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A Fourier series algorithm for the analysis of reflectance data 
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Abstract. A simple Fourier series algorithm is presented for the determination of the phase, 
and hence the other optical constants, from measurements of the reflectance. The advantages 
of the proposed procedure and its mathematical equivalence with the Kramers-Kronig 
relations are discussed. 

1. Introduction 

Reflectance studies on solids provide one of the most valuable means by which the 
dispersion curves of the various optical constants can be determined. Relatively little 
work has been done to investigate different ways by which the key step in the determina- 
tion of the optical constants, i.e., that of determining the phase, can be improved. The 
procedure which is currently employed to obtain the phase O(w), from measurements 
of the reflectance R(o), is the Kramers-Kronig relation (Velicky 1961, Stern 1963) 

Recently, Peterson and Knight (1 973) suggested that the Fourier allied integrals, 
which can be written as 

7 P m  r m  
J(o) = :Jo dt cos wtJ h(o’) sin w’tdo’ 

0 

where J(w)  and A(o) are the real and imaginary parts of any generalised (complex) 
optical function, provide a more suitable means for inversion of optical data. Since 
very efficient algorithms for the rapid computation of Fourier integrals are available, 
the allied integral approach represents a useful alternative to the Kramers-Kronig 
method. In its present form, the allied integral approach cannot be employed for the 
reflectance. One requirement that must be satisfied in order to use equations (2) and (3), 
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is that the function under consideration must have a suitable asymptotic behaviour. 
To obtain the phase from equation (2) would involve In R(w), which causes the integral 
to diverge. 

2. Fourier series method 

There is another method which is mathematically equivalent to the Kramers-Kronig 
relations. This is the Fourier conjugate series. It is this approach that will be discussed 
for the determination of the phase. The generalised reflectance F(w) is 

~ ( w )  = R+(o) exp[ie(w)]. (4) 

From equation (4), we have for the derivative, 

The series algorithm is derived in terms of experimental data expressed in the form 
[2R(w)] - 1 dR(co)/dw for the following reason. To implement the Fourier series expansion, 
it is required that the function be bounded in the interval (0, CO). Since 

R(o) = o(w-4) asw-co  

it is obvious that a Fourier series decomposition of 1nR1/’(w) is of no value. However 
the derivative dlnR*(o)/do serves the purpose. The function i(w) is analytic in the 
extension to the upper half complex frequency plane, and arguments can be provided 
to show that lni(w) is also analytic (Stern 1963) i.e., there are no zeros of J(w) in the upper 
half plane. It follows immediately that -idlni(o)/dw is also analytic in this domain. 

It now proves to be highly convenient to carry out the conformal transformation 

Z = (U - i)/(o + i) (9 
which carries the upper half plane in frequency space into the interior of the unit circle 
centred at the origin in Z-mace. Therefore, we can now write - 

d 
d o  

-i - lni(w) + -i 
( Z + l ) ( Z - l ) - I  

In writing the series expansion in equation (3, we have made use of the fact that 
d lni.(o)/do in Z space is an analytic function in the unit circle. With the substitution 

Z = expin  (8) 

equation (7) becomes 
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Introducing the definitions 

and employing equations (5) and (8) leads to the result 

= O(Q) - iR(Q). (12) 

The Fourier expansions of R(Q) and O(Q) in the interval ( - n, n) are 
72 

R(Q) = 1 amsinmQ 
m =  1 

m 

O(Q) = *bo + bmcosmQ - 
m =  1 

and the restriction to single trigonometric functions in equations (1 3) and (14) follows 
from the symmetry properties 

which can be deduced from the known symmetry properties of R(o) and O(o). Comparing 
equations (9) and (12), with the substitutions given by equations (13) and (14), leads to 
the results 

2c0 = bo; C, = b, m 1 0  (17)  

c, = -am m 1 0  (1 8) 

and hence 

b m =  -a m m += 0. (19) 

From the asymptotic condition 

we have that 

m 

= +bo + 1 b, 
m = l  
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c.2 

bo = -2 b,. 
m = l  

Equation (14) can therefore be rewritten as 

nc 

O(Q) = 1 b,[cosmQ - 11, 
m =  1 

The derivative of the phase, dO(w)/dw, can now be determined from reflectance measure- 
ments. The function [2R(w)] - ‘dR(w)/dw is determined from the dispersion curves of the 
reflectance and the function R(Q) is then calculated using equation (10). The Fourier 
coefficients a, can then be determined. Equation (19) and the asymptotic behaviour of 
[dO(w)/do],, nc determine dO(w)/dw. 

