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A scheme based on conjugate Fourier series is proposed for the determination of the dissipative mode of an
optical constant from the corresponding dispersive mode, and vice versa. The connection between the
conjugate Fourier series and Fourier integral method is discussed. The advantages of the method in relation
to the Kramers-Kronig approach are outlined.

INTRODUCTION

Until recently, the Kramers-Kronig relations have pro-
vided the only means for the inversion of optical data,
that is, the extraction of the dispersive behavior from
the absorption measurements and vice versa. In view
of the enormous number of optical measurements being
carried out, for many different properties and on a vast
range of materials, 1 there is every reason to search for
more effective means by which to achieve the inversion
of experimental data in the most satisfactory manner
possible.

For the purposes of this paper, we restrict our con-
sideration to the dielectric constant. However, the
method may be applied in a similar manner to any optical
constant which is bounded. The well known Kramers-
Kronig relations connecting the real c,(w), and imaginary

j(W), parts of the complex dielectric constant area
2 E) w',f (co)p (1)

(i(co) = c -WPC' [ErVl2) - 1] dw'(2

Equation (2) as written applied to nonconductors. For a
conducting medium, the right-hand side of Eq. (2) be-
comes modified by the addition of the term 47vr/w where
a is the conductivity evaluated at w =0. One immediate
observation from Eqs. (1) and (2) is the requirement that
(,(w) or E,(W) be known over the complete frequency in-
terval (0, o-), in order to determine the appropriate con-
jugate function. This infinite range is an indirect result
of constructing the derivation on a minimum of assump-
tions. Finite frequency range Hilbert relations can in
principle be obtained, but such relations will be directly
dependent on various models for the material under in-
vestigation. In such cases, there will be no relation of
comparable generality to those of Eqs. (1) and (2). This
consideration will apply to all alternative equivalent
forms of the Kramers-Kronig relations.

FOURIER TRANSFORM METHOD

In a recent paper, Peterson and Knight 3 propsed an
alternative to the Kramers- Kronig approach for the in-
version of optical data. Their result is well known in the
mathematical theory of conjugate Fourier integrals4 ' 5 and
is often referred to as the allied Fourier integral,
which connects the real and imaginary parts of a function
holomorphic in the appropriate domain. The Fourier
transform relations for the dielectric constant take the
form

(E(W) =2 dtsinwt1 [E(w') - I] cosw'tdw' ,

Er(W) 1= 2 dtcoswtf Ei(wA)sinw'tdw'

(3)

(4)

Brot6 has given a brief discussion of this form and its
connection with the Kramers-Kronig relations. These
results are implicit in the review of Scaife, 7 who has
written the real and imaginary parts of the complex sus-
ceptibility as the Fourier cosine and Fourier sine trans-
forms of the impulse response, respectively. Scaife also
gives the inversion of each of these results, and Eqs. (3)
and (4) follow immediately. The Fourier transform re-
sults are also implicit in the work of Cole and Cole, 8 in
which expressions for the transient current are given in
terms of the Fourier cosine and sine transforms of the
real and imaginary parts of the dielectric constant. It
is a simple matter to invert these relations to find ex-
pressions for Ej(w) and Er(w), thereby obtaining Eqs. (3)
and (4). An explicit derivation of Eqs. (3) and (4) ap-
propriate for dielectric loss was given some time ago by
Gross. 9 The results were then converted into the usual
Kramers-Kronig form, which was considered by Gross
at that time to be more suitable for numerical applica-
tions. Modern computing procedures have now reversed
this situation. For a rigorous account of the equivalence
of the Fourier integral approach and the conventional
Hilbert transform method, the work of Titchmarsh4 ' 5

should be consulted.

The integrals appearing in Eqs. (3) and (4) have been
written in terms of sine and cosine functions. Noting the
symmetry properties of the real and imaginary parts of
the dielectric constant

4E(- W) = 4E(W) ,

E,(- W) = - Ei(W) ,

(5)

(6)

allows Eqs. (3) and (4) to be cast into an alternative
form containing exponential frequency factors. Since
fairly sophisticated methods for rapid numerical com-
putation of Fourier integrals are available, it is not sur-
prising that Eqs. (3) and (4) should provide a somewhat
more economical alternative to the Kramers-Kronig re-
lations Eqs. (1) and (2). This numerical convenience has
been fully stressed by Peterson and Knight.

