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In this work, several upper bound estimates for the atomic electronic density are derived by 
making use of Benson's inequalities. In some cases, it has been possible to compare the results 
obtained using Benson's inequalities with some bounds recently derived by other workers. 

PACS numbers: 31.20. - d, 31.15. + q 

I. INTRODUCTION 

Some time ago, Benson 1 proposed an elementary meth­
od which allowed a number of classical inequalities2

-4 to be 
derived. The basis of the method is as follows. If P(u, x) > 0 
andP (u,x) and G (u,x) are continuously differentiableforx in 
[a, b), then 

P(u' - Gup-1f>0, (1) 

P(u' - G P-l)2 + 2u'G + 2G ::;;. d(2G) (2) 
u U x:P" dx ' 

f [P(U')2+p-1G~ +2Gx ]dx>2G(u(b),b) 

- 2G (u(a),a). (3) 

A subscript indicates the appropriate partial derivative. De­
spite the elementary nature of the above sequence of equa­
tions, Benson showed by judicious choice of the functions P 
and G that many interesting inequalities could be obtained. 

A special case ofEq. (3) given by Benson is 

P(u,x) = pIx); G (u,x) = !u2g(x)P(x), 

which leads to the result 

i b 

[P(x)(u'f + Ip(X)g(X)2 + (P(x)g(x))')u(x)2]dx 

>u(b )2p(b )g(b ) - u(afp(a)g(a). (4) 

In the remainder of this paper, a simplified form ofEq. (4) 
will be utilized, namely, 

i b 

[(U(X)')2 + Ig(X)2 +g(x)'ju(x)2]dx 

>u(b fg(b ) - u(afg(a). (5) 

The main advantage of the above approach is that it provides 
a very straightforward approach to deriving bounds for the 
function u, given information on certain integrals involving 
u2 and (u'f In some instances, however, the approach of 
Benson does not lead to the sharpest possible inequalities. 
This particularly appears to be the situation if additional 
information is known about the function u(x). This point will 
be discussed further in the next section. 

II. THEORY 

In the present work, our interest is centered on the de­
termination of bounds for the atomic electronic density. This 
topic has been the subject of recent interest,5-12 particularly 
the determination of bounds for the asymptotic behavior. 
Considering the central role played by the electronic density 

in discussions of the static and dynamic behavior of matter, 
it is obviously very useful to know rigorous bounds for this 
fundamental quantity. 

The following discussion will focus on the application 
ofEq. (5) to the electronic density for seven simple cases. The 
first couple of choices are selected in order to compare the 
resulting bounds with previous investigations. The last cou­
ple of cases examined are attempts to provide very sharp 
bounds for the electronic density. 

The electronic density, which we will assume through­
,out to be radially symmetric, is defined by 

p(c) = N fllJl(Cl,C2, ... ,rNWdc2dC3 ... dCN' 

where N is the number of electrons. Our results are restricted 
to atomic systems. 

Case 1: g = k (k is a constant). 
Ifwe setg = k, then the basic Benson inequality (5) 

becomes, on setting a = 0 and uta) = 0, 

ku(rb )2<f
b 
[u(x)'] 2 dx + k 2fbU(X)2 dx. 

If the optimum k is selected, then 

u(rb )2<2[f
b 
[u(x)'] 2 dx fbU(X)2 dx r2. 

which may be rewritten as 

u(r)2 < 2[fO [u(x)'] 2 dx 100 

u(xf dx rz. 

(6) 

(7) 

(8) 

This special case of Benson's inequality has been known for 
sometime. 13 The special caseofEq. (8) for r = Ocan be found 
in the book by Hardy et al. 2 

Employing the substitution 

u(r) = rp(r)1I2 (9) 

and making use of the inequality, derived by Hoffmann-Os­
tenhof et al.,5 

100 T 
([rp(r)112]')2 dr<­

o 2ff 

leads to the result 

p(r) < (2NT)1/2/2ff,z. 

