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Several upper bound estimates for the atomic electronic density are derived. The bounds are formulated in 
terms of the kinetic energy" and, in some of the cases considered, the expectation values < 1/1 I r,1 I 1/1> or 
<1/1 I r,' 11/1> are employed. All the inequalities follow from the application of Block's theorem. A numerical 
test of the bounds has been carried out for some two electron species. 

I. INTRODUCTION 

There has been considerable activity recently de
voted towards the determination of rigorous relation
ships satisfied by the electronic density. Much of this 
effort has centered on the determination of bounds for 
the atomic electronic density, 1-4 investigations of the 
long-range asymptotic behavior of the electronic den
sity,5-14 and the derivation of various integral inequali
ties involving the electronic density. 15-20 The review 
of Bamzai and Deb21 provides a survey of some other 
recent research activity concerning the electronic 
density. 

The purpose of the present study is to expose some 
new upper bounds for the atomic electronic density. 
The approach taken involves some ideas due to Block,22,23 
which have not previously been employed in connection 
with the electronic denSity. Our objective is to extract 
the simplest principal bounds from Block's general 
theorem. In particular, the bound of Hoffmann-Ostenhof 
and Hoffmann-Ostenhof2 is obtained as one special case. 

Despite the potential utility of accurate bounds for 
the electronic density, there are very few rigorous re
sults applicable to N electron systems available in the 
literature. Redei24 derived a bound for Ip(r) - p.(r) I, 
where per) is the exact electronic denSity and p.(r) is 
the electronic density derived from an approximate trial 
wave function. Redei's bound requires information on 
the ground state and first excited energies and matrix 
elements of the square of the Hamiltonian operator using 
the trial wave function. An upper bound for p(O) and a 
generalization have appeared. 3,4 Hoffmann-Ostenhof 
et al.! succeeded in deriving an upper bound for p(r) in 
terms of the kinetic energy. The approach taken in this 
work also leads to upper bound estimates involving the 
kinetic energy. 

II. BLOCK'S THEOREM 

Block's work is concerned with the problem of finding 
upper bounds for the function I y(x) I in terms of integrals 
involving y(x) and y(x)' (prime denotes differentiation). 
Block derived the following result: 

/ yet) /2",; mt(t) fb {j(x)[y(x)']2 + g(x) y(x)2}dx , (1) 
• 

where mt(t), which does not depend on y, is given by 

mt(t) = 1 b {j(x) [w(x, t)']2 + g(x)w(x, t)2}dx 
• 

= wet, t) + j(b)w(b)' web) - j(a)w(a)' weal • (2) 

In Eqs. (1) and (2), t satisfies a<t<b and w(x,t) satis
fies the following four conditions: 

(i) (fw')' - gw = 0 {a",; x < t 

t<x"';b , 
(3) 

(ii) w(x, t) is continuous for a",; t",; b , 

(iii) lim [w(t-(,t)'-w(t+(,t)']j(t) = 1, (4) 
.-0 

(iv) j(a)w(a)' yea) = j(b)w(b)' y(b) • (5) 

The successful implementation of Block's inequality [Eq. 
(1) J, depends on the ease with which the function w(x, t) 
can be determined, which depends on the complexity of 
the differential equation (3). 

III. BLOCK'S INEQUALITY FOR f(x»O 

The solution of the above differential equation for the 
case j(x) > 0 may be written in terms of the functions 
wl(x) i = 1,4, which satisfy the boundary conditions 

wl(a) = w3(b) = w2{a)' = w4(b)' = 1 , (6) 

WI (a)' = W3(b)' = w2(a) = w. (b) = 0 • 

The solution is 

w(X, t) = {AI(t)WI(X) + A 2(t)W2(X) , 

A 3(t)W3(X) + A.(t)W4(X) , 

(7) 

a "';x< t , 
(8) 

Connections between the coeffiCients AI(t) can be found 
using the four constraints listed above. These con
straints may be suffiCient to determine all the AI(t) 
depending on whether or not any additional informa
tion about y(t) is employed. Additional constraints on 
the behavior of yet) leads to sharper inequalities. 

