably accurate Hartree-Fock atomic electronic densities are available, 
it is of interest to know how the Hartree-Fock electronic density is bounded in various 
regions of configuration space. It is also of particular interest to know in terms of 
what quantities the Hartree-Fock electronic density can be bounded. 

In the current literature, there are very few rigorous bounds available for the 
atomic electronic density. Most known results have been derived only in the last few 
years (Ahlrichs et al 1978, 1981, Hoffmann-Ostenhof e? al 1978a,b, Hoffmann- 
Ostenhof 1979, Hoffmann-Ostenhof and Morgan 1981, King 1983, Tal 1978, Tal 
and Levy 1980, RCdei 1963). Much of the recent interest has centred on deriving 
rigorous results for the asymptotic behaviour of the electronic density, with the 
principal focus being atomic systems. Molecular systems have received far less atten- 
tion. Unfortunately, many of the results derived are not useful for numerical computa- 
tions; the work of Hoffmann-Ostenhof et a1 (1978a) being an exception. 

The bounds presented herein connect the electronic density with the kinetic energy 
of the atom. Some of the results also involve expectation values of the operators r - l  

or r -* .  One important application offered by a knowledge of sharp inequalities for 
the electronic density is a direct means to obtain bounds for expectation values of 
different operators. 

One limitation of almost all the bounds available in the literature, and of the 
results presented in this work, is that the region in the immediate vicinity of the 
nucleus is poorly described. This is not a difficulty for calculating bounds for most 
expectation values; the exception being those expectation values that are based on 
operators that are very sensitive to the region of configuration space close to the 
nucleus. One bound has been given previously which applies specifically to the case 
r = 0 for atomic systems (Hoffmanr,-Ostenhof e? a1 1978a), but this result is not useful 
for finding bounds on expectation values, although it is important for understanding 
how the electronic density is bounded at the nucleus. 
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2. Theory 

King (1983) has recently derived a number of bounds for the exact atomic electronic 
density starting from Block’s inequality (Block 1957) which takes the form (prime 
denotes differentiation) 

The function A(r), which is independent of y ( r ) ,  is obtained in terms of the solutions 
of the following Sturm-Liouville equation 

( fw’ ) ’ -gw  = 0 (2) 
which is the Euler-Lagrange equation for the functional 

f and g are arbitrary positive functions in equation (1). 
With the appropriate choice of the functions f and g, and by expressing y in terms 

of a suitable function of the electronic density, various upper bounds can be determined 
for the electronic density from equation (1). For four different cases employing fairly 
simple choices for the functions f and g, the upper bound estimates obtained from 
equation (1) are summarised in table 1. The symbols appearing in each bound are 
defined in the table footnote. c1 and c2  are positive constants. The positive constant 
a appearing in each bound is arbitrary. 

The bounds listed under cases C and F in the table have been obtained from cases 
B and E respectively by employing the well known inequalities 

(‘-PlrT1 G 2T/N (4) 

Table 1. Bounds for the Hartree-Fock atomic electronic density. 

Case Function f Function g Bound for pHF 

B 

D ctrz 

E C I  

F c1 

N is the number of electrons, T the Hartree-Fock kinetic energy, a = (c2/c1)’”, p = 2ar1/’, y = ar and 
S = i N ( Y / r ; 2 J q ) / T .  I, and K, are modified Bessel functions of the first and second kind respectively. 
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where T is the kinetic energy and N is the number of electrons. This leads to bounds 
involving the kinetic energy alone. \I’ represents the Hartree-Fock wavefunction. 

One constraint that must be satisfied for case D is that 

where 

If equation (6) is not satisfied, it can be shown that 

The expression given in equation (8) assumes the optimum choice for the parameter 
a,  which in this case corresponds to the limit a + 0. The analogue of case A. for the 
exact electronic density was obtained by Hoffmann-Ostenhof and Hoffmann-Ostenhof 
(1978). 

3. Numerical applications 

Because some of the bound estimates have non-simple analytic forms, it is not 
immediately obvious which inequality is most sharp at any given r value. The exception 
to this statement occurs in the limits of small r and large r values. In these limits, 
the bounds become sufficiently simple so that the optimum value of the parameter a 
can be determined analytically. For other values of r,  simple analytic expression for 
a cannot be obtained. In this case the optimum value of a! has been determined 
iteratively. 

The bounds have been evaluated for He, Ne and Ar. The results are shown in 
figures 1-6. The Hartree-Fock wavefunctions employed are those from the Clementi- 
Roetti tables (Clementi and Roetti 1974). For case E, only the situation p = 1 is 
shown. Preliminary calculations for p = 2 gave bounds which were somewhat less 
sharp than the case p = 1. All results are reported in atomic units. 

For He, S = 1.048, so equation (6) is not satisfied and the appropriate bound for 
case D is given by equation (8). From figure 1 it is observed that cases A, B and D 
all converge at small r. It can be shown that the limit r + 0 for cases A, B and C allows 
the bounds presented in the table to be simplified to equation (8). That is, all these 
bounds are equivalent in the small r limit. 

For both Ne ( S  = 0.8069) and Ar ( S  = 0.6952), equation (6) is satisfied. Therefore, 
at small r, case D represents the best bound. This can be observed from figures 4 
and 6 for r = 0.03-0.04. At slightly larger values of r (i.e. r = 0.1) case B represents 
the best bound estimate for Ne and Ar. 

For middle range to larger r values, case A represents the best approximation, as 
can be observed from figures 1, 3 and 5 .  Case D is the worst bound for large r (see 
figures 1, 3 and 5), which is due to its fall-off as r - ’ ,  compared to the fall-off of case 
A, which is r-’. 
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Figure 1. Bounds for the atomic Hartree-Fock electronic density for helium. The full 
curve is the Hartree-Fock density computed from the Clementi-Roetti wavefunction. 
Each of the assigned letters refers to a bound formula presented in table 1. Bound C is 
not presented since it coincides very closely with bound B. 
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Figure 2. Bounds for the electronic density for helium for the region close to the nucleus. 
Bounds B, C and D are not presented in the figure because they coincide very closely 
with bound A. The full curve is the known Hartree-Fock density. 

4. Discussion 

From the numerical results presented, it is clear that no bound presented in the table 
is the best for all values of T.  Cases A, B and D represent the best approximation for 
pHF(r); the latter two typically being better at small T and case A generally better at 
medium to larger values of r. 
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Figure 3. Bounds for the electronic density for the neon atom. The full curve is the 
known Hartree-Fock density. 
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Figure 4. Bounds for the electronic density for the neon atom for the region near the 
nucleus. The full curve is the known Hartree-Fock density. 

All the bounds exhibit divergent behaviour at r = 0, and hence these inequalities 
must be restricted to the case r > O  (and preferably for values of r not too close to 
the nucleus). In addition, the long-range asymptotic behaviour predicted by these 
bounds is not the exponential fall-off expected for the true Hartree-Fock electronic 
density. The difficulties associated with bounding the electronic density at both short 
and long range considerably complicates the problem of finding bounds for expectation 
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Figure 5. Bounds for the electronic density for the argon atom. The full curve is the 
known Hartree-Fock density. 
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Figure 6. Bounds for the electronic density for the argon atom for the region near the 
nucleus. The full curve is the known Hartree-Fock density. 

values. Work is under way to obtain bounds which are satisfactory at both short and 
long range. 

In order to use bounds as a criterion for differentiating between basis sets, 
particularly those of high quality, very sharp bounds would be required. The present 
results would not be satisfactory for this purpose. Determination of tight bounds on 
p ( r ) ,  which would be useful for selecting one basis set over another, is an important 
open question. 
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