A very direct argument can be presented for obtaining
the conjugate relations, Eqs. (3) and (4). Letf(w) denote
either the real or imaginary part of the generalized di-
electric constant E(w); actually it is necessary to choose
the function e(w)- 1, which is square integrable over the
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real frequency axis. Now the Fourier integral formula
is

f(w)= fSdu f cos[u(w - t)]f(t) dt. (7)

From the causality condition and Titchmarsh's theorem, 5

it can be readily established by considering the contour
integral #efw[E(w)-l ]dw around a half-circle contour
in the upper half-frequency plane, that

f [Er(w) - 1] coswtdw =f E e(w) sinwtdw
0 JO

for t>0 (8)

by Jordan's lemma. Combining Eqs. (7) and (8) with
f(w) taken as either Ej(W) or Er(w)- 1 and noting the sym-
metry conditions, Eqs. (5) and (6), gives the desired re-
sults directly.

CONJUGATE FOURIER SERIES METHOD

The purpose of this paper is to suggest an alternative
form to the Kramers-Kronig relations, which is com-
plementary with the Peterson-Knight approach. The
method is based on the theory of conjugate functions,
but instead of considering integral forms, we choose
the Fourier conjugate series as a starting point. The
mathematical methods presented are all very well
known, 4,10-13 but do not appear to have been previously
employed as an approach for the analysis of optical data.

The conjugate Fourier series are defined in the fol-
lowing manner: given the Fourier series

Z (am cosmx + bm sinmx)
m=1

then the conjugate series is given in the form

Z (bi cosmx - am sinmx) .
m=l

It will become clear below how this connection arises.

The fundamental hypothesis required to derive Eqs.
(1)-(4) is the causality condition, from which it can be
deduced that the complex dielectric constant is an ana-
lytic function in the upper half of the complex frequency
plane. 14 The first step to obtain a series formulation is
to convert the upper half-frequency plane into a more
suitable domain. A conformal mapping of the upper half
plane into the interior of the unit circle centered at the
origin is carried out. This is accomplished by the
transformation

Z=(W-i)/(W+i) .
It is then possible to write

E(C)-1-E[-i(Z+ 1) (Z-1)Y']- 1

= ECmZM , I Z| K
m=0

(9)

complex w plane. The real axis in w space maps into
the boundary of the unit circle [using Eq. (9)], and hence
the radius of convergence in Eq. (10) includes IZ I = 1.
Writing Eq. (10) in its present form assumes a restric-
tion to insulators. The discussion for metals follows in
exactly the same manner, if we first make a subtraction
to account for the singularity at w = 0 (Z = - 1), i. e., in
place of E(w) - 1, it is necessary to employ E(w) - 1
-4wria/w.

Introducing the substitution

Z = e'o (11)

leads to the following expansion for Eq. (10):

E[-i(Z+1) (Z- 1) l]- 1 =ZE cm cosmO
m=0

+ i cm sinmO . (12)
m=1

If we define, the quantities

E (0) = Er(cot20)- 1, (13)

E"(0) = i(cot2 0) , (14)

then Eq. (10) becomes

E(w) - 1- E(- cot20) -1 = E() - iE "(0) (15)

and the symmetry properties, Eqs. (5) and (6), have
been employed. Now the functions E'(0) and E"(0) can be
expanded in a Fourier series in (- Tr, 7r), which leads to
(noting the symmetry properties of E' and E")

=+E am cosm (16)
m=1

E"(0) = bm sinm0 . (17)
m=1

Substituting Eqs. (16) and (17) into (15) leads to

E(- cot 10)- 1 = 2°+ amcosm
m=1

- i E bm sinm0 . (18)
m=1

Comparing Eqs. (18) and (12) leads to

ao= 2 c0 , a=cm bm=" cm, m#t 0 (19)

and, therefore,

am =-bm, m# 0* (20)

Hence, the series for E'(0) and E"(0) are

E(0)=2 + am costm, (21)
m=1

E"(0) = - Z a. sinmo,
m=1

(10)

and the expansion follows from the fact that E(w) - 1 is
analytic in the interior of the unit circle in the complex
Z plane. In the analysis carried out in this paper, we
are interested in the dielectric constant defined on the
real frequency axis and its extension into the upper half

(22)

which can now be recognized as conjugate Fourier se-
ries for functionswith the appropriate symmetry proper-
ties.