IV. BLOCK'S INEQUALITY APPLIED TO THE 
ELECTRONIC DENSITY 

The focus of our attention in this paper is the atomic 
electronic density. By appropriate choice of yet) we 
may impose the condition 

yea) = y(b) = 0 • (9) 

A more general choice of yet), which does not impose 
the constraint yea) = 0, has been investigated in detail, 
and the results for bounds on the electronic density 
arising from this case will be discussed elsewhere. 

For the case discussed in Sec. IV A, i. e., j(x) >0, 
the conditions (i)-(iv) are not sufficient to determine all 
the coefficients Ai (t). This leads to flexibility in the 
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2460 Frederick W. King: Bounds for the atomic electronic density 

expression for mt(t), Eq. (2), and arises directly from 
the imposed constraint Eq. (9). The A.(t) may be de
termined so that mt(t) is a minimum, with the conditions 
(i) to (iv) used as constraints. The algebraic details 
are given in Appendix A. The final expression for mt(t) 
is given by Eq. (A5). 

In this paper, we choose the function y to be 

y(r) = rp(r)I/2 , (10) 

where p(r) is the electronic density, assumed radially 
symmetric, is given by 

p(r)=N f 1>l«rl,r2, ... ,rN)12dr2dr3, ... ,drN' (11) 

This selection is based on the following criteria. The 
constraints given in Eq. (9) are satisfied when a = 0 and 
b = 00. Also, this choice allows us to deal with one of 
the integrals appearing in Block's inequality by employ
ing a lower bound integral inequality for the kinetic 
energy derived by Hoffmann-Ostenhof et al. I 

A. Case 1: f(Xl=k l , g(Xl=k2 

The simplest possible choice for the functions j(x) and 
g(x) appearing in Eqs. (1) and (2) is 

j(x) = k l ; g(x) = k2 , (12) 

where kl and k2 are positive constants. We will assume 
that kl and k2 are positive constants throughout this 
paper. If we set 

a = (k2/kl)I/2 , (13) 

then Eq. (3) reduces to 

(14) 

for which the solutions Wi satisfying Eqs. (6) and (7) 
are readily determined to be 

WI (x) = cosh a(x - a) , 

W2(X) = a-I sinh a(x - a) , 

w3(X) = cosh a(x - b) , 

w4(X) = Q-I sinh a(x - b) • 

(15) 

(16) 

(17) 

(18) 

From Eq. (A9) '>'2 (as defined in Appendix A) is found 
to be zero and a short computation shows that AI (x) 
[Eq. (A 6) 1 is also zero, and hence the expression for 
mt(x) [Eq. (A 5) 1 simplifies to 

mt(x) = A 2(x)w2(x) 

which when evaluated leads to the result 

mt(x) = kil sinh a(x - a) sinh a(b - x) 
a sinha(b -a) 

The Block inequality takes the form 

1 (r) 12 ~ sinh a(: - a) sinh a(b - r) 
y a smh a(b -a) 

which simplifies in the limit a - 0, b - 00 to 

(19) 

(20) 

(21) 

The inequality Eq. (21) was given by Block and also 
derived somewhat later by the Hoffmann-Ostenhofs. 25 
This specialized Block inequality forms the basis for 
the bound estimates establiShed by Hoffmann-Ostenhof 
et al. 1,2 The above derivation also makes clear that the 
bound is governed by one arbitrary parameter and not 
two as might be inferred from the appearance of Eq. 
(1). 

Substituting Eq. (10) into Eq. (22) and employing the 
following key inequality established by Hoffmann
Ostenhof et al. 1,2: 

f .. r2Ivp(r)12dr ~I.. 
o 4p(r) 217 

leads to the result 

p(r) ~ ~ (1 - e-2ar) (aN + ! T) 
817r a 

(23) 

(24) 

where T is the kinetic energy. Equation (24) was first 
proved by Hoffmann-Ostenhof et al. I 

B. Case 2: f(X1 =k\, g(X1 =k2x-\ 

If we define a using Eq. (13) and set 

{3 = 2arl/2 (25) 

then mt(r) is found to be (see Appendix B for details) 

2r 
mt(r) = k; 11({3)KI ({3) , (26) 

where In({3) and K.,({3) are the modified Besselfunctions 
of the first and second kind, respectively. 

