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A rigorous dispersion theoretic derivation of the inverse fust moment of the magnetoreflection weighted by the normal 
reflection is presented. Schnatterly’s formula for the zeroth moment of the magnetoreflection is briefly dikcu%sed. 

1. Introduction 

Some time ago, Schnatterly [ 1] proposed that the 
zeroth moment of the magnetoreflection could be ex- 
pressed as 

s o [R+(w) -R_(w)] dw = -oc, (1) 
0 

where R,(w) and R_(w) are the reflectivities for left 

and right circularly polarized light, and wC is the cyclo- 
tron frequency eH/urc. The argument leading to eq. (1) 
centers on the assumption that the applied magnetic 
field causes a small perturbation on the electronic en- 
ergy levels, and hence 

R+(u) - R_(u) = PR(w)/ao] we, (2) 

where R(w) is the normal refiectivity in the absence of 
the field. Eq. (1) follows directly on integration over 
the interval (0, m), and the case R(0) = 1 has been as- 
sumed. 

In a recent paper, Smith [2] applied the above argu- 
ment to the phase, and obtained the zeroth moment 

0 

s [O,(o) - 8 _(u)] dw = rr~c. 
0 

Smith also showed that this result could be derived 
rigorously using dispersion theoretic methods. It was 
suggested that it may not be possible to derive the cor- 
responding magnetoreflection moment, eq. (1), via dis- 
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persion theoretic procedures. 
Since magnetoreflection measurements offer a po- 

tentially useful probe of molecular structure, particu- 
larly for solids with high absorption, knowledge of any 
of the moments of this quantity would serve as a valu- 
able check on the quali:y of experimental data. In ad- 
dition, Schnatterly suggested that eq. (1) may be a use- 
ful way to determine the cyclotron mass factor. 

2. Theory 

A large amount of work has appeared in the past 
few years in which the zeroth and higher moments of 
many oprical properties have been given explicitly 
[2-lo]_ For the reflectivity (both normal and mag- 
neto-) however, the moments are not known. The 
reason for this situation is connected with a funda- 
mental distinction between the generalized reflectance 
and other generalized optical properties such as the di- 
electric constant, refractive index, etc. The real and 
imaginary parts of the generalized optical properties 
of the latter group can be written as Hilbert transform 
pairs. For the generalized reflectance, no Hilbert trans- 
form pair can be written between R(w) and 8(w). If 
such a relationship did exist, the zeroth moment could 
be obtained directly from a dispersion theory analysis. 
For this reason, a proof of eq. (I) using dispersion 
theory directly is not possible. The simplest dispersion 
relations that exist for the reflectance involve the quan- 
tity ln R(u). 



Vobune 56, number 3 CHEMICAL PHYSICS LETTERS lSJune1978 

A quantity of direct experimental interest is the 
magnetoreflection weighted by the normal reflectance 

m(,-,,) _ 2 [R+W - R__(w)1 -- %h)= R&) R&J) +R_b) - 

An analytic result is now derived for the inverse first 
moment of the quantity S?(w). The generalized reflec- - 
tance for left and right polarized modes is 

In?“(w)=% In R,(w)+if3,(w). 

If we write 

R,(w)= R(w)++AR(o), 

R_(o)= R(o)--AR(o), 

then 

F+<4 
In- 

F__(u) 1 + iAfI(w), 

where 

Ae(w) = e,(w) - 8 _(W). 

Eq. (8) can be expanded to obtain 

hG+)F_(~)l 

= [+ 92(w) +& 923(o) 

+ r&a 92’(w) + __.I + iAe(w), 

provided-l<%?<l. 

(6) 

(7) 

038) 

(9) 

(W 

The function ln[F+(o)/r”_(w)] is analytic in the up- 
per half complex frequency plane. To obtain the de- 
sired moment, we consider the following function 

e.Q) = wI+GJY~_(41 /hJ* - a,“, (11;) 

and perform a contour integration of F(w) on a semi- 
circle contour that includes the real axis indented at 
w = fwu (into the upper half plane) and around the 
semicircle arc in the upper half plane. The result is 

Employing the crossing relations (for real w) 

F.*(o) = F&SJ), 

Ae(-w) = Ae(w), 

7i?(-cd) = -9(u) 

simplifies eq. (12) to yield 

(12) 

(13) 

(14) 

(1% 

do = (+ ~T/GJ~)~ (wo) 

x [I +A %e(w,) f&J 7i?4(cdo) f _..I. (16) 

For many sitllations of physical interest, @R(w);/R(w) 
x 10-4-10-6, and it is therefore possible to truncate 
the series expansion at the first term in eq. (16) with- 
out introducing any significant error. Therefore 

dw = (+ fl/wo) c)2 (mo)- (17) 

Eq. (17) is now integrated over the range (0, -), to 
give 

= f dw, P f Ae&) dw, 
0 0 a*-Cd; 

(18) 

which simplifies on interchanging the order of integra- 
tion and noting the result [8] 
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da0 
= -$7r2 6(w), (19) 

5 f&-a; 

to yield 

s w-%(w)do = 0. (20) 

&. (20) is th e simplest moment formula to be expected 
for the weighted magnetoreflectivity. The reason for 
this is not hard to see. If we employ a generalization of 
F(U) of the form 

F(0) = Urn hl E&K(~)] > (21) 

where m is a nonnegative integer, then the above argu- 
ment leads to the result 

pi am 
CA,; 

C$R(W) [I +(-lYr’l] 
0 

+ i&I(o) [l + (-l)m] ) dw 

=+7rifA#-‘{$R(oo) [l +(-l)m] 

+ iAf3(w,) [I + (-1)“‘1] )_ (22) 

The terms of interest for generating moments of the 
magnetoreflection are obtained from eq. (22) for even 
values of m. The number of convergent moments for 
a specific material is determined by the asymptotic 
behavior of ‘S?(w) as w + =_ The most important 
situation is 

hm %!(a) N- l/o. (23) 
w--t= 

With this constraint on the asymptotic behavior, 

eq. (22) is restricted to m = 0, which leads to the in- 

verse first moment given in eq. (20). Higher negative 
moments diverge due to the singularity at o = 0, 

Eq. (20) is an exact result for any medium, subject 
to the usual assumptiotis needed to employ dispersion 
theory, and the validity of the series truncation in 
eq. (16). In contrast to the Schnatterly formula, eq. (20) 
does not provide a method for determining the cyclotron 
mass factor. JZq. (20) can serve as useful necessary cri- 
terion on the quality of magnetoreflectance data ex- 
pressed via the function ‘X(U)_ 

Finally, we remark that eq. (20) may be derived 
from the dispersion relation for the derivative of the 
normal reflection, 

1 aNo) _ % p j- W&l 
R(w) au , [(w’)~ - 02] -’ dw, 

0 
(24) 

combined with eq. (2). This alternative derivation of 
eq. (20) should not, however, be used to support the 
credibility of eq. (1) . 
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