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The standard variational problem is modified so that the local behavior of the wave function is indirectly 
incorporated into the optimum energy calculation. The minimum energy is determined subject to certain 
inequality constraints. formulated so that the reduced local energy is bounded above and below by a certain 
error, at different points in configuration space. This modified formulation of standard variational theory 
constitutes a problem in nonlinear programming. The gradient projection method has been employed to solve 
this problem. Calculations are carried out using the Hartree-Fock formalism for the ground state of the 
helium atom. 

I. INTRODUCTION 

There has been recent interest in applying the concept of the reduced local energy to examine the accuracy of 
wave functions. 1-6 The reduced local energy is defined for an N electron system (N?: 2) byl.2.7 

j 'IF*(rh r 2, •.. , rN)H'lF(rh r 2, ... , rN)dYldT2dTa'" dTN 

j'lF*(rh r 2, •.. , rN)'lF(rh r2"'" rN)dYldT2dTa" 0 dTN 

(1 ) 

An analogous result holds for the Hartree-Fock formalism, 8-11 namely, 

j'lFh(rh r2,' .. , rN)H'lIHF(rh r 2,· .. , r N)dYl dT2 dTa'" dTN 

f 'lFh(rhr2,···,rN)'lIh(rhr2,···,rN)dYldT2dT3··· dTN 
(2) 

The MCSCF case has also been discussed. 12 

Equations (1) and (2) may be employed as fairly sensi
tive tests of the local accuracy of a wave function. For 
the case of an exact wave function, the right-hand side 
of Eq. (1) would be a constant, independent of the con
figuration space coordinate rio and equal to the exact 
energy E. Equation (2) has a similar interpretation: 
employing the exact Hartree-Fock wave function for the 
expression on the right-hand side of the equation, yields 
a constant equal to the Hartree-Fock energy. The idea 
of reduced local energy is an extension of the local en
ergy concept first discussed by Bartlett and Frost and 
co-workers many years ago. 1a- 16 

The standard variational approach examines the mini
mization of the quantity 

J 1/1* (rio r 2,···, rN)HIji(rh r 2,···, rN)dTl dT2'" dTN 

J l/I*(rjor2,···,rN)Iji(rjor2,···,rN)dTldT2··· dTN 

with respect to parameters which appear in the expan
sion of the trial wave function Iji. It is well known that 
while such a procedure may lead to good values for the 
energy, there is no guarantee that equally satisfactory 
results will be obtained for the expectation values of 
other operators, particularly those which depend on re-

gions of configuration space different from that empha
sized in the determination of the energy. One possible 
approach that has been discussed in the literature to cir
cumvent the above problem, is the idea of using expec
tation values of one electron properties as constraints 
in the standard variational procedure. 17 

An alternative approach recently discussed for the case 
of Hartree-Fock wave functions, makes use of the idea 
of performing the standard variational calculation, with 
the additional constraint that D(E~F], defined by4 

D[E~F]=f {EHF -E~F(r)}~HF(r)dT (3) 

be as small as possible. In Eq. (3), PHF(r) is the Har
tree-Fock electronic density and EHF is the "exact" Har
tree-Fock energy. The weight function PHF(r) is included 
in the integrand to ensure convergence behavior for 
D[~F]. In the limit that the exact Hartree-Fock wave 
function is obtained, 

(4) 

An analogous approach may be employed for a wave func
tion approximating the exact eigenstate using D(EL] 
where EL is given in Eq. (1). 

Both the above approaches of utilizing expectation val
ues, or employing the functional D[EL ], are ideas that 
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essentially emphasize the improvement of the local be
havior of the wave function as interpreted in a global 
manner. It is of course possible by the careful selec
tion of expectation values, or by modifying the weight 
function in Eq. (3), to emphasize a restricted region 
of configuration space. 

In the present investigation, we utilize constraints 
which depend on particular points in configuration space. 
The reduced local energy is employed as the measure of 
local accuracy. Section II describes the approach, Sec. 
III gives the computational details, and Sec. IV presents 
the results of an application of the method for the ground 
state of the helium atom. 

