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The reduced local Hartree-Fock energy for the neutral atoms Li through to Al have been calculated using the
Hartree-Fock wave functions of Clementi and Roetti. These wave functions were found to give rather
accurate values of the reduced local energy in the medium range region ( values 1 ~ 12 a.u. ), but inaccurate
values close to the nucleus. The reduced local energy was found in each case to exhibit oscillations about the
“exact” total Hartree-Fock energy as a function of the configuration space coordinate r, indicating some
cancellation of opposing errors in the wave functions used for the calculation of the total energy. A method is
outlined for determining Hartree—Fock wave functions which not only satisfy the customary condition that
the total energy be minimized, but in addition, are locally accurate. The criterion which is used to monitor the
local accuracy is the reduced local energy. The reduced local energy is incorporated into a global accuracy
constraint on the wave function, and the energy is determined subject to the minimization of this additional
constraint. Calculations are performed for various helium wave functions. The five-term Clementi—Roetti
wave function is refined, maintaining essentially the same total energy, but with considerable improvement in
local accuracy. The Clementi (1965) wave function for helium is also refined. A ten-term function for helium
is devised which has improved accuracy at the local level. Comparison of expectation values of # using the
different wave functions is made, in order to assess the utility of the reduced local energy as a criterion for

refinement of such values.

INTRODUCTION

Hartree-Fock wave functions are used extensively
in a variety of applications in molecular quantum chem-
istry and other fields. The accuracy of the Hartree—
Fock approach is almost invariably ascertained by how
close a particular expectation value, most frequently
the energy, agrees with the experimental value. This
criterion examines two important effects. First of all,
such calculations reveal basic defects in the Hartree—
Fock formalism. These calculations also reveal in-
accuracies in the Hartree-Fock wave function em-
ployed. The inaccuracies revealed are global in nature,
In a situation where the formalism is likely to be ap-
plicable, a close correspondence between experimental
results and computed expectation values says nothing
about the accuracy of the wave function at the local level,
Errors in one region of configuration space may cancel
those of another region of configuration space, and hence
the computed expectation value may be in fortuitous
agreement with experimental results.

An indication of accidental cancellation of errors may
be obtained when the same “good” wave function is used
to compute expectation values of operators which
emphasize different regions of configuration space. It
is unlikely that accidental cancellation of errors will
occur for each operator, and thus an estimate of the
local accuracy is obtained. While global accuracy is
obviously an important necessary criterion, it is not the
most sensitive test of the molecular wave function.

In this work, our attention is centered on a much more
stringent test of the accuracy of the Hartree~Fock wave
function, the local reduced Hartree-Fock energy, which
is defined as follows:
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This is a special case of the reduced local energy in-
troduced by Rothstein and co-workers.! Equation (1)
represents a necessary condition to be satisfied by the
exact Hartree—Fock wave function. When the exact
Hartree—Fock wave function is employed, Eq. (1) yields
EYF = FHF, For an approximate Hartree-Fock wave
function, the local energy EYF depends on r;, and the
deviation between EFF(r;) and E¥F is a measure of the
accuracy of the wave function at the point r, in configura-
tion space. To make the presentation of the results as
simple as possible, both the numerator and denominator
of Eq. (1) have been integrated over the angles (6,, ¢,).

Recently the present authors® have employed Eq. (1)
to examine the local accuracy of several two-electron
Hartree—Fock wave functions for the helium atom®*°
and several members of the helium isoelectronic
series.? In that study, we showed that the reduced
local energy is a very useful criteria for examining the
accuracy of Hartree—~Fock wave functions.