(10) 

(11) 

In Eq. (10) Tis the total kinetic energy of the system. A 
slightly stronger result has been given by Hoffmann-Osten­
hof et al.5

: 

(12) 

For Eq. (8) we assume that u(r) is continuous. No other as-
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sumptions on the function u(r) are employed, although the 
additional requirement that the integrals appearing in Eq. (S) 
converge will be employed; otherwise the result is rather tri­
vial. The stronger result obtained by Hoffmann-Ostenhof, 
Eq. (12), follows from the inequality 

[
{<X> (<X> ] 112 

lu(rW< )0 [U(X)'] 2dxJo u(xfdx , (13) 

which requires the hypothesis u(O) = O. This additional con­
straint allows the sharper inequality to be obtained, and can 
be observed to follow from a particular case of Block's in­
equalities 14. 15: 

lu(rW< tanh k(b - a) {b [[U(X)']2 + k 2u(xf)dx, (14) 
2k L 

which represents the uniform bound of the more general 
form of one of Block's inequalities: 

lu(rW< sinh k (r.- a)sinh k (b - r) {b [[u(x)'f 
k smh k (b - a) Ja 

+ k 2u(X)2)dx. (15) 

Equations (14) and (15) are derived under the hypothesis 

u(a) = u(b) = O. (16) 

If, in place of Eq. (9), the substitution 

u(r) = p(r)1/2 (17) 

is employed in Eq. (S), then bounds for the electronic density 
at the nucleus may be obtained, and these have been dis­
cussed elsewhere. II We note in passing that even for the case 
where u(O) = 0 is not assumed, the inequality that follows 
from Benson's Eq. (5), i.e., Eq. (6), can be given in slightly 
sharper form: 

ku(r)2<W + e - 2kr) i oo 
[ [u(x)'] 2 + k 2U(X)2) dx, (IS) 

which follows from an inequality of Block: 

lu(rW< coshk(b.-r)coshk(r-a) (b [[u(x)'f 
ksmhk(b-a) Ja 

+ k 2u(X)2)dx. (19) 

Case 2: g' + g2 = k 2e - 2rx IF is a positive constant). 
The differential equation to be solved is 

g(x)' + g(X)2 = k 2e - 2rx. (20) 

The standard approach to handle a differential equation of 
this form is to employ the substitution 

g(x) = v(x)'/v(x). 

Using Eq. (21), Eq. (20) is converted to 

v(x)" - k 2e - 2rXv(x) = O. 

(21) 

(22) 

The change ofvariabley(x) = k 2e - 2rx converts Eq. (22) into 
a modified Bessel differential equation. The solution of Eq. 
(22) is (in terms of constants C I and c2 ) 

v(x) = clo(ye - rX) + c2K O(ye - rX), (23) 

where y = k / rand 10 and Ko are modified Bessel functions 
of the first and second kind, respectively. The constant C2 

must be zero if v(x) is finite at x- 00. From Eq. (23) we have 
that 

g(x) = - ke- rXll(ye- rX)/lo(ye - rX). (24) 
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From Benson's inequality, Eq. (5), 

u(ra )2ke - rrOII(ye - rrO) 

lo(ye - rrO) 

< roo [ [U(X)']2 + k 2e - 2rxU(X)2) dx. (25) 

If we employ Eq. (9) and take advantage of the fact that the 
integrand in Eq. (25) is always positive, then 

I (ye - rr)[2T + k 2N (1/1 Ie - 2rr, 11/1) ] 
p(r) < 0 . (26) 

41Trke - rrll(ye - rr) 

From the asymptotic expansions for the modified Bessel 
functions of the first kind 16: 

e' [1 + ~ + _9_ + ... ] z-00,(27) 
(21TZ) I 12 Sz 12Sz2 

ldz)- e' [1 _ ~ __ 15_ + ... ] z-00,(2S) 
(21TZ) 1/2 8z 12Sz2 

it follows that Eq. (26) reduces to Eq. (11) in the limit r -0 
when the optimum k is employed. 

Hoffmann-Ostenhof et al. 5 have considered the prob­
lem of deriving bounds for expectation values involving ex­
ponential functions. Here we consider a different approach 
utilizing Sobolev's inequality. 17.18 Our bounds are restricted 
to expectation values of exponentially decreasing functions, 
and will allow us to express the expectation values in Eq. (26) 
in terms of the kinetic energy. 

Using the Holder inequality, we have 

Ie - kp(r)dr< {Ie - 3/2kr dr} 2/3 {I p(r)3 dr} 1/3. (29) 

Sobolev's inequality takes the form (in R 3) 

where the constant c = 4/33/2r. If we substitute 

ifJ (r) = p(r)1/2 

in Eq. (30), then 

Ip(r)3 dr<c2{IIVP(r)1/212 drr 

Hence, 

(30) 

(31) 

(32) 

Ie - krp (r)dro:;;;c2/3{I e - 3/2kr drr3 {fIVP(r)1/212 dr}, 
(33) 

which simplifies on using 

IIVP(r)1/212 dr<2T 

to give 

I
e- 2rrp(r)dr< 16T (~)1/3. 