The results (21) and (22) can be employed in the fol-
lowing manner. The experimental results for the dis-
persive mode of the dielectric constant are used to con-
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struct E'(0) [Eq. (13)], which is then fitted to a Fourier
cosine series, Eq. (21). In practical calculations, the
series will be truncated, that is am = 0 for m greater
than some specified m. The dissipative mode E" is then
determined directly from the conjugate expression (22),
and hence the imaginary part of the dielectric constant
follows from Eq. (14), i. e.,

Ei (cot'O)=- A, am sinm O . (23)
m=i

There is now no need to make any integral transforma-
tion to invert the data. The Fourier series coefficients
are most conveniently determined by fitting a finite num-
ber of data points by the fast Fourier transformation
procedure (e.g., the Cooley-Tukey algorithm), which
involves summation over a finite number of points.

In order to determine the dispersion mode from the
dissipative mode, there is one obvious problem to cir-
cumvent. The dissipative spectrum determines all the
coefficients am except ao. This is not however a serious
problem since there is a simple relation by which ao can
be determined. Combining Eqs. (13) and (21), and look-
ing at the asymptotic behavior gives

lim ['Er(@) _ 1] = lim [E,(cot, 0) - ]=ao + am= (42 m (24)

and hence,

ao=-2tam * (25)
m=l

It has been assumed thus far that Er(OO) = 1; if for some
particular model it does not, then E(w))- 1 must be re-
placed by (w(9) - ,( (-).

A very simple example will illustrate the method.
Consider the dispersion curve for E,(w) - 1 to be given
by

4(w) - 1 = 1/(1 + W

then

'(0) =sin 22

The Fourier series coefficients in Eq. (21) can be de-
termined by inspection; they are

a0 =1i am= - 26ml m* .

Employing Eq. (22) yields

E"(9)= 'sine

and hence,

'Ei () = W/( +1).

The above choice for ,(w) - 1 was made for reasons of
simplicity only, because it allows an analytic solution
for Ej(w) to be found very easily. It is to be noted, how-
ever, that the above example does not satisfy a number
of fundamental constraints which the true dielectric con-
stant must satisfy [f6r example, Eq. (30) is not obeyed].
The above results for ,(w() - 1 and Ej(W), which are the
Debye equations (with the introduction of the appropriate
constant factors) are nevertheless widely discussed.

DISCUSSION

The approach employed in this work is equivalent to
the standard Kramers-Kronig relations connecting the
conjugate variables, it is only the form of presentation
which is different. Equations (21) and (22) are both ex-
act. The three schemes for analysis of optical data
which have been mentioned in this paper: the Kramers-
Kronig relations, the Fourier integral procedure, and
the conjugate Fourier series method represent the three
well known (to mathematicians at least) approaches to
the theory of Hilbert transforms, which are the under-
lying basis for the connection between the dissipative and
dispersive modes.

The method of derivation employed by Peterson and
Knight is by appeal to the connection between the corre-
spondence of a physical output with a physical input.
This approach becomes slightly awkward for those func-
tions which cannot, on physical grounds, be expressed
in this form. An example of such a function is the gen-
eralized refractive index. 14,15 The allied Fourier inte-
gral is still perfectly valid for this function, since the
derivation of this formula can be carried out from the
known analytic properties of the generalized refractive
index. A point unspecified by Peterson and Knight in
their derivation is the necessity for the functions under
consideration to have an appropriate asymptotic behav-
ior. A convenient restriction is to require the functions
to be square integrable on (- o, -o). This point has
caused some confusion, since some authors16 have em-
ployed the result of Peterson and Knight for Er(C), rather
than Er(W) - Er(oo). The integrals in terms Of Er(co) alone
are not convergent. This can be seen from the asymp-
totic behavior at large frequencies, which is most con-
veniently determined from the free-electron gas model,,
for which

Er(W)' 1 =- W/w 2 as w-oo (26)

and W, is the plasma frequency.