In the present work, Eq. (1) is applied to test the ac-
curacy of the Clementi-Roetti atomic Hartree—Fock
wave functions.* The number of atomic Hartree—Fock
calculations in the literature is extremely large.
Clementi and Roetti’s tables represent an extensive
tabulation of atomic Hartree-Fock wave functions. We
have chosen these Hartree-Fock wave functions for the
following reasons. First, these wave functions have
received wide usage in the chemical literature, and
therefore, some knowledge of their local accuracy
seems very desirable. Second, the atomic case requires
only one center integrals, with the result that the com-
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:ations require only a modest amount of computer

ne. Finally, the Hartree—Fock wave functions are
esented in analytic form with the coefficients and or-
:al exponents tabulated by Clementi and Roetti. Al-
ough the Clementi—Roetti wave functions are accurate
the energetic sense, these wave functions do not ac-
irately satisfy the cusp constraints,®7 and this fact is
sflected in the poor accuracy found for E®¥(7) at small

The most difficult region to construct an accurate
.artree~Fock wave function is close to the nucleus.
! expectation values of operators which weight this
'egion heavily, e.g., the spin density operator, are
‘equired, then it is the near-nuclear region where the
vave function must be refined. Basis sets which
dentically satisfy the cusp constraint have been dis-
sussed in the literature. ® The use of such basis sets
is obviously highly desirable, but is not sufficient to
guarantee an accurate value for the reduced local energy
as v~ 0.

Part of the purpose of the present work is to utilize the
reduced local energy as a local accuracy constraint to
improve the quality of the wave function. There are two
basic approaches that may be employed to achieve this
goal. The first approach is to determine the minimum
energy subject to the additional constraint that the
reduced local energy be as accurate as possible. This
can be achieved by considering a constraint of the form

| EF — EFF(r)| <a, (2)

where a is some gpecified constant which should be
chosen sufficiently small for an accurate Hartree—Fock
wave function to be obtained. Since the left-hand side of
Eq. (2) is dependent on the configuration space coordinate
r, this constraint provides a means to improve the

wave function in any specified region of configuration
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ond scheme is to consider the local inaccuracies in the
wave function in a global manner, and this is the ap-
proach taken in the present study.

COMPUTATIONAL PROCEDURE FOR LOCAL ENERGY

The wave function ¥"¥(r,, r,, ..., ry) is a Slater deter-
minant constructed from the orbitals ¢,;:

VIE(ry, Ty ) =Gy - - ) (3)
where .4 is the antisymmetrizer and N is the total num-
ber of electrons. The orbitals are expanded in terms
of a set of basis functions

Ri

oir)= ; Cis X y44(1),

where the basis functions X;(r) are Slater-type orbitals
with integer quantum numbers. The expansion coef-
ficients C;; and the orbital exponents (denoted a;) for
each Slater-type orbital are provided in tables by
Clementi and Roetti.

(4)

Equation (1) can be rewritten as

K+ Erx +Eg ,

where K, Ey, and E; denote the reduced “kinetic en-
ergy”, the reduced “electron—nuclear potential energy”
and the reduced “electron-electron potential energy”
respectively; I" is N times the angle averaged electronic
density. The calculation of the appropriate expres-
sions for K, Ey, and Ez is straightforward though more
tedious than the standard expressions for the total en~
ergy. This arises due to the loss of symmetry because
integration over all coordinates is not carried out. To
save space, the expressionsfor K, Ey, and E; are
omitted. To check the computations of the local energy,
the total energy was evaluated directly from the local

(5)

EYF =

space, This approach is under investigation. The sec- energy by numerical quadrature, and was found to be
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in agreement with the results reported by Clementi and For the Li atom, the short range behavior of the re-
Roetti for each atom examined. duced local energy is shown in Fig. 1, and the medium
range behavior is illustrated in Fig. 2, For the region

LOCAL ENERGY PLOTS FOR CLEMENTI-ROETTI close to the nucleus, the Hartree—Fock wave function for