II. THEORY 

The basic problem addressed in this work is the fol
lowing optimization task. Determine the minimum of 
the quantity 

JIi1iF(rh r 2, ••• , rN)Hl/!HF(rt. r2"'" r N)dr1 dr2··· drN 
EHF=~~ ______________________________________ ___ 

J l/!~F(rt. r 2, ... , rN )l/!HF(rt. r 2, ••• , rN )drl dr2 • •• dr N 

subject to the following constraints: 

EHF -E~F(rl)sal , 

EHF -E~F(r2)sa2 , 

EHF _E~F(rl)2':al , 

EHF _E~F(rj)2':aj, 

(5) 

(6) 

by varying adjustable parameters appearing in the wave 
function l/!HF' The optimization task presented in Eqs. 
(5) and (6) is a nonlinear programming problem. 18,19 

The problem considered in Eqs. (5) and (6) is formu
lated for an approximate Hartree-Fock wave function, 
as this case is relatively straightforward to implement. 
However, a similar problem may be formulated using a 
trial approximation for the exact eigenstate, in which 
case eHF and ~F(rl) are replaced by the exact energy 
(or a very good approximation to it) and the reduced lo
cal energy at the pOint r 1 determined from the trial wa ve 
function, respectively. 

For the case involving an approximation to the exact 
eigenstate, the problem can be generalized to include 
constraints involving a more general local energy func
tion, obtained by integration over N - P (p> 1) particle 
coordinates. The resultingp-reduced local energy func
tion will serve as a source of severe constraints on the 
local accuracy of the wave function. However, the 
complexity of the calculation would quickly escalate. 
For this reason, the reduced local energy represents 
a nice compromise; it is not as severe a criterion of 
accuracy as the Bartlett-Frost local energy, or the p
reduced local energy, but it is considerably easier to 
visualize and to handle in practical computations. 

The objective function given in Eq. (5) depends on both 

orbital exponents and expansion coefficients. A general 
optimization can be carried out such that both of these 
are varied. In this work, we have concentrated our at
tention on the optimization of the orbital exponents in the 
nonlinear programming problem. The expansion coeffi
cients have been determined directly from a variational 
calculation on the optimized objective function. 

The number of constraints is unrestricted, but clearly 
the complexity of the computations increases very 
quickly if an excessive number are included in the cal
culation. From our calculations to date, a few well cho
sen constraints are more useful than a number of con
straints with arbitrary selected points r I' The size of 
the error limits in Eq. (6) a l are selected with two con
siderations in mind. The first is that the a l are not se
lected so small that the computational method cannot find 
an optimum point, i. e., the algorithm employed fails to 
converge. Secondly, the at have been made rather small 
at a few selected points, in order to improve an existing 
wave function in a specific region of configuration space. 
For the small-term wave functions employed in this 
study, a large number of constraints with very small 
error limits does not allow an optimum point to be found. 

The nonlinear programming technique employed in this 
work was a slightly modified version of Rosen's gradi
ent projection method. 18- 21 The principal idea behind the 
gradient projection solution of the nonlinear program
ming problem is as follows. A search from within the 
feasible region [i. e., the region bounded by the con
straints in Eq. (6)] is made by taking steps in the direc
tion of the negative gradient of the objective function g 
= "'ilf(r), i.e., 

-x~c-g. (7) 

If a step takes the search point outside the feasible re
gion' or the initial starting point does not lie in the feas
ible region, a return direction is constructed. The return 
direction is determined in a straightforward manner from 
the gradients of the active constraints. On the boundary 
of the feasible region, the negative gradient direction may 
not be the correct path to search, because of the possible 
resulting violation of one or more of the constraints. 
The basic idea is to search, so that the objective func
tion decreases, in a direction that is tangential to the 
boundaries of the active constraints. The appropriate 
calculation is to find the projection on to the tangent 
hyperplane at the current boundary point. The required 
direction of search from this point is 

-x=-Pg, (8) 

where P denotes the projection matrix, which depends 
on the gradients of the constraints. Rosen's papers may 
be consulted for further detailS on the gradient projec
tion algorithm. 20,21 

The programming problem must be convex, in order 
to ensure determination of the global minimum. When 
the problem is nonconvex, determination of the global 
minimum depends upon the probability of the starting 
point being selected on the face of the deepest valley. 
In the present work, the parameters which have been 
optim ized satisfy 0 S Q/ 1 < 2 (see Sec. III). We have cho-
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TABLE 1. Coefficients and parameters for energy optimized cosh wave functions. 