Employing Eqs. (1), (10), (23), and (26) yields the 
following bound for the electronic denSity: 

(27) 

If we employ the following well known inequality26,21: 

(28) 

then the inequality Eq. (27) may be expressed in terms 
of T alone: 

Alternative inequalities connecting (w I rill w) and Tare 
available if model Hamiltonians are of interest. 28,29 The 
case j = kl and g = k2/ x therefore allows the electronic 
denSity to be bounded in terms of the kinetic energy and 
the electron-nuclear energy Vea via 

p(r) ~ 11(,9)Kd,a) [ 2T _ a
2 

V .] 
21Tr Z .. , 

(30) 

where Z is the nuclear charge. 

C. Case 3: f=k\X2, g=k2 

In this case, we do not have j>O in the interval [0,00). 
In this situation, we do not have to impose the condition 
y(a) = y(b) = 0, Eq. (9), since the constraint given by Eq. 
(5) is satisfied by imposing w(b)' = 0 as b-oo and noting 
that j(a) - 0 as a - O. For this case, we make the choice 
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y(r) = p(r)1I2 • (31) 

Using the expression derived for ~(r) in Appendix C, 
and Eqs. (1), (23), and (31), the following bound is ob
tained: 

p(r) ~ 41Tr(1 + 14(2)i/2 [2: + aN(+ 1'1
2

1+)] 

If we employ the well known inequality26 

(+ 1 ri2
1 w)~ 8~ 

(32) 

(33) 

the electronic density bound Eq. (32) may be expressed 
in terms of the kinetic energy 

(34) 

We note in passing that a slightly refined version of Eq. 
(33) is available. 3 Since a is an arbitrary positive pa
rameter, the limit a - 0 in Eq. (34) leads to the optimum 
form of Eq. (34): 

T 
p(r) ~ 21Tr • (35) 

The bound given in Eq. (35) can be shown to be equi
valent to the bound formula Eq. (24) in the limit r- O. 
We note in passing that the Hoffmann-Ostenhof's2 also 
gave a simple bound in terms of T: 

1 
p(r) ~ ~ (2NT) 1 12 • (36) 

The dependence of the bound on a in Eq. (32) is suf
ficiently simple, that an optimum a can be stated. Ex
amination of the derivative of the right-hand side of Eq. 
(32) with respect to a yields two stationary values. The 
first, a = 0, leads to the bound given in Eq. (35). The 
second occurs when 

2 _ 1 ( 4T 1) 
a - '2 N(+lrizl+)- (37) 

If a 2 is positive, and we set 

0= N(+ Iri21 w) 
4T 

, (38) 

then Eq. (32) becomes 

p(r) ~ f- [(2 - 0)0]1/2 
1Tr 

(39) 

and 

0<0<2. (40) 

Equation (39) is a superior bound to Eq. (35) if the square 
root factor in Eq. (39) is less than 1, which is in fact 
the case for all 0 satisfying Eq. (40) except 0 = 1. 

For this case, where p is a positive constant, we em
ploy the y(r) given in Eq. (10). From Eq. (1), and the 
expression for ~(r) (see Appendix D for details) we find 
the following bound: 

( ) .: I,t(1f2)(ar)K/!t(1{2)(ar) 
p r ~ 41Tr 

X[2T+N{a2+p(p+ 1)}(+l r i2 1+)]· (41) 

If we employ the inequality [Eq. (33)], Eq. (41) can be 
expressed as 

( ) ~ I/!t(1f2)(ar)K,.w2)(ar) [Na2 + 2T(2p + 1)2] • 
P r 41Tr 

(42) 

The Bessel functions have analytiC expressions [see 
Eqs. (D5) and (D6)] when p is an integer. 

V. NUMERICAL INVESTIGATION OF BOUNDS 

To test the quality of the bounds indicated in Sec. 
IV, i.e., Eqs. (24), (27), (29), (35), (36), (39), (41), 
and (42), we have evaluated each bound using the elec
tronic denSity functions of Benesch30 which have been 
derived from the 20 term Hylleraas type wave func
tions of Hart and Herzberg. 31 Figures 1-6 show the 
results for the atoms H-, He, and Mg1Ot. For the dif
ferent bounds, the optimum a was determined iteratively 
for each value of the radial distance. Atomic units are 
employed in all figures. 