FUNCTIONS

TABLE I. Values of the reduced local energy at short range
The results of our calculations of the reduced local &y &

values of the configuration space coordinate » for the neutral

energy are shown in Figs. 1-12. In all cases, the ex- atoms. The Hartree—Fock energies calculated by Clementi and
act Hartree~Fock wave function would yield a reduced Roetti are given for comparison. For the exact wave function,
local energy that followed the horizontal line (¥ inde- ERF=EHF,

pendent) indicated in each of the figures. All energies

and radial distances are reported in atomic units. Reduced ,13,‘3""1 Total
Atom Radial distance energy E energy
Li 2x10™ 77.7518 —17.4327257
2x 1072 - 6.9560
-14.56401
Be 2x10™ 81. 4074 —14.573021
2x 107 —14.1512
-14.5660 4 B 2x107 70,2849 —24,529057
- 2% 107 — 24,2229
= -14.56804 c ¢ép) 2x 10 60.6109 -37.688612
> 2x107? —37.4552
1]
&8 N('s) 2x107 54.6937 —54.400924
4 14,5700 2x1072 — 54,2011
3 ofp) 2x10 69. 9462 —174.809 370
§ <14.5720 2x1072 ~174.5883
/\ ENF(Be)=-14.573021
8 — > F 2% 107 38.2799 —99.409300
-2
g 14,5780 \/ 2x10 - 99,2728
Ne 2x 1074 — 40,9906 —~128,54705
2x 1072 ~128.6030
-14.57
5760 Na 2x10% —101, 9470 ~161.85890
2x107 —161.9989
14,5780 sy ooy Mg 2x10™ —144.3365 ~199.61461
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RADIAL DISTANCE (A.U.) Al 2x 107 —180.3364 —241,87668
FIG. 3. EYF(y) as a function of » for the ground state of the 2% 107 — 242, 0590
Be atom.
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FIG. 4. E¥F(y) as a function of »
for the ground state of the B atom.

245180~
§-24.5220-
j
)
2
§'24'526°T
|
R o _—~E"F(B)=-24.520057
5-24.5300- ~ ~—
0@
-24.5340
| L § | | L ¥ LA w L L § R J L] .
00 10 20 30 40 50 60 7.0 80 9.0 100 11.0 120
RADIAL DISTANCE (A.U.)

Li is of rather poor quality, as indicated by the fact that
the reduced local energy becomes positive! All the neu-
tral atoms examined gave curves of similar shapes for
the reduced local energy as a function of 7 in the near-
nuclear region.

An indication of the quality of the atomic Hartree—
Fock wave functions of Clementi and Roetti at short
range can be obtained from Table I, where the reduced
local energy is given for two values of 7 close to the

functions, the reduced local energy should be close to
the “exact” total Hartree—-Fock energy which is reported
in column 4 of Table I. In all cases, the Hartree-Fock
wave functions are very inaccurate at distances close to
the nucleus, Similar results were found in a study of two-
electron systems.? With increasing Z, the inaccuracies
in the wave functions for the neutral atoms are smaller,
as can be observed from Table I, '

The plots of the reduced local energy as a function of
the radial distance for the neutral atoms, exhibit the

FIG. 5. EYF(y) as a function of » for
the ground state of the C atom.
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following general features for the region of configura-
tion space »~0.1-12 a.u. All the systems considered
show sharp oscillations in the reduced local energy about
the exact Hartree—Fock energy at 7 values near the nu-
cleus (»~0.1-1 a,u,). The reduced energy also oscil-
lates at larger values of . Two important observa-
tions must be noted from the figures, The Clementi-—
Roetti Hartree—Fock wave functions are fairly ac-
curate for medium distances from the nucleus; typical-
ly »~1-10 a,u. Since the Hartree—Fock reduced local
energy determined from the Clementi-Roetti wave
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functions oscillates about the exact Hartree-Fock ener-
gy, cancellation of inaccuracies in the wave function
will result when the total Hartree-Fock energy is com-
puted.

