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Some upper bound integral inequalities are derived for various optical constants. Weight 
functions which damp out the high frequency spectral domain are given special emphasis. The 
implications for testing experimental data are discussed. 

PACS numbers: 78.20.Dj, 42.90. + m 

I. INTRODUCTION 

The purpose of this p:>per is to consider integral in
equalities of the form I: W(mo,m)d(m)dm <A (a,(J,mo)' (1) 

where d(m) denotes a particular optical constant and 
W(mo,m) is some convenient weight function. In the present 
work the interval [a,(J] will be taken as [0, 00) and A (0,00 ,mol 
will be abbreviated to A (mo)' The situation for general limits 
a andp, which is certainly a case of considerable interest and 
practical application, appears somewhat more difficult if a 
discussion free of additional assumptions about the specific 
nature of the medium is required. The topic is currently un
der investigation. 

The motivation for this study was twofold. A consider
able amount of work has been carried out on sum rules for 
optical constants. 1-7 Almost all these results may be written 
in the form 

(2) 

There are severe restrictions on the choice of weight 
function w(lUo,m) which allow B (lUO) to be determined explic
itly. In order for a relationship like Eq. (2) to be useful in the 
analysis of experimental data, it is highly desirable that, for 
values of the optical constants which are experimentally in
accessible, the resulting contributions to the integral be as 
small as possible. Usually, the most inacessible spectral 
range for optical constant measurements is the high energy 
domain. 

Problems in data analysis could be reduced to a mini
mum by the simple expedient of choosing a weight function 
vanishing very rapidly at high frequencies; for example, an 
appropriate gaussian function would be suitable. This has 
the effect of producing for the optical constant of interest 
what is essentially a "band-limited" function. Unfortunate
ly, for weight functions of this particular form, the function 
B (mo) cannot be determined (at least by the procedures used 
in Refs. 1-7). 

A commonly employed approach is to augment the 
available experimental data with semi empirical extrapola
tions to the high frequency range. In those particular cases 
where the spectral range for the optical data is rather re
stricted, which is common in practice, it becomes somewhat 
difficult to ascertain whether any inaccuracy in satisfying 
Eq. (2) rests with the experimental data or the extrapolation 

procedure, or both. In such cases Eq. (2) is of restricted util
ity for testing experimental data. 

The alternative viewpoint, which is taken in this work, 
is to start with a highly damped weight function and then 
determine the upper bound A (lUO). Errors arising from ne
glect of experimental data beyond some upper frequency can 
be reduced significantly by choosing weight functions which 
vanish rapidly as m---+ 00. The utility of Eq. (1) is then gov
erned by the magnitude of the deviation between the con
stant A (mo) and the true value of the integral in question. 
When such deviations are small for a particular choice of 
weight function, Eq. (1) may be more useful in practical ap
plications than Eq. (2), for reasons mentioned above. 

The constant A (mo) is not in general determined as the 
best possible bound in this work. Work to determine the best 
possible bounds would certainly clarify the relative advan
tages of Eq. (I) and (2) in data analysis. 

II. INEQUALITIES FOR THE REFRACTIVE INDEX 

In this work we have restricted the assumptions on the 
mathematical properties of the optical constants to those 
employed in the derivation ofEq. (2). Stated briefly, the gen
eralized optical constant is an analytic function in an appro
priate domain, and some assumption about the asymptotic 
behavior as m---+oo is used to derive Eq. (2). Usually the as
ymptotic behavior is taken from the free electron gas model. 
With such general assumptions on the behavior of the opti
cal constants, it is to be expected that there are relatively few 
general inequality relations. 