Because of the form of the bounds, a simple analytic 
comparison at finite r is not pOSSible, since the optimum 
a cannot be determined analytically. However, for the 
limit r- 0 a comparison can be made. This has already 
been discussed for case 1 and case 3. For case 2 it may 
also be shown that the limit r - 0 in Eq. (27) yields Eq. 
(35). For case 4, the limit r- 0 in Eq. (41) for the case 
p = 1 leads to the result 

(43) 

which is a better result than Eq. (35) if 

N 
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FIG. 1. Bounds for the electronic density for helium. The 
solid line represents the "exact" electronic density calculated 
from Benesch's density function. The letter designations are: 
A is Eq. (24), B is Eq. (27), C is Eq. (29), D is Eq. (35), E 
is Eq. (41), F is Eq. (42), and G is Eq. (36). Equation (29) 
is not presented since it coincides very closely with Eq. (27). 
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FIG. 2. Bounds for the electronic density for helium in the 
near nuclear region. The solid line represents the "exact" den
sity. See the caption for Fig. 1 for the correspondence be
tween equation numbers in the text and the letter designations. 
The bounds given by Eqs. (27), (29), and Eq. (35) are not 
presented on the graph, since they coincide very closely with 
the results from Eq. (24). Equations (36) and (42) are off the 
plot with the given scale. 

(44) 

For the species shown in Figs. 1-6, the condition (44) 
is not satisfied. Also, a 2 in Eq. (37) is not positive 
for H-, He, and Mg1o.. From the preceding comments, 
it is therefore expected that the bounds given for case 
1, case 2, and case 3 [Eqs. (24), (27), and (32) 1 all con
verge to the same limit as r- O. This is observed in 
the figures. The bound given in Eq. (41) for the case 
p = 1, and consequently that given by Eq. (42) (also for 
p = 1) are observed to be less satisfactory. 
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FIG. 3. Bounds for the electronic density for H-. The solid 
line represents the exact density. See the caption for Fig. 1 
for the correspondence between equation numbers in the text 
and the letter designations. Equation (29) is not presented 
since it corresponds very closely with Eq. (27). 
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FIG. 4. Bounds for the electronic density for H- in the near 
nuclear region. The solid line represents the exact density. 
See the caption for Fig. 1 for the correspondence between 
equation numbers in the text and the letter designations. The 
bounds given by Eqs. (27), (29), and (35) are not presented, 
since they coincide very closely with the result from Eq. (24). 
Equation (36) is off the plot with the given scale. 

VI. DISCUSSION AND CONCLUSION 

The obvious shortcoming of the bounds discussed in 
Sec. IV is that, in the near nuclear region, each bound 
diverges as r- O. This problem is presently under 
investigation. The problem is directly connected to the 
condition given by Eq. (9). The bounds considered in 
this work must therefore be restricted to r values away 
from the nucleus. 

For the numerical studies discussed in Sec. V, Eq. 
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FIG. 5. Bounds for the electronic density for Mg10
+. The 

solid line represents the exact density. See the caption for 
Fig. 1 for the correspondence between equation numbers in the 
text and the letter designations. Equation (29) coincides very 
closely with Eq. (27) and Eq. (36) coincides with Eq. (24). 
N either has been plotted. 
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FIG. 6. Bounds for the electronic density for Mg10+ in the near 
nuclear region. The exact density is represented by the solid 
line. Letter designations are explained in the caption to Fig. 
1. Equation (29) has not been plotted because it coincides very 
closely with Eq. (35). 

(24) is the best bound for most values of r. All of the 
bounds derived herein also apply to the Hartree-Fock 
electronic density. We have invested these bounds for 
some larger atomic systems using Hartree-Fock den
sities. 32 In some cases, the bound given in Eq. (39) is 
superior to the other bounds at small r. In addition, 
the bound given in Eq. (27) is the best bound for other 
values of r near the nucleus. Clearly, there is not a 
simple answer to the question of which bound for p(r) is 
best. 

There is one final point to note. The bounds derived 
in this study have been based on a rather limited selec
tion of choices for the functions j and g. It may be the 
case that a more judicious choice for these functions 
will lead to improved bounds for p(r). Studies in this 
direction would be of interest. 

ACKNOWLEDGMENT 

Acknowledgment is made to the Donors of the Petro
leum Research Fund, administered by the American 
Chemical Society, for support of this research. 