The figures also provide a guide as to where the
Clementi-Roetti functions are likely to be useful for the
computation of expectation values. For the calcula-
tion of expectation values of operators which place
emphasis on the medium range of 7 (such as the energy),
then the Clementi-Roetti wave functions are likely to

FIG. 7. E%F(») as a function of 7 for
the ground state of the O atom.
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FIG. 10, E¥F{r) as a function of
r for the ground state of the Na
atom.
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give satisfactory results, The computation of expecta-
tion values of operators that place emphasis on the
short range behavior of the wave function, for example
hyperfine interactions, will lead to fairly poor values in
such cases. A glance at Fig. 1 and the values listed in
Table I should convince the reader of this fact. For the
region r less than approximately 0.01 a.u., there are
no oscillations in the reduced local energy, and there is
no reason to expect cancellation of inaccuracies in the
wave function when expectation values of operators that
weight this region heavily are considered.

The poor behavior of the reduced local energy at small
7 values is a direct consequence of the fact that the
Clementi-Roetti wave functions do not accurately satis-
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fy the cusp constraint. It is to be noted that a wave
function which obeys the cusp constraint will not auto-
matically yield an accurate E5F ag »— 0. It should also
be remarked that the reduced local energy criterion
tests not only the small ¥ region of configuration space
(i.e., the cusp quality of the wave function), but also
examines all other points in configuration space. For
this reason the Hartree-Fock reduced local energy
criterion is a particularly useful test of the accuracy
of the wave function,

GLOBAL CONSTRAINTS

A giobal measure of the local accuracy of the Hartree—
Fock wave function is defined by the equation

FIG. 11. E¥¥(#} as a function of »
for the ground state of the Mg atom.
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FIG. 12. EYF(7) as a function of »
for the ground state of the Al atom.
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1
p=3 [ @ - IRa(rar (6)
where p(r) is the Hartree-Fock electronic density,
which satisfies

[ otxar-n. G
The quantity D satisfies the following important con-
dition:

D—-0 as E¥F(r)~ EHF | (8)

We call D a global measure of the local accuracy be-
cause it’s independent of configuration space coordinates.
"~ This is to be contrasted with a constraint like the one
described by Eq. (2), which provides a local measure
of the accuracy of the wave function, Note that D is
always positive. The global functional D[ C] is used as
an additional Lagrange constraint in the standard energy
minimization procedure. The problem is then reduced
to finding the coefficients C such that the energy is a
minimum, subject to the constraints that the orbitals are
orthonormal and that D is a minimum, The minimiza-
tion equation for the energy takes the form

8E[C]+26D[C]+ uds[C] =0,

where A and u are Lagrange multipliers and S is the
normalization integral.

(9)

The coefficient vector C has been determined so that
the variation of C, denoted 6C, satisfies

E[C-6C]<E[C].

In the calculations, the global constraint D has first
been minimized with respect to variations in the coef-
ficient vector C to yield the value D,. The energy is
then minimized by adjustment of C subject to the ortho-
gonality constraint and the additional constraint

D[c]l-bp,=0.

(10)

(11)

| pEEEE pE— 1
9.0 10.0 11.0 12.0

The whole process can be repeated to yield a value of
D,, and a lower energy E.

In the present work, we have concentrated our atten-
tion on the helium atom, The Clementi~Roetti* five
term Hartree-Fock wave function has been examined,
and we have obtained substantial improvement in the
local sense, without any loss in the energy minimum.
A similar refinement has also been carried out for the
Clementi® five term function, however, in this case,
only slight improvement in local accuracy is achieved,
A ten term wave function has been devised and this gives
the best local accuracy of all the wave functions con-
sidered (smallest D,,).

TABLE II. Local accuracy of various helium wave
functions indicated by the global measure of local ac-
curacy D.

Wave function Energy(a. u.) D
Single zeta® ~2.8476562 0.156
Double zeta® —2.8616726 0.310x10™
Three term? -2.8616784 0.194%x 107
Clementi-Roetti*
five term —2,8616799 0.663%x107°
Refined Clementi—
Roetti five term —2.8616798 0,781 %106
Clementi® five —2.8616799 0,721x107
term
Refined Clementi
five term —2.861680 0.642% 1077
Roothaan-Sachs— —2,861680 0.127x10°®
Weiss® twelve
term
Ten term —2,861680 0.165x1077

*Wave functions from Ref. 4. “Wave function from Ref. 5.