27r 2 r 

(34) 

(35) 

We now make a simple evaluation ofEq. (35), using as a 
reference, the obvious result 

f e - 2rrp(r)dr<N. (36) 

For the hydrogen atom, p(r) = e- 2r /1T, and hence 
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Je - 2r'p(r)dr = 1 
(T + 1)3 . 

The right-hand side ofEq. (35) becomes 

_8_ (~)1/3 -0.17403 r -2 (in atomic units), 
27r l rr 

(37) 

and hence the bound in Eq. (35) is a fairly satisfactory ap­
proximation. The inequality for the case of the hydrogen 
atom is sharpest for r = 2. Comparing Eqs. (35) and (36), we 
find that Eq. (35) is the better bound for r> 0.417 17. For a 
general atom, Eq. (35) is superior to Eq. (36) when 

0.348 069T 1I2/N <r. (38) 

For He Eq. (35) is better than Eq. (36) if r>0.7109 and for 
the Be atom, if r> 1.130. 

Returning to Eq. (26), we may rewrite this bound using 
Eqs. (35) and (36): 

p(r) < lo(ye - r')T [1 + 0.174 035rJ. (39) 
21Trke - r'/l(ye - Tr) 

or the alternative form, 

(40) 

The optimum bound for Eq. (40) can be obtained by examin­
ing the limit r ->0, which leads to 

p(r) < (1I41Tkr)[2T + k 2 N]. 

Case 3: g' + g2 = k 2X2. 
With the substitution g(x) = v(x)' /v(x), the equation 

g(x)' + g(X)2 = k lXl (41) 

is transformed into 

x 2v(x)" - k lX4V(X) = 0, 

for which the solution is 

v(x) = XI/2[c1/1/4(~kxl) + c2KI/4(!kx2)]. 

(42) 

(43) 

With the requirement that v(x) remains finite as x- 00, we 
set C I = 0; hence 

g(x) = J.- _ kxK5/4(!":2) . (44) 
x K I/4(!kx ) 

Since the integrand in Benson's inequality is positive for the 
present case, we obtain, using Eq. (9) and (10), 

K I/4(!kr)[2T + Nk l( l[liri 11[1)] (45) 
p(~< . 

41Tk,-JK3/4(~kr) 
Case 4: g' + g2 = k 2/X. 
On making the substitution g(x) = v(x)' /v(x), the solu­

tion of the Riccati equation 

g(x)' + g(X)2 = k 2/X (46) 

is, with P = 2kx1l2, 

g(x) = klolP)lxI/2IIIP), (47) 

which leads to the bound 

IIIP) [2T + Nk 2( I[Ilrl- 111[1) ] 
p(r) < 41T,-J /2klolP) (48) 

It can be shown, II that a slightly sharper bound can be ob­
tained when the additional hypothesis that u(r) vanishes at 
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r = 0 is employed. The resulting bound is 

I I (f3 ) [ 2 T + Nk 2 ( 1[11 r 1- I 11[1 ) ] 

p(r) < 41T,-J/2k [/olP) + [/1(f3 )KolP)/ K 1(f3)] ] 

11(f3 )KIIP) [2T + Nk 2( I[Ilr l- 111[1) ] 

21Tr 

(49) 

(49a) 

For large values of p, the denominator of Eq. (49) behaves 
like - 2Io(f3). Therefore, in this limit, Eq. (49) is a sharper 
bound by a factor of 2. In the limit P->O, the additional 
factor in the denominator approaches zero, and hence Eqs. 
(48) and (49) become equivalent in this limit. The superior 
result, Eq. (49), is a direct consequence of the additional as­
sumption on u(r). 

Case 5: g' + g2 = k /x2. 
The solution of the Riccati equation in this case is ele­

mentary: 

g = ml/x, m 1 = ! + !(1 + 4k )112, (50) 

g=m 2/x, m2 =!-!(1+4k)1/2. (51) 

Ifwe employ Benson's inequality and Eq. (9), then each of 
Eqs. (50) and (51) leads to bound for p(r). The sharper of the 
two bounds is 

[2T+ kN (1[IIr l-
2 11[1)] 

p(r) < 21Tr[(1 + 4k )1/2 _ 1] . (52) 

The optimum k, restricted to positive values, for Eq. (52) is 

k=fl +fl 112, 

where 

fl= 2T 
N (1[IIr l- 111[1) 

It follows from the well-known inequality l9 

N ( 1[11 r 1- 111[1 ) < 8 T 

that fl;>! and hence k;>~. Equation (52) reduces to 

N (1[IIr l- 21¢)[2fl + fl Ill] 
p(r)< 21Tr[(1 +4fl+flI/2)112-1]' 

Case6:g' +g2 = - klxl. 

