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A number of sum rules for the optical constants, in particular, the refractive index of a nonconducting 
medium, are obtained. Some of the sum rule constraints are highly damped for large frequencies, 
exponentially in one particular case. Formal integral relationships for the index of refraction at complex 
frequencies are presented. Sum rules based on known experimental points for which n(w)-1 has zeros are 
indicated. An outline of a modified derivation of some recently presented sum rules for the optical 
constants is given. 

I. INTRODUCTION 

The Kramers-Kronig relations for linear optical 
properties have led to a number of useful sum rule 
constraints which these properties must satisfy. The 
underlying conditions for which these sum rules should 
hold are very general. The physical basis, the causality 
condition, determines the domain in which the general­
ized optical property is holomorphic, from which the 
Kramers-Kronig relations may then be deduced. A 
number of sum rules have been recently derived by 
employing the Kramers-Kronig relations and the ap­
propriate asymptotic behavior of the particular optical 
properties at large frequencies. This asymptotic be­
havior may be readily determined by assuming at suf­
fiCiently high frequencies, the medium responds like a 
free electron gas. 

This paper is concerned with the investigation of 
principally, the constraints on the generalized refrac­
tive index for a nonconducting medium. A number of 
surprisingly simple, but potentially very useful sum 
rules have been obtained for the generalized refractive 
index by Altarelli et al. 1,2 and Villani and Zimerman. 3 

The.simplest of these relations are 

r[n(w)-I]dw==O, 
o 

r [WK(w)[n(w) -1]dw=O, 
o 

i ~ [n(w) -1]dw . i~ K(w)dw 
COS7T{3 ( )8( )a -Slll7Tt! ( )8( )a 

a w-a w+a a w-a w+a 

+ (a [n(w)-I]dw -0 -t<{3<I, 
}o (a-W)a(a+W)a - , 

r w2[n(w) -1]2dw= J~ W2K2(W)dw, 
o 0 

(1) 

(2) 

(3) 

(4) 

(5) 

where n(w) and K(W) are the real and imaginary parts, 
respectively, of the generalized refractive index, and 
wp is the plasma frequency. The first of these relation­
ships, Eq. (1) is the well-known/sum rule, Eqs. (2) 
and (3) being derived by Altarelli et al. , and are de­
signated as the ADNS sum rules, and the expressions 
given by Eqs. (4) and (5) have been obtained by Villani 
and Zimerman (designated VZ sum rules)' Equation (4) 
contains the ADNS sum rule equation (2), as a special 
case; f3= O. 
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In Sec. II we outline how some of the above sum rules 
may be obtained in an alternative manner from the 
Kramers-Kronig relations. Section III presents a num­
ber of formal relationships connecting the generalized 
refractive index on the complex imaginary frequency 
axis, with the refractive index at real frequencies. In 
Sec. IV we outline some strikingly simple and apparent­
ly previously unnoticed sum rules based on the zeros 
of n(w) -1. Section V deals with some generalizations 
of the above sum rules, which have the desirable prop­
erty of being highly damped at large frequencies. Final­
ly, in Sec. VI, we discuss possible extensions and 
limitations of the sum rules derived herein. 

II. DERIVATION OF SUM RULES. FROM THE 
KRAMERS-KRONIG RELATIONS 

The basic equations from which most of the sum rules 
for the refractive index have been derived are the 
Kramers -Kronig relations 

n(w) -1=~P (~wK(w)dw 
o 7T}0 w2 - w~ , 

( ) __ ~pi~[n(w)-I]dW 
K Wo - 2 2 • 

7T 0 W - Wo 

From Eq. (6), it follows immediately that 

(~[n(w') -1]dw' =~ f ~dw' P (~WK~W)d~ 
}o 7T 0 }o W - W 

and on interchanging the order of integration 

[n(w')-I]dw'=- wK(w)dwP 2 W,2 i ~ 2S~ 1~ d' 
o 7T 0 0 W -w 

and noting the relationship 

(~dw' 7T2 

p}o W2 _W'2 =-4 o(w), 

then 

( 6) 

(7) 

(8) 

(9) 

(10) 

l~ [n(w') -1] dw' = - i l~ WK(W)O(W) dw = 0, (11) 

which is the ADNS sum rule, Eq. (2). The conditions for 
the interchange of the order of integration to obtain Eq. 
(9) need to be scrutinized carefully. The necessary re­
quirement is that the integrand, a function of wand w' , 
be summable over the plane - 00 < w < 00, - 00 < w' < 00. 