PWave function from Ref. 3.
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FIG. 13. Hartree—Fock reduced

local energy in the near nuclear re
gion for the five term Clementi—Ro
ground state helium wave function a
for progressive refinements to this
wave function. In the near nuclear :
gion the D values reflect the improv
ment in the reduced local energy.
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CONSTRAINED CALCULATIONS

To give some idea of how D varies with different
wave functions, we have calculated this quantity for the
four ground state helium wave functions reported by
Clementi and Roetti,* the five term function of Clementi,
the refined Clementi~Roetti and refined Clementi func-
tions calculated in this work, the twelve term function of
Roothaan-Sachs and Weiss,® and also the ten term func-
tion devised in this work (see Table II). It is not too
surprising to find that the single zeta function gives a
rather large D value. The fact that the three term wave
function gives a D value larger than the D value for the
double zeta function can be probably traced to the fact
that one of the coefficients or orbital exponents (or both)
reported by Clementi and Roetti must be a typographical
error, a fact noted in our earlier calculations.? To get
some idea of how accurate each of the Clementi—-Roetti
wave functions is on the local level, the reader should
consult the plots of the reduced local energy versus 7
in our previous paper.?

3

The refined five term entries in Table II were deter-
mined in the following manner. The Clementi-Roetti
five term wave function was used as input into the scheme
discussed in the Global Constraints section, and D
minimized. The Clementi-Roetti starting point is not

essential, it just saves some additional computations.
The same procedure was used for the refinement of the
Clementi function. Because of the slow convergence,
the values reported for D are possibly uncertain by ap-
proximately 1-3 in the last quoted figure for the re-
fined and ten term functions reported in Table II.

Figure 13 illustrates how the reduced local energy
as a function of # changes for different values of D. All
the curves shown in Fig. 13 are for five term wave-
functions employing the orbital exponents given by
Clementi and Roetti.* It is the short range 7 region
(r<0.1 a.u.) where the factor [E®F - E¥F(r)F is lar-
gest and this is where considerable improvement is
obtained for the reduced local energy as D becomes
progressively smaller.

There are two points to note with respect to the re-
finement of the Clementi—Roetti five term wave func-
tion. First, the additional constraint that D be a mini-
mum no longer guarantees that the energy minimum
reached by Clementi and Roetti can be achieved. Sec-
ond, only minor changes in the expansion coefficients
can result in appreciable improvements in the reduced
local energy. This is indicated by the results tabulated
in Table III where it is observed that small changes in
the expansion coefficients have resulted in a marked

TABLE III, Variation of the global measure of the total accuracy D, for changes in the expansion coeffi-

cients of the five term helium wave function of Clementi and Roetti.

Expansion coefficients

D Cy C, (o Cy Cs Energy

0.663x107 0.76838 0.22346 0. 040 82 —0.00994 0, 00230 -2,86167990
0.332x 107 0.768393 0.223 426 0.040 823 —0.009865 0,002 233 —2,86167990
0.166x 107 0,768475 0,223 357 0.040660 ~0.009508 0.002033 —2,86167988
0.885% 107 0.767 965 0.224 383 0.039497 —0.008468 0.001609 —2.86167986
0.781x 1078 0,767 553 0.225 091 0.038904 —0.008024 0.001 443 -2,86167979

J. Chem. Phys., Vol. 76, No. 1, 1 January 1982
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ABLE IV. Asymptotic limits for the local energy EY¥ and cusp factors for the Clementi,

lementi—Roetti, and refined versions of these wave functions.