(53) 

(54) 

(55) 

(56) 

The constant k is positive. From Eqs. (50) and (51), it is 
obvious that -! is the most negative factor that is possible. 
Benson's inequality becomes, on using Eq. (50), 

!rbP(rb) - !rap(ra)<Lb[ [(rp(r) I 12)'] 
2 

- !p(r)]dr. (57) 

If we employ Eq. (10), Eq. (57) may be rewritten as 

f'b p(r) (41Tr dr)<8T + 81T[ rap(ra) - rbP(rb )] , (58) 
Ja r 

which is a generalization (for a radially symmetric density) of 
the well-known result 

Jp(r)dr <8T r . (59) 

Since the integrand in Eq. (57) is not necessarily positive 
for all r, it is clearly not possible to add the terms 
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rat ([rp(r)1/2]')2 -lp(r)Jdr + r'" !([rp(r)1/2] 'f 
Jo J~ 

-lp(r)Jdr 

to the right-hand side of the inequality. By way of example, 
consider the case of the hydrogen atom, for which this point 
can be resolved analytically. For the hydrogen atom, we 
have 

([rp(r)1/2]')2 -lp(r) = p(r)(r - 3/2)(r - !). (60) 

The integrand is positive for all r> 3/2 for the hydrogen 
atom, and hence for this case, 

p(r)..;J...[T- ~N(tJllrl-2ItJ1)] for r> 3/2. (61) 
1Tr 

Because of the importance of the region r = 0 - 0.5 a.u., 
where the integrand is positive [see Eq. (60)], it is straightfor­
ward to show that Eq. (61) actually holds for all r. 

From Eq. (58), we have 

p(r)..; _1_ {8T _ N (tJllr l- 21 tJI) + roo 41TP(X)dX}. (62) 
81Tr J 

A bound for the last integral appearing in Eq. (62) can be 
obtained in the following manner. Ifwe integrate the bound5 

41Tp(r)< ~ (: + ~ aN)(I-e- 2a1, (63) 

we obtain 

41T {oo pIx) dx< (: + ~ aN)(1 - E2(2ar)r- l , (64) 

where a is an arbitrary positive parameter in Eq. (63) and 
E2(z) is an exponential integral. 16 Hence, Eq. (62) becomes 

p(r) < l/81Tr 

X {8T - N (tJllr l- 21 tJI) 

+ (l/2ar)(2T + a 2N)(1 - E2(2ar))}. 

Case 7: g' + g2 = - k 2 Ix. 

The Riccati equation to be solved is 

g(x)' + g(xf = - k 2 Ix. 

(65) 

(66) 

This may be converted into the following differential equa-

TABLE I. Bounds for p(r) for the hydrogen atom. 

tion: 
x 2v(x)" + k 2XV(X) = o. 

The solution ofEq. (67) is, with /3 = 2kx tl2 , 

v(x) = X
I12

[cIJ1(/3) + C2Y1(f3)], 

(67) 

(68) 

where I n and Yn are Bessel functions of the first and second 
kind, respectively. If v(x)' is finite as x-o, then C2 = O. The 
function g is 

k Jo(/3) 
g(x) = xl/2 J

1
(/3)' (69) 

Because of the oscillatory nature of the Bessel functions, we 
impose the restriction that /3 < 2.404 825 [the first zero of 
Jo(/3 )], i.e., 

r < 1.445 79 k -2. (70) 
Benson's inequality with u given by Eq. (9) gives 

p(r) < J1(/3) rWxp(x)1/2]'f-k 2xp(x)Jdx. (71) 
k,-3I 2Jo(/3 ) Jo 

Using Eq. (10), Eq. (71) can be rewritten as 

p(r) < k~~) {2T + ~ Ven + kz{oop(x)41TX dX}, 
41T Jo(/3 ) z J 

(72) 

where Ven is the electron-nuclear potential energy and Z is 
the nuclear charge. Both Eqs. (71) and (72) require the re­
striction given in Eq. (70). 