Ifwe denote the real and imaginary parts of the general
ized refractive index by n(m) and K(m), respectively, then 

and 

L'" m I/2K(m) 1/2 exp( -1Ilm2/128m~) dm<,m6/2mp (3) 

L" [mK(m)n(m)] 1/2 exp( - ~m2/128m~) dm<,m~l2mp' 
(4) 

where mp is the plasma frequency and mo is some arbitrary 
frequency. Equation (3) is derived in the following manner. 
Starting from the Buniakowsky-Schwartz inequality, and 
for some weight function W (mo,m), 

100 

ml
/
2K(m)1/2W(mo,m) dm 

<, [lOO mK(m) dm 1° W (mo,m)2 dm] 1/ 2
• (5) 
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Ifwe choose 

W(wo,w) = exp( - rw2/12Sw~) 

and use the resule 

(6) 

L" WK(W) dw = !1TW~, (7) 

then Eq. (3) follows directly. An equivalent procedure yields 
Eq. (4) if the sum rule2 

1'" WK(w)n(w) dw = !1TW~ (S) 

is employed. 
In Eq. (3) the gaussian weight function is very highly 

damped as w- 00 , so errors resulting from omission of data 
should be negligible for the high frequency spectral range. It 
should also be noted that Eq. (3) has an advantage over Eq. 
(4), since only experimental data for a single optical constant 
is required to utilize Eq. (3), whereas Eq. (4) requires both the 
dispersive and dissipative data for the generalized refractive 
index. Inequality constraints like Eq. (4) therefore do not 
provide information on the quality of the experimental data 
for the dispersive and dissipative modes separately. 

An inequality similar to Eq. (3) can be derived for the 
refractive index. The first step is to introduce a second 
weight function of the form (w2 + w~) -\ 12. A related idea is 
well known in the derivation of certain types of integral in
equalities, such as generalizations of Carlson's inequality.8 

We have 

1"0 n(w) I/Z W(wo,w) dw 

= 100 

[(w2 + w~)1/2W(wo,w)n(w)1/2 dw/(w2 + W~)1/2] 

< {1°O (w2 + w~) W (wo,W)2 dw 1
00 

[n(w) dw/(w2 + w~)] } 1/2
• 

(9) 

If we make use of the relation6 

100 n(w) dw _ ~ = _1_ 100 

WK(W) dw 
2 2 'L. 2 2 ' W + Wa UlJa Wa 0 W + Wa 

(10) 

then 

100 

n(w)1/2W(wo,w) dw 

«100 (wZ + w~)W(WO,W)2 dW(1T/2wa)(1 + W~/2w~)]1/2,(11) 
where the inequality 

f" WK(W) dw/(w2 + w~) < 1TW~/4<u~ (wa > 0) (12) 

has been employed. For the choice 

W( ) - ",'/2"'5 Wo,W = e , (13) 

100 

n(w)1f2 W(wo,w) dw 

< (r/4/4<ua ) [(wolwa )(2w~ + w~ )(2w~ + w~ )]112 

(Wa >0). (14) 
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Since Wo is arbitrary in Eq. (13), we may choose Wo = Wa and 
obtain 

roo 31/2 
Jo n(w)1/2W(wa,w) dw < ~/4(2w~ + w~r/2, (15) 

with weight function W (wa,w) = exp( - w2 /2w~). The case 
Wa = wp leads to the simple bound 

100 

n(w)1f2 exp( - w2/2w~) dw <irI4wp. (16) 

The best possible bound for Eq. (14) can be obtained by deter
mining the minimum of the right-hand side with respect to 
Wa' We find the sharpest bound when wa is given by 

Wa =Hw~ +w~ + [w~ +wri + 14<u~w~r/2I.1/2 
The above derivation may be carried through in an 

analogous manner with n(w)1/2 replaced by [WK(WW /2 to 
yield 

100 

[WK(WW /2 exp( - w2/2w~) dw 

(17) 

The above approach leads to a final result similar to that 
discussed at the start of this section; however, the final 
bound is less sharp. This is immediately apparent on writing 
Eq. (17) in the equivalent form 

100 

[WK(W)] 1/2 exp( - rw2/12Sw~) dw <@1/2W6/2Wp. 

(IS) 

This is not surprising, since the procedure of introducing the 
additional weight factor (w2 + w~) - 112 does not lead to opti
mum bounds. 