1, CiayN, _,
Jave function EYF (y=c) E¥F(r=0) 3.CN,
lingle Zeta® -3.3750 —1.6875 —0.313
double Zeta® —3.0002 -3.0132 0.399% 1072
Three Term® —2,9888 —-3.1478 0.179% 1072
Clementi—Roetti® ~2.9479 —2,9834 0.431x107?
five term
Refined Clementi — —-2,9479 —-2,8978 0.648x 1073
Roetti five term
Clementi five term® —2,2620 —2.8682 0.144%10%
Refined Clementi ~2,2620 —2.8684 0.103x107
five term
Ten term —1.9858 —-2,8662 0.848x 10

*Wave functions from Ref. 4.

improvement in D, The loss in the energy minimum is
found to be almost neglible (a fraction of a cm™).

A stringent test of how accurate the wave functions
are can be obtained by examination of the asymptotic
limits. For the two-electron case, the formula for
EFF (o) was given in Ref, 2. For the limit »—~ 0,

2
BF ,_0y=— 324 CiN o CiCiNi N,
Br(r=0)=-3 24CiN; zzj: &3

2
X[(Z—l)gu-aiaj]“' (Mj_ai> ’

2iCiNy
(12)
if
2iCiNiay _
S.oN 2o (13)
otherwise
EI}EF(‘r=0)-—i°o . (14)

In Eq. (12), &;;=a;+ o, and N; are the appropriate nor-
malization factors, Equation (12)was stated incorrectly in
Ref. 2. Corrected values of EXF(7=0) for the helium
wave functions are given in Table IV; corrected values
for Li* through Ne® are respectively —7.6681, ~14, 369,
—22.862, ~33.247, -45.492, ~59,781, — 76,445, and
—94,466. The asymptotic results for the various wave
functions considered in this work are summarized in
Table IV. For none of the wave functions considered is
Eq. (13) exactly satisfied, and so Eq. (14) determines
the limit ¥~ 0. Column 3 in Table IV reports the values
of E%F(r=0) ignoring the 1/7 Coulomb singularity [that
is, assuming Eq., (13) is exactly satisfied]. It is to be
noted that the condition given above, Eq. (13), that the
local energy be nonsingular at »=0, is equivalent to the
constraint that the basis function satisfies the standard
cusp condition.

The following observations can be made from Table
IV: (i) Nottoo surprising is the fact that the values of
E¥¥(7=0) are fairly poor except for the Clementi five

bWave function from Ref. 3.

term and the ten term functions. The values of EL¥ (»
=) show a systematic increase as the local accuracy
(as measured by D) is improved. It might be expected
that much better values of Ef'F (¥ =) should be readily
obtained. However, this cannot be achieved easily with
a global measure of accuracy like the one considered in
this work. The majority of the error in the wave func-
tion arises in the region near the nucleus. The mini-
mization process for D gains maximum improvement
(in D,) by making adjustments to the coefficients which
directly affect the near-nuclear region. Since there is
only small improvement to be gained at large 7, and
because of the long-range behavior of the weight func-
tion p(r) improvement of the reduced local energy at
large r is not dramatic. It is reasonable to conjecture
that once the near-nuclear region has been considerably
refined, then improvements in the reduced local energy
at large 7 could be achieved, as these would become a
major contribution to D once the short range deviations
have been corrected. (ii) The cusp factor becomes
smaller as the quality of the wave function improves
(as measured by the values of D).

In the refined calculations based on the wave func-
tions of Clementi and Clementi and Roetti, the orbital
exponents have not been changed. Additional refine-
ments in the reduced local energy can be obtained by an
iterative scheme in which the orbital exponents are
optimized following the energy and D minimizations,

The ten term function indicated in Tables II and IV
was constructed from the Clementi five term function.
The first five orbital exponents were those given by
Clementi, the next five, chosen by stepwise minimiza-
tion of D, have the values: az=3.97, a,=1.46, a,
=0.29, 09=4.61, and ¢,=0.53. The coefficients ob-
tained from the D constrained minimization are