We now show how the phase can be constructed. From equation (23) we have 

where p k m  is defined in terms of the binomial coefficient (3 by 

,8klll = ( -  1)k(m/k)2m- 2 k - 1  ( i - ; ’ )  

and square brackets on the summation denote a limit equal to 3 m  - 1) if m is odd. 
Equation (24) can be re-expressed as 

Integration of equation (26) from (0, U) and noting that O(0) = 0, yields 

where 

Evaluation of Z,(w) leads to the result : 

m-l( - l ) j  
Im(w) = 0 - 1 -(.” 2j+ 1 J +  1 ) 

j = O  
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Equation (27) represents an exact relation for the phase 0(w). The steps in the determi- 
nation of the phase follow in a similar manner to that outlined above for dO(w)/do. 
The measured reflectance allows [2R(w)] - dR(w)/dw to be calculated and hence 
R(R), from which the Fourier coefficients a, can be determined. Noting the relation (19) 
allows the phase to be calculated from equation (27). Other optical constants can be 
determined from the standard formulae relating such constants to 6(w) and R(o). 

A simple example will clarify the procedure. Consider the function [2R(o)] - 'dR(o)/do 
to be given by 

,dR(w) -20 
[2R(w)]- - = -- 

d o  (1 + U ~ ) ~ '  

This particular form is chosen for reasons of simplicity, and we ignore detailed con- 
siderations of the asymptotic behaviour which the true phase should satisfy, provided 
equation (20) is satisfied and that 6(0) = 0. 

From equation (30) we have 

= 3 sin - + sin 2R. 

The Fourier coefficients are determined by inspection to be 

Making use of the values 

Z O ( 0 )  = 0 

I , ( o )  = w - 2 tan-lw 

z2(w) = 2w(1 + w2)-'  - 2 tan-lw + w 

and using equations (32) and (19) gives 

which can be checked by other means to be the correct phase. 

3. Discussion 

The Fourier series method provides an easy and convenient means for analysing reflec- 
tance data. The wide availability of very fast algorithms for the machine computation 
of Fourier series makes this approach an attractive alternative to the Kramers-Kronig 
scheme. 

Both the series approach and the Kramers-Kronig relation will provide identical 
results for the phase, when computed to the same level of accuracy. However, the number 
of computer operations involved in the evaluation of the Kramers-Kronig integral 
for an N-point mesh, will be N2.  The main step in the series method, that of determining 
the Fourier coefficients, which can be computed by the fast Fourier series algorithm 
(Cooley and Tukey 1965) involves N In N operations. For large mesh size, the latter 
procedure is clearly favoured. 
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For experimental profiles which are band limited, which in essence will be the case 
if measurements over a sufficient spectral range are available, then equation (1 3) can be 
truncated with a resulting reduction in computational effort. Since the usual Kramers- 
Kronig inversion (equation 1) requires the evaluation of an integral over an infinite 
range, it is necessary to provide extrapolations for both the low-energy and high-energy 
regions, since these are usually less accessible to experimental determination. Various 
fitting procedures are required for this purpose, which involve semi-empirical parameters 
of one kind or another. In the present method, a single and straightforward Fourier 
analysis of the data is sufficient to determine the phase. This requires considerably less 
computational effort than that required in data extrapolation and computation of the 
Kramers-Kronig integral. 

It is to be stressed that the result obtained for the phase is exact. Equations (1 3) and 
(14), which are known as conjugate Fourier series, provide one means of discussing the 
connection between the real and imaginary parts of an analytic function. Two other 
methods which are mathematically equivalent are the Kramers-Kronig relations 
(Hilbert transforms) and the allied Fourier integral approach (equations 2 ,and 3). For 
a given function with the appropriate asymptotic behaviour, all three procedures for 
relating the real and imaginary parts can be derived from the same assumption of 
analytic behaviour, the resulting forms are all equivalent. ‘The generalised reflectance 
does not have the appropriate asymptotic behaviour for a series expansion. It is there- 
fore necessary to examine the derivative of this function, and integrate the resulting 
differential equation in order to obtain an equivalent relation to the Hilbert transform 
expression for the phase. 

The method employed in this work is general. It can be applied to determine the 
dissipative mode of any causal function, when the derivative of the dispersion curve is 
known. The only changes that need be made concern the boundary conditions (equation 
21), and that involved in obtaining equation (27, i.e. O(0) = 0. 
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