For the particular choice of weight function 

(19) 

the following simple inequality for the refractive index is 
obtained: 

100 

[n(w) dw/(w2 + W~)] < (1T/2wo)n(O) (Wo > 0), (20) 

where n(O) is the refractive index at zero frequency. The 
bound indicated is of interest only for the case of insulators, 
since for conductors n(w)-w-1/2 as w-G. The proof ofEq. 
(20) follows directly from the Kramers-Kronig relation con
necting the real and imaginary parts of the refractive index: 

n(wo) - I = (211T)p 1'" [WK(W) dW/(W2 - (6)] 

and for Wo = 0 

n(O) - 1 = (211T) 100 

[K(W) dw/w] 

> (2/1T) 100 

[(WK(W) dw/(w2 + w~)], 

(21) 

(22) 

and using Eq. (10) leads to Eq. (20). It is to be noted that 
inequality (20) involves only a single optical constant and is 
therefore suitable for analysis of experimental data. 

The inequality (20) can be used to derive the following 
inequality (using the approach indicated above): 
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[sO' W(wO,w)n(w)I/2 dW]2 1Tn(O) 0 
< --, Wa> , 

SO' W2(Wo,W)(W2 + W~) dw 2wa 
(23) 

where W (wo,w) is any suitable weight function. Equation (23) 
depends on only one optical constant, and the final result is 
independent of the plasma frequency. 

III. INEQUALITY FOR THE REFLECTANCE 

If we know that the optical constant satisfies 

O<O'(w)<&" (24) 

for the interval [0,00), and we consider a weight function 
W(w) which is decreasing on the same interval, then 

and 

[cat - O'(w)][W(w) - W(w')] is positivefor w 

on the interval [O,w/] 

O'(w)[W(w/) - W(w)] is positive for w 

on the interval [w', 00). 

Hence, 

J:' [&" - O'(w)]( W(w) - W(w/)] dw 

+ i~ O'(w)[ W(w/) - W(w)] dw>O. 

Equation (25) can be rewritten as 

F(w/)==:&" f" W(w) dw 

+ W(W/)[fO O'(w)dw - &"w'] 

;> L'" O'(w)W(w) dw. 

(25) 

(26) 

The optimum upper bound is determined from the minimum 
of F(w/). Hence, 

a~~~/) = [f" (j'(w) dw - w&"] a~~~/) = 0 (27) 

and therefore 

w/ = (I/ &") fO O'(w) dw. 

Equation (26) may be written in the following form: 

100 

O'(w)W(w) dw<&" lw
' W(w) dw 

(28) 

(29) 

with w' given by Eq. (28). Equation (29) is a variant of Steffen
sen's inequality,9 and the above derivation is related to a 
procedure of Apery. 10 Equation (29) would be potentially 
very useful if the appropriate upper bounds on the various 
optical constants were available. Unfortunately, except for 
one important case, such upper bounds are unknown. 

Consider the special case of Eq. (29) for the reflectance 
R (w), 

O'(w)=R (w), 

&" = 1, 
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(30) 

(31) 

w' = .r R (w) dw, (32) 

and choose a convenient weight function 

W(w) = rw/(U", (33) 

where Wo is some arbitrary frequency. Combining Eqs. (29)
(33) yields 

(I/wo) L" R (w)e-w/<u"dw<l - e-<U'/(U". 

This is clearly a refinement on the obvious inequality 

(I/wo) 1"" e - (UIW"R (w) dw < 1 

and will be a substantial improvement when 
(I/wo)SO'R (w) dw is much less than 1. 

IV. DISCUSSION 

(34) 

(35) 

The procedures discussed in Sec. II can be applied to 
the dispersive and absorptive parts of the generalized dielec
tric constant, to yield exactly analogous inequalities to those 
reported for the real and imaginary parts of the generalized 
refractive index. The approach also applies to most of the 
optical constants if appropriate equations analogous to Eqs. 
(7) and (10) can be established. 

It is to be stressed that the reported inequalities are nec
essary constraints only. In those cases where experimental 
data lead to a violation of one of the inequalities, then that 
data is to be regarded as inaccurate. Nothing can be said 
about the accuracy of the data when the inequalities are sat
isfied, since offsetting inaccuracies may still exist in the ex
perimental data. 

For some of the inequalities derived herein, we have not 
made use of the precise asymptotic behavior of the optical 
constant under investigation, although it is implicitly as
sumed that it is such that all integrals under discussion con
verge. This contrasts with the situation for the derivation of 
some exact sum rules, where the asymptotic behavior must 
be precisely known. 
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