C,=0.20691146 , C,=0,16201050,
Cy=-0.44638921, C,=-0.40494647x10%
C5=0.18752913x10" , (,=0.43214289 ,
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FIG. 14, Reduced local energy as a
function of the configuration space
coordinate in the near nuclear region
for various helium ground state Har-
tree—Fock wave functions.
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C;=0.58893177, C,=-0.62963130x107
Cy=0.71558940x10" | (C;o=-0.53874819x10% ,

A reoptimization of all of these exponents would result
in additional refinements to the reduced local energy.
The importance of examining the orbital exponents can
be gauged from the results for the two five-term func-
tions reported by Clementi and Clementi and Roetti.
From Table II it is observed that thereis no difference
in total energy for these two functions; however, the
local accuracy of the former is considerably improved
(as measured by D). This improvement is due principal-
ly to the better cusp quality of the basis function (see
Table IV).

In Figs. 14 and 15, the reduced local energy calculated
from several different wave functions is shown for the
near nucleus region and the medium 7 range respective-
ly. The most accurate reduced local energy for the
small ¥ region is obtained from the ten term function
indicated in Fig. 14 as “King-Kelly”. Figure 14 ob-
viously reflects the cusp characteristics of the various
wave functions; the better the cusp factors (see Table
IV), the closer the reduced local energy lies to the ex-
act Hartree-Fock result. It is to be noted however, as
indicated in the introduction, that a cusp factor of zero
is not sufficient to ensure the reduced local energy will
asymptotically approach the exact Hartree—Fock total
energy as v— 0,

At medium range values of the configuration space
coordinate, the reduced local energy oscillates about
the exact Hartree—-Fock energy. In fact Fig. 15 il-
lustrates why all the wave functions used to construct
this figure are very accurate in the usual sense of the
term (i.e., total energy). The calculation of an expecta-
tion value such as the energy emphasizes the region with-
in a few angstroms of the nucleus, and it is in this re-
gion that all the reduced local energies illustrated in

T 1
0.010 0.012

Fig. 15 show only very minor deviations from the
exact Hartree—Fock energy. Also, because of the slight
oscillations, there is partial cancellation of errors, and
hence the total energy comes out rather accurate.

We now turn our attention to the calculation of expecta-
tion values. Our interest here is to see if it is possible
to obtain more accurate expectation values by improving
the local accuracy of the wave function.

Table V provides a tabulation of several expectation
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-2.860+

R
o}
[0}
N

Roothaan-
Sachs-
Weiss

REDUCED LOCAL ENERGY (A

-2.8701
Clementi-Roetti

-2.8724

-2.87 44

1 2 3 4 5 6 7 8
RADIAL DISTANCE (A.U.)
FIG. 15. Reduced local energy for the medium » range for
various helium ground state Hartree—Fock wave functions.
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'ABLE V, Expectation values (¥(ry, r;) | {1 ¥(r, ry)) for different wave functions.

vave function (r® ) {ry) () () () ) (Y

iingle Zeta? 5.695 1,688 0.889 1.053 2,715 5,755 13.641 1.078x10°

Jouble Zeta* 5,995 1,687 0,927 1,183 3.851 9,057 24,533 2.567x10%

Clementi-Roetti® 5.996 1.687 0,927 1.185 3.884 9,201 25.174 2,708x 10
five term

Refined Clementi 5.996 1,687 0.927 1,185 3. 886 9,211 25.215 2.717%x 10%
Roetti five term

Clementi five term® 5. 996 1.687 0. 927 1.185 3,888 9,220 25,279 2,744 %10

Refined Clementi 5,996 1.687 0.927 1,185 3.888 9.220 25,280 2. 745% 10
five term

Ten term 5.996 1.687 0.927 1.185 3.888 9,227 25,354 3.031x10°

Roothaan® 12 5. 996 1.687 0.927 1,185 3.888 9,221 25,279 2.739% 102
term

20 term Hylleraas® 6.018 1.688 0,929 1.193 3. 969 9,478 26,141 2., 858x 10

*Wave functions from Ref. 4.
bWave function from Ref. 3.
*Wave function from Ref. 5.