Values of 
n, Coefficients c, C\', parameters Energy (a.u.) 

Figure on 
which EfF (r) 

is plotted 

(0,0) 
(0,3) 
(0,2,3) 

0.252 229x 101, - 0.153 218 x 101 

0.103111 X 101, - 0.561848 X 10-1 

0.971083, 0.730016 x 10-1 

0.39413, 0 
0.69858, 0.24038 
0.597 09, 0.26507 

- 2.8616024 
- 2.8616763 
-2.8616773 

1 
2,3 

4 
- O. 423 724 x 10-1 0.17632x10-1 

sen a wide selection of starting pOints for the a vector 
in order to ensure that the optimum set of a values was 
found. Such a procedure is of course not foolproof, 
since the global minimum of the programming problem 
may lie at the bottom of a very sharp spike. 

III. COMPUTATIONAL DET AI LS 

The orbital basis functional form chosen was 

<1>(r) =L C,N,r"'e-zr cosh(a,r)Yoo , (9) , 
where Z is the nuclear charge, N, is a normalization 
factor, and a, are the parameters determined in the 
nonlinear optimization problem. If the restriction n, *' 1 
(n, ~ 0) is employed, then the functional form given in 
Eq. (9) has the advantage that the cusp condition on the 
orbital function22 ,23 

(10) 

is exactly satisfied. There is ample flexibility built in
to the basis function, particularly if one is interested in 
describing the region close to the nucleus. Several 
terms with n, = 0 may be employed if the near nuclear 
region is of central importance. A closely related form 
has been discussed by Lunell. 24 

In this work, one of our goals is the determination of 
a Hartree-Fock wave function which is accurate in the 
region very close to the nucleus, as judged by the reduced 
local energy criterion. If the near nuclear region and 

cusp characteristics of the wave function are not of par
ticular interest, the more conventional STO's have the 
advantage of simplifying the algebra required to imple
ment the gradient projection computations. 

The derivatives of E~F and EHF with respect to the pa
rameters a, were evaluated analytically and also checked 
by numerical computation. The numerical computation 
was found to be more efficient in terms of computer time 
required. All the computations were carried out on a 
Honeywell DPS 8/20 using double precision. All the re
sults are reported in a. u. 

To simplify the calculations, both the numerator and 
denominator of Eq. (5) have been integrated with respect 
to the polar angles (6, <1». The resulting reduced local 
energy depends only on the radial coordinate. 

IV. RESULTS 

In this section we present the results of an application 
of the idea discussed in Sec. IT to the ground state of the 
helium atom. Table I gives a summary of the coefficients 
and a, values for some small-term energy optimized 
cosh -type wave functions [see Eq. (9)]. For reference, 
the Hartree-Fock ground state energy of the helium 
atom has been given as - 2. 861 6799956122 a. u. 25 

Table IT lists coeffiCients, a, values, and the con
straints employed to obtain locally improved wave func
tions. No more than five constraints have been em
ployed in any single constrained optimization calcula
tion. The configuration space pOints adopted to impose 

TABLE II. Coefficients and parameters for the locally improved cosh wave functions. 

Values of 
n, 

(0,0) 
(0,3) 

(0,3) 

(0,2,3) 

Constraints 
employed 

erF(10-fj)~ -2.86168 
erF(2. 0)" - 2. 856 
EfF(3.0) ,,- 2.856 
E'lF(3.0) ,,- 2.845 
EfF(3. 75) ~ - 2. 868 
EfF(4. 9) ~ - 2.868 
E~F(5. 0)" - 2.85 
EfF(8. 0)" - 2. 85 
EfF(10. 0)" - 2. 85 
E'lF(7. 0) ~ - 2.865 
E'lF(10. 0) ~ - 2.865 
EfF(5.7).;;-2.861 
erF(7.0),,-2.861 
erF(3.4) ~ - 2.862 
EfF(7. O)~ - 2. 862 

Coefficients C, 

0.300918 X 101, - O. 200 992 X 101 

0.102757X101, -0.503480x10-1 

0.100434x10t, -0.875276xlO-2 

0.916674,0.178272, 
- 0.703675 x 10-1 

C\', parameters 

0.57915, 0.54915 
0.69160, 0.26243 

0.63767,0.37129 

0.47285, 0.38782, 
0.24099 
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Energy 
(a.u.) 