APPENDIX A 

In this appendix, the general expression for $(t) [Eq. 
(2)] for the case j(x) >0 and y(a) = y(b) = 0 is derived. 
Using Eq. (8), ;m is given by 

$(t) =A1(t)Wl(t) +A2(t)W2(t) + j(b)A3(t)A,(t) 

- j(a)At(t)A2(t) • 

The two constraints (ii) and (iv) yield 

At(t)wt(t) + A 2(t)W2(t) -As(t)ws(t) -A,(t)w,(t) = 0 , 

At(t)wt(t)' + A 2(t) W2(t)' -As(t)ws(t)' -A,(t)w,(t)' 

= 1/ j(t) • 

(At) 

(A2) 

(A3) 

The minimum of mt(t) with respect to variation of the 
A,(t), subject to the constraints Eqs. (A2) and (A3), is 
found from the function 

F(t) = mt(t) + ~t [At(t)wt(t) + A 2(t)W2(t) -As(t)ws(t) 

-A,(t)w,(t)] + ~2~I(t)Wl(t)' + A 2(t)W2(t)' -As(t)ws(t)' 

-A,(t)w,(t)' - j~t)] (A 4) 

(~1 and ~2 are Lagrange multipliers) by setting SF(t)/ 
SAI(t) = 0, i= 1, 4. Solving the resulting set of four 
equations together with Eqs. (A2) and (A3) leads to the 
general result 

$(t) = A 1(t) WI (t) +A2(t)W2(t) -A1(t)A2(t)j(a) 

- j(b()t) (Al(t)'Y1 +A2(t)'Y2){A1(t)[Wl(t) + WS(t){'Yl/"S)] 
'Y3 w, 

+ A 2(t) [W2(t) + W3(t){'Y2/"3)] } , (A 5) 

where 

A 1(t) = [w,(t){'Y3'Y5 -'Y2'Y6) + 'YT('Y2W'S(t) -'YSW2,(t»] /r, (A 6) 

A2(t) = [W,(t){'Yl'Y6 -'Y3'Y,) +'YT('Y3W14(t) -'YIW43(t»] /r. (A 7) 

The gamma factors are defined by 

'Yl = Wl(t)[WS,(t)j(a) + WI2(t)j(b)] , 

'Y2 = W2(t) [w12(t)j(b) + w,s(t)j(a)] , 

'Ys = 2WS(t)W21(t)j(b) , 

'Y4 = W2(t)w14(t)j(a) , 

'Y5 = - W2(t)W2,(t)j(a) , 

'Y6 = - W2(t)WI2(t)j(b) , 

'YT = j(t)W2(t)W,(t)WI2(t) , 

r = j(t) [W'3(t){'Y2'Y' -'Yl'Y5) + W24(t){'Yl'Y6 -'Y3'Y,) 

+ W14('Y3'Y5 -'Y2'Y6) J • 
wiJ denotes the Wronskian W. wJ - w, wI. 

APPENDIX B 

(A8) 

(A9) 

(A 10) 

(All) 

(A12) 

(A13) 

(A 14) 

(A15) 

For the case j= kh g = k2x·1, Eq. (3) becomes 

x2w" - ex2xw = 0 , (B1) 

ex is defined in Eq. (13). Equation (B1) is a special 
case of the generalized Bessel differential equation. 
The solution is (in terms of arbitrary coefficients 

Cl and C2, which are functions of r) 

w(x, r) = x1/2[CIIl (2axl /2 ) + c~I(2exx1l2)] , 0 .. x<r , 
(B2) 

where 11 and Kl are modified Bessel functions of the 
first and second kind. A similar solution on the interval 
r < x < 00 exists with cl and c2 replaced by constants Cs 

and c" respectively. 

Because of the asymptotic behavior 

I 1(z)-tr/z(1I2) as z-oo, (B3) 

we require Cs = o. 
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Employing the conditions (ii) and (iii) in Sec. II and 
ensuring the term j{a)w{a)' w{a) in Eq. (2) is well be
haved as a - 0, is sufficient to determine the coefficients 
c1, c2' C4' The function w{x, r) is then determined to be 

w(x, r) = 2(x1
t
"

2 
Il(2ax"2)K1{2arI/2) , O~ x<r , 

(B4) 

2{xr)1/2 
w{x,r) = kt Il{2ar"2)Kt(2axI/2) , r<x<oo, (B5) 

USing Eq. (2) and the limit x- r in either Eq. (B4) or 
(B5), leads to the expression for mz(r) given in Eq. (26). 
The two factors involving j in Eq. (2) vanish in the limits 
a-O, b-oo. 