A question of interest is whether or not a sharper form 
ofEq. (72) can be formulated. This can be answered in the 
affirmative, at least for one-electron systems. For the hydro­
gen atom, we have that 

([rp(r)1/2]')2 _ k 2rp(r) 

=p(r)[r- p +~k2+~k[k2+4]1/2J] 
x[r-!1 +!k2-!k[k2+4]1/2J]. (73) 

In this case, the integrand in Eq. (71) is positive for 

r> 1 + !k 2 + !k[k 2 + 4j1/2 (74) 

and hence, 

(75) 

The range of r for which Eq. (75) may be applied is governed 
by both Eqs. (70) and (74); that is, 

Radial distance Bounds for p(r) (in atomic units) 
(atomic units) Eq.(II) Eq. (48) Eq. (49) Eq. (56) Eq. (65) Exact 

0.1 0.1592x 102 0.7958 0.7958 0.5872X 10' 0.2171 X 10' 0.2606 
0.2 0.3979x 10' 0.3979 0.3973 0.2936X 10' 0.9270 0.2134 
0.3 0.1768X 10' 0.2653 0.2631 0.1957X 10' 0.5564 0.1747 
0.4 0.9947 0.1989 0.1948 0.1468X 10' 0.3852 0.1430 
0.5 0.6366 0.1592 0.1530 0.1174X 10' 0.2887 0.1171 
0.6 0.4421 0.1326 0.1246 0.9787 0.2279 0.9587 X 10- , 
0.7 0.3248 0.1137 0.1042 0.8389 0.1865 0.7849 X 10-' 
0.8 0.2487 0.9947 X 10-' 0.8878 X 10-' 0.7340 0.1569 0.6427 X 10-' 
0.9 0.1965 0.8842 X 10-' 0.7678 X 10-' 0.6524 0.1347 0.5261 X 10-' 
1.0 0.1592 0.7958 X 10-' 0.6722 X 10-' 0.5872 0.1176 0.4308 X 10-' 
1.5 0.7074 X 10-' 0.5305 X 10-' 0.3929 X 10-' 0.3915 0.7053X 10-' 0.1585X 10-' 
2.0 0.3979 X 10-' 0.3979X 10-' 0.2633 X 10-' 0.2936 0.4970 X 10-' 0.5830X 10- 2 

1894 J. Math. Phys., Vol. 24, No.7, July 1983 Frederick W. King 1894 

Downloaded 02 Jun 2013 to 150.214.205.30. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



1 + ~k 2 + !k [k 2 + 4]1/2 < r < 1.445 79 k -2. (76) 

As a final remark on this case, we note that it is possible to 
derive an upper bound for the last integral appearing in Eq. 
(72) using an exponentially decreasing bound given by Hoff­
mann-Ostenhof et aU The bound obtained requires infor­
mation on the ionization potential. 

Numerical results for some of the bounds discussed in 
this work are presented in Table I for the hydrogen atom. 
More detailed applications will be presented elsewhere. The 
value of k in each bound formula was optimized at each 
value of the radial coordinate r. The best bounds range from 
a factor of about 1.3 too high at medium range to about a 
factor of 3 - 4 too high at both short and long range. At very 
long range, all the bounds give poor estimates because of the 
incorrect asymptotic behavior of the bounds as r_ 00. 

III. CONCLUSION 

In this work, we have examined the application of Ben­
son's inequalities to obtain upper bound estimates for the 
atomic electronic density. The bounds derived herein do not 
exhibit the correct long-range asymptotic behavior; that is, 
they do not decay exponentially as r_ 00 • Also, the bounds 
are not finite at r = O. The problem of determining a reason­
able bound which is both finite at the nucleus and decays 
exponentially for large r, is an unresolved problem. The few 
bounds for the electronic density which have been previously 
given in the literature, become infinite at r = O. The excep­
tions are a recent bound derived by the author ll and a bound 
derived specifically for r = 0 by Hoffmann-Ostenhof et al. 6 

The bounds derived in this work are satisfactory for 
values of r typically in the small to moderate range. N umeri­
cal applications will be discussed elsewhere. 

For the situation were g(x)' + g(X)2 is negative, only a 
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limited number offunctional forms have been examined. It is 
possible that a more judicious selection of the functional 
form of g(x)' + g(X)2 would result in improved bounds. 
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