- 2.8612439 
- 2. 8616726 

- 2.8613051 

- 2.8616753 

Figure on 
which E'!(r) 

is plotted 

1 
2 

3 

4 
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FIG. 1. Reduced local energy vs radial distance for the ground 
state of the helium atom for the near nuclear region. Curve 
CR-5 denotes the reduced local energy calculated from the five
term Clementi-Roetti wave function taken from Ref. 27. C-5 
denotes E'f calculated from the five-term Clementi wave 
function taken from Ref. 26. KD-2 represents ErF determined 
using the energy optimized two-term cosh wave function with 
n/ = 0, 0. KD-I-2 is the locally improved version of the pre
ceding function, using the constraint indicated in Table II. 
The horizontal line denoted by E is the result which would be 
obtained using the exact Hartree-Fock wave function. 

the constraints have been selected on the basis of the 
behavior of the reduced local energy for the energy opti
mized wave functions (presented in Table I). The op
timized energy wave function was used as a starting 
point for improvement of the local behavior in a se
lected region. 

In this investigation our attention has been concentrated 
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FIG. 2. Reduced local energy vs radial distance for the ground 
state of the helium atom for the medium r range. CR-2 denotes 
the reduced local energy calculated using the Clementi-Roetti 
double zeta wave function taken from Ref. 27. The two-term 
cosh function (KD-2) employed has n/= 0,3. The improved 
version (KD-I-2l uses the constraints listed in Table II. E de
notes the exact result. 
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FIG. 3. Reduced local energy vs radial distance for the ground 
state of the helium atom for the long-range region. The two 
term cosh function (KD-2) employed has n/ = 0, 3. The 
improved version (KD-I-2) uses the constraints listed in Table 
II. The other symbols are defined in the captions to Figs. 1 
and 2. 

on improving the wave function (in the sense of improved 
reduced local energy) for only a limited region of con
figuration space. Figures 1-3 show the results for im
provement in the near nuclear, medium, and long-range 
regions, respectively, based on a two-term cosh wave 
function. Figure 4 shows the reduced local energy based 
on a three-term cosh wave function, with constraints 
selected (see Table II) to improve the long-range be
havior of EiF

• 

In Fig. 1, the five -term wave functions of Clementi26 

and Clementi and Roetti21 are shown for comparison. 
Neither of these wave functions obey the cusp condition, 
which is the reason for the poor behavior of the reduced 
local energy near the nucleus. The two-term optimum 
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FIG. 4. Reduced local energy vs radial distance for the ground 
state of the helium atom for three-term cosh wave function 
(KD-3) with n/=0,2,3 and a long-range improved version 
(KD-I-3). The constraints employed for the nonlinear pro
gramming problem are listed in Table II. 
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FIG. 5. Integrands for expectation values of r'. The curves 
were calculated uSing the Clementi-Roetti five-term wave 
function taken from Ref. 27. To bring all curves onto the, 
same scale, the integrands for r6, r8, and riO have been 
multiplied by 10-1, 10-2, and 10-3, respectively. 

energy cosh function does obey the cusp condition. E~F 
derived from this function is denoted KD-2 in Fig. 1. 
This wave function has been improved with a single con
straint E~F(10-5)2:: - 2.86168, and the corresponding 
E~F is denoted by KD-I-2 in Fig. 1. The horizontal line 
denoted by E represents the reduced local energy to be 
expected using the exact Hartree-Fock wave fUnction. 
Clearly, the two-term improved wave function given in 
Table II is very satisfactory (as measured by the ac
curacy of the reduced local energy) for the region close 
to the nucleus. Both of the Clementi wave functions 
yield excellent values for the energy; the inaccuracies 
in these wave functions near the nucleus are offset by 
the r'l factor in the volume element employed when cal
culating the expectation value of the energy. 