9Based on the density calculation by Benesch using the Hart—Herzberg Hylleraas function, Refs. 9 and 10,

values of 7" for different % values using a selection of
Hartree-Fock wave functions. Also included for re-
ference are expectation values of r{ calculated from the
20-term Hylleraas wave function of Hart and Herzberg®
using the density calculation of Benesch. °

The following general features emerge. For the ex-
pectation values (v}) for small k values (-2, -1,1,2, 3, 4)
all the wave functions examined (except the single zeta)
yield essentially the same values for each expectation
value. The volume element factor dr has a significant
effect on cancellation of inaccuracies in the near nuclear
region, For expectation values (rf) with larger kvalues,
differences start to appear for the various wave func-
tions. For the moments with 2=5, 6, 8 we find that our
refinement of the Clementi~Roetti five term function
has lead to small improvements of approximately 0.1%-
1% (as judged against the Hylleraas values). For the five
term Clementi function we have not gained any significant
improvement.

1t is clear that all the Hartree~Fock wave functions
beyond the double zeta function are extremely accurate
(in the global sense) and hence it is difficult to refine
these functions any further. It is obviously a much
easier problem to improve upon the single and double
zeta functions than the multiterm functions of Clementi-~
Roetti and Clementi.

The ten term function listed in Table V gives better
results for (r}) and (%) relative to the other Hartree—
Fock wave functions listed. However, for higher
moments, the ten term function yields poorer results,
Although this wave function is excellent in the sense of
total energy and local accuracy as measured by D,
its clearly poor at very large » (the region important
for the calculation of large 2 moments). An indication
of this inaccurate long range behavior is obtained from
the poor asymptotic limit listed in Table IV, This de-
fect in the ten term function emerges in large part from

its mode of construction. The two requirements were
that the total energy and the local accuracy as mea-
sured by D were both minimized. However, the weight
factor p(r) in the definition of D essentially “irons out”
inaccuracies in the long range behavior of the wave
function, For this reason the D condition is best confined
to improvement of wave functions for short and medium
range values of 7. Clearly, a local criterion such as the
one introduced in Eq. (2) offers the possibility to over-
come this problem at large » values.

The influence of different orbital exponents on the
various expectation values can be observed in a limited
way by comparison of the Clementi and Clementi—-Roetti
five term wave functions. Not surprisingly, larger
changes in expectation values are achieved by modifica-
tion of the orbital exponents, then by refinements of
the expansion coefficients. Ideally, both factors need
to be considered together,

The following general observations can be made con-
cerning the quality of the various expectation values of
(r}) and the local accuracy of the different wave func-
tions as measured by the D values. For less accurate
wave functions, D is large (~0.1) and the corresponding
expectation values are poor. An improvement of the lo-
cal accuracy by a factor of 10°-10* (i.e., D~10%-107)
leads to substantial improvements in the expectation
values. Further improvement in D by a factor of 10
(i.e., D~10%-107) leads to only minor improvements.
An additional refinement of approximately a factor of ten
in D, leads to negligible improvement in expectation
values.

Since D is a global measure of accuracy, it is neces-
sary to exercise caution when predicting whether a
particular expectation value will turn out to be accurate.
For wave functions with large D values, expectation
values will in general be poor. For wave functions with
small D values, it would be expected that most expecta-
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tion values will be satisfactory. It is to be noted how-
ever, that an expectation value may be rather poor, be-
cause it emphasizes a particular region of configura-
tion space where the wave function is inaccurate, but the
D value computed from the same wave function may be
very small, This may occur because of cancellation

of errors of different sign, or because the function p(r)
deemphasizes the long range 7 region.

In this work we have discussed a stringent necessary
accuracy test on the Hartree—Fock wave function. Be-
cause the reduced local energy criterion is able to ex-
amine the accuracy of all points in configuration space,
and not just the near-nuclear region, this condition
represents an important general test of the quality of
the Hartree—Fock wave function.
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