APPENDIX C 

The differential equation to be solved for the case 
j= klX2, g= k2 is 

(C1) 

The solutions of Eq. (C1) are elementary and take the 
form 

(C2) 

w(x, r) = C3Xm1 + C4Xm2, r<x<oo, 

where ml = -t + (~+ ( 2)1/2 and m2 = -t - <t- + ( 2)1/2. 

If we examine the conditions x - 0 and x - 00, then c2 = 0 
and C3 = O. The limit x - r leads to the result 

(C3) 

To ensure that condition (iv) [Eq. (5)] is satisfied, we 
require that w(b)' vanish as b - 00 in such a manner that 
j{b)w(b)' w(b) is zero. From Eqs. (C2) and (C3)., 

(C4) 

Using Eq. (C4), we see thatj(b)w(b)'w{b)-O as b-O. 

It is also clear that j(a)w(a)' w(a) - ° as a - 0, so that 
Eq. (5) is satisfied. The remaining coefficient can be 
determined from condition (iii) [Eq. (4)]. with the result 
that 

1 
Cl;: k

1
(1 + 4(2)(lJZlri+ml 

Hence, Eq. (2) becomes 

xmlr-l-ml 

w(x, r) = k
1
{1 + 4(2)(1/21 

xm2 r-1-m2 

w(x, r) = kl (1 + 4(2)(1/2) 

O~ x<r , 

r<x<oo • 

The function mt(r) is thus determined to be 

APPENDIX D 

The differential equation arising from the choice 

j= kl 

_ k k,p(p + 1) 
g- 2 + x2 (positive p) 

(C5) 

(C6) 

(C7) 

(C8) 

(Dl) 

is 

(D2) 

which is a modified Bessel differential equation. The 
solution of the differential equation is 

w{x, r) = X" 2[c l l p+{1I2) (ax) + C2Kp+(1/2) (ax)] , O~ x<r , 
(D3) 

w(x,r) = xl/2 [c3 I j>o (1/2) (ax) + C4 Kp+(1/2) (ax)] , r<x<oo • 
(D4) 

The solutions hold for general p (integer or noninteger 
values), however, if p is restricted to integer values, 
the Bessel functions can be expressed analytically using33 

p 

( 
1T ) 1/2 -x ~ (p + k) 1 

K,+(2)(X)= 2x e ~ kl(P-k)1(2x)k, (D5) 

)_ e-x ~ (p + k) 1 [()k 2x ( )1>\ 
I'+{1/2){x - (21TX)(ifZ) ~ k l(p _ k) 1(2X)k -1 e - -1 j. 

(D6) 
SinceI'+(1/2) (ax)-e,u/[(21Tax)(1I2)] as x-co, we set the 
coefficient C3;: O. The limit x - 0 indicates the choice 
C2 = 0, based on the behavior of K'+W2) (x) as x- O. Equa
tions (D3) and (D4) simplify to 

w(x,r)=xIl2 I,+(1I2)(ax)cl> O~x<r, 

w(x, r) = xll2 K,+{1 fl)(ax)c4, r <x < 00 • 

(D7) 

(D8) 

The coefficients Cl and c4 can be determined by examina
tion of the limit x - r in Eqs. (D7) and (D8) which yields 

CI = C4K po.(!/2 )(ar) (D9) 
I,..(t/2)(ar) 

and by imposing the condition (iii) Eq. (4). The result 
for w{x, r} is 

(xr )1/2 
w(x,r) = kl Ip+{1I2J{ax)Kp+{1/2)(ar}, O~x<r, 

It is straightforward to check that 

j(b)w(b)' w(b) - 0, as b - 00 , 

j(a)w(a)' w(a} - 0, as a - 0 • 

Therefore, from Eq. (2) we find 

mz{r) = ~ I,+(1/2) (ar)Kp+{1!2)(ar). 

(DlO) 

(Dll) 

(D12) 

(D13) 
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