Figure 2 shows Our present efforts at improving the 
wave function in the medium r range. For comparison 
the Clementi-Roetti five-term (CR-5) and Clementi
Roetti two-term (CR-2) reduced local energies are also 
displayed. The improved two-term cosh function (KD-
1-2) is locally better than the Clementi-Roetti two-term 
function, but the Clementi-Roetti five-term wave func
tion leads to a better E~F, particularly around r-2. 7 
a. u. 

For the long-range region displayed in Fig. 3, the 
improved two-term function is observed to be superior 
to the Clementi-Roetti two-term and five-term func
tiOllS and the Clementi26 five-term function. For the 
three-term function investigated, the constraints were 
selected to improve the long-range behavior. The re
sulting E~F(KD-I-3) is presented in Fig. 4. The E~'" 
determined from the locally improved wave function 
is observed to be better than the Clementi and Clementi 
and Roetti wave functions for the approximate range r 
- 4. 0-8. 0 a. u. However, both the Clementi functions 
are observed to be superior at short range r - O. 5-
2.5 a. u. 

Figure 5 gives an idea of the importance of the vari
ous regions of configuration space for calculating expec
tation values of r" for the helium atom. This plot has 
been constructed using the five-term wave function of 
Clementi and Roetti. For the higher moments, the long
range region becomes increasingly important as expect
ed, however, there is increased emphasis on a wider 
range of values for the radial coordinate due to the in
creased broadening of the integrands. 

V. DISCUSSION 

When the wave function is improved locally in a spe
cific region of configuration space, there is a slight in
crease in energy. In some cases, the increase is rath-·· 
er small, which reflects the fact that the local improve
ment has been made in a region which is important for 
the complltation of the energy expectation value. A sec
ond possibility, is that the improvement is made in a 
region which is not of central importance for the deter
mination of the energy, and the wave function remains 
essentially unperturbed in the region important for the 
energy calculation. The latter situation was not found 
for the situations examined in this work. In principle, 
it should be possible to offset the increase in energy 
obtained in the local optimization calculation, by the 
addition of extra basis functions. Work in this direction 
is in progress. 

The most difficult region to obtain improvement at the 
local level with small-term basis expansions is around 
r -1 a. u. In this region, the reduced local energy ex
hibits sharp OSCillatory character, which cannot be 
readily flattened, without leading to larger deviations at 
nearby locations. If the imposed constraints are made 
too severe, the gradient projection alogrithm does not 
converge. 

Three measures of the local behavior of the wave func
tions that can be usefully tabulated are ~F(r=O), 
E~F(r=oo), and D(E~F] [see Eq. (3)]. Values for the 
wave functions discussed above are presented in Table 
III. Except for the two-term cosh wave function with 
nj = 0, 0, the values of ~p (r = 0) are not very close to 
EHF. The Clementi26 and Clementi-Roetti27 ~F(r= 0) 

TABLE III. Reduced local energy r = 0 and r = co limits and the 
D values for different wave functions. 

Wave function ElF(r=O) ~F(r= co) D[~Fl 

KD-2(n = 0, O)a -2.91201 - 3.233 07 0.196 x 10-3 

KD-2(n = 0,3) - 2. 988 49 -2.98870 0.558 x 10-4 

KD-3(n = 0, 2, 3) - 2. 985 87 -2.92780 0.511 x 10-4 
KD-I-2(n = 0, O)b - 2.86169 -2.95202 0.886 x 10-3 

KD-I-2(n = 0, 3)e -2.97332 - 2.79982 0.572 x 10-4 

KD-I-2(n = 0, 3)d - 2.857 24 - 2.87357 0.954 x 10-3 

KD-I-3(n = 0, 2, 3)d -3.00421 -3.10981 0.782 x 10-4 

CR-5 - 2. 94791 0.663 x 10-5 

"KD-n denotes an n-term cosh wave function of the authors. 
bI denotes an improved wave function using the constraints 
listed in Table II. 