Some simple relations can be provided to check the
value of the expansion coefficient ao. For a nonconduct-
ing media, the following result can be deduced from Eq.
(1):

(°) - 1 = 2 X s, (W)dW
7f o .W

(27)

Employing Eqs. (14) and (21) leads to the expression

aO=2f Ej(W dw -a, (- 1)m am,

or using the Fourier integral formula, we have

2° =2 dtf I i(w) sinwtdw-E (-Z)m am -
2 7Tf" 0MAi

(28)

(29)

Conducting media are excluded because of the singularity
at W = 0. A third method for obtaining the coefficient a0,
which is valid for both conductors and nonconductors, is
based on a knowledge of the zero(s) of E,(w) - 1. That
there must exist one such value of w for which (w) - 1
= 0 may be understood from the following argument. 17

The analytic and asymptotic properties of E(w) - 1 are
sufficient to establish for nonconductors, the relation
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(see, for example, Ref. 7, p. 17)

X [E,(w) - 1] dw = 0 (30)

from which it is apparent that the function er(w) - 1 can-
not be everywhere positive, i. e., there must exist at
least one frequency which we shall denote as c0 , for
which E,(Wo)- 1 =0. For conductors, the right-hand side
of Eq. (30) is modified by the addition of the term
-2iT2T.'8 The argument used for nonconductors there-
fore does not carry over to conductors. For those con-
ductors for which an wo can be determined (experi-
mentally or otherwise), we then have the following re -
sult valid for both conductors and nonconductors

a -'acosm
2 _a.E am Osmo,2 =,

where the angle 00 is given by

0 =- 2 cot-' w0 .

(31)

(32)

Equations (28), (29), and (31) can all be used to check the
result determined by the simple relationship, Eq. (25).

A recent paper by Johnson'9 appeared while this work
was in progress, discussing a series approach to the
Kramers-Kronig relations, which is complementary to
the present.work. The approach taken by Johnson is to
expand Er(w) - 1 and Ei(w), which are assumed to be band
limited to the interval - co < c < W,, in the following
series:

E, (Wt) 1= EPk exp/ w ) X

E(i)=-i Z qkexp( iki)

(33)

(34)

The symmetry conditions on the coefficients Pk and qk,
and the connection between Ph and qk [Pk = sgn(k)q,] being
determined indirectly from the Fourier transforms over
the finite range - wl < w < wI. The approach taken in this
work of carrying out a conformal mapping to obtain a
suitable range, seems to be a somewhat more useful
procedure, since it has not been necessary to introduce
the assumption that the optical property is band limited
over a finite interval. The method employed in this
work is exact, irrespective of whether the function is
band limited over a finite interval or not, provided the
optical property has an appropriate asymptotic behavior.
The asymptotic requirement is not a serious limitation,
since it is frequently possible to substract a constant or
introduce a weighting factor such as (W' + WC2)-I to ensure
the appropriate asymptotic behavior.

In order to implement the Fourier integral or Kram-
ers-Kronig approaches, part of the energy spectrum
must be fitted to some assumed analytic form, in order
to extrapolate to both the high and low energy regions.
A frequently employed procedure is to fit data to various
models, e. g., Drude, and then carry out the Kramers-
Kronig analysis. With the series approach, a single

data fit to a Fourier series is sufficient, since the coef-
ficients of one Fourier series determine the coefficients
of the conjugate series.

Experimental profiles for optical data are always band
limited, so suitably trucated series expansions will pro-
vide a suitable basis for data analysis. The main fea-
tures of the conjugate series method are its simplicity
and its avoidance of principal value integrals. Computa-
tion speed should prove to be an added feature.
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