CWave function improved at medium range. 
~ave function improved at long range. 
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TABLE IV. Expectation values ('l«rl , r 2) I r11 'l«rl , r 2) calculated using different wave functions. 

Wave function (rj2) (rjl) (r~ (rt) (rf) (rIO) 

KD-2(n = 0, O)a 6.012 1. 689 1.183 3.814 2.357 XIOI 3.348 X 103 

KD-2(n = 0, 3) 5.991 1. 687 1.185 3.894 2.552x101 4.862x 103 

KD-3(n=O,2,3) 5.991 1. 687 1.185 3.889 2. 534x 101 4.537 X 103 

KD-I-2(n = 0, O)b 6.045 1. 691 1. 209 4.172 2.887 X 101 5.691x 103 

KD-I-2(n = 0, 3)C 6.000 1. 688 1.185 3.895 2.543 x 101 4. 709x 103 

KD-I-2(n = 0, 3)d 6.085 1. 698 1.190 4.008 2.695x 101 5.002x 103 

KD-I-3(n = 0, 2, 3) 5.988 1. 687 1.185 3.891 2.531 x 101 4.458 x 103 

Clementi- Roetti 5.996 1.687 1.185 :3.884 2.517xl01 4.350 x 103 

five-term (CR-5) 
20-term Hylleraas· 6.018 1. 688 1.193 3.969 2.614 x 101 4.677x 103 

aKD-n denotes an n-term cosh wave function of the authors. 
bI denotes wave function improved using constrained variational calculation. 
CWave function optimized for medium range region. 
ctwave function optimized for long-range region. 
"Based on the density calculation by Benesch using the Hart-Herzberg Hylleraas wave function, 
Refs. 28 and 29. 

values are both infinite, a direct consequence of the 
fact that neither wave function satisfies the cusp condi
tion. All of the values reported for E:F(r=oo) tend to be 
sHghtly higher than EHF. 

The quantity D[E~Fl is a sensitive measure of local 
accuracy as measured in a global sense. 3,4 D[E~Fl is 
very sensitive to both small changes in the coefficients 
and in the exponents. The value of D[~Fl reported for 
the Clementi-Roetti five-term wave function is based 
on the reported coefficients (and exponents) from Ref. 
27. Recomputation of the coefficients (with the same 
exponents) leads to a value of D[E~F] about 10% lower 
than the number reported in Table III. In all cases, re
finement of the wave function in a restricted region of 
configuration space, leads to slight modifications of the 
wave function elsewhere, which leads to a slightly poor
er overall local accuracy as measured by D[E~Fl. When 
the improvement was made in the energy important re
gion r-2 a. u. for the two-term cosh wave function with 
nj = 0, 3, the change in the value of D[E~F] was observed 
to be quite small, compared with the typical kind of 
change observed in D[E~F] (see Table III). This in part 
is tied to the important dependence of D[~F] on the re
gion r - 2 for helium. 

A number of expectation values of rk have been calcu
lated. The results are reported in Table IV. In gen
eral, the results for moments with k = - 2, - 1, and 2 
are all quite close. For the larger moments k = 6 and 
k = 10, the long-range improved three-term cosh wave 
function leads to expectation values in closer agreement 
with the Clementi-Roetti five-term result, than are the 
expectation values determined from the energy opti
mized three-term cosh wave function. A similar trend 
is not however noted for the two-term cosh wave func
tion. This is probably due to the fact that as the two
term function is improved at long range, the wave func
tion is perturbed at shorter range (r- 2-4 a. u. ) in such 
a way as to offset the advantage gained at large dis
tances. The width of the integrand for r'-0 shown in 
Fig. 5 points to the necessity for obtaining good local 
behavior over a wide range, if satisfactory matrix ele-

ments are to be obtained. 

In the present study, it has been demonstrated that 
the wave function can be improved (as measured by Ef1~ 
in a restricted region of configuration space using non
linear programming techniques. Under investigation is 
the possibility of improving the local behavior over an 
extended range of configuration space, using larger 
basis set expansions. 
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