Similarly, from the Kramers-Kronig relation (7), 
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f~-,-K(.:..:.:W~')~d;.::w_' =_3. (~dw'P (~[n(w)-I]dw 
Jo w' Tr 10 10 w2 

- W,2 , 
(12) 

and by interchanging the order of integration, and em­
ploying Eq. (10), leads to the result 

(~K(W) dw =~[n(O) -IJ. (13) 
10 w 2 

Depending on the behavior of K(W) as w - 0, the integral 
in Eq. (13) may exist only in the sense of a principal 
values. Equation (13) is, of course, just the limit as Wo 

- 0 of the Kramers-Kronig relation, Eq. (6). It is 
worth pointing out that Eq. (13) is not applicable to 
metals where both new) and K(W) behave as - W-1 / 2 as 
w-O. 

Similar derivations may be carried out by first 
squaring the appropriate Kramers-Kronig relations. 
From Eq. (7), 

K2(W) _-.i. p [~[n(w')-1Jdw' 
w2 - Tr2 }o W,2 _ w2 

f ~ [n(w") -1]dw" xp 
o W"2 _ w2 (14) 

and hence 

i~ 2()d --.i.l~ 2d pi~[n(W')-1]dW' 
K w w- 2 W W ,2 2 

o Tr 0 0 w-w 

i
~[n(w") -lJdw" 

xp "2 2 • 
o w-w 

Interchanging the order of integration as before, and 
making use of the result, 

l
~ 2d 2 

P (,2 ~)( ":.2 2) =~ [6(w' - w,,) + 6(w' + w")] 
o w -w w -w . 

converts Eq. (15) into 

r K2(W)dw= r [new') -1Jdw' 
o 0 

(15) 

(16) 

x r [n(w") -1 ]{6(w' - w") + 6(w' + w")}dw", (17) 
o 

and hence 

J~K2(W)dw=r[n(w)-1J2dw, (18) 
o 0 

a result noted by Altarelli and Smith. 2 In a similar 
manner, squaring Eq. (6) and integrating over all 
frequencies gives 

i~ 2[ () 1]2d -~ i ~ 2d P l~ w'K(w')dw' wnw - w - 2 W W ,2 2 
o Tr 0 0 w-w 

i ~W"K(W")dW" (19) 
xp W"2 _ w2 

o 

Employing Eq. (16), we have the result 

J~ w2[n(w) -IJ2 dw= r W
2K2(W)dw, 

o 0 

which is the VZ sum rule, Eq. (5). The sum rule, Eq. 
(13), is obtained from the Kramers-Kronig relations 
as follows. Multiplying Eq. (6) by (7) gives the result 

K(w)[n(w)-l] __ -.!p (~w'K(w')dw' 
w - Tr2 }o W,2 - w 2 

f ~ [n(w") -IJ dw" 
xp W"2 _ w2 , 

o 
(20) 
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and hence 

wK(w)[n(w) -lJdw=-2 i ~ 4 i~ 
o Tr 0 

x !a~W'K(W')dW' I~[n(w")-l]dw" 
p /2 2 P "2 2 " o W -w 0 w-w 

(21) 

which yields 

r wK(w)[n(w) -IJ dw = O. 
o 

A number of additional results may be c' ined by 
conSidering higher powers of the generalized refractive 
index. The quantity tf2(w) -1, where N(w) is the gen­
eralized refractive index, is a holomorphic function in 
the upper half-plane, from which it can be deduced, 
with the appropriate asymptotic behavior, that 

tf2(w') -1 = ~ f ~ [tf2(w) -1J dw 
Trl _~ w- w' , (22) 

and hence 

2( ,)_ 2( ')_I- i p f~wK(w)n(w)dw 
n w K w - Tr 1 w2 _ W'2 , (23) 

( ,) ( ,) __ w' pl~[n2(w)-K2(W)-IJdw 
n w K w - 2,2' 

Tr 0 W -w 
(24) 

From Eqs. (9) and (23), 

1~ [ 2(,) 2(,) IJd' 4 L~ d ' pf 00 wK(w)n(w)dw n w - K W - W = - W 2,2 
a Tr a 0 W-W 

= -Tr l~ wK(w)n(w)6(w)dw 

=0, 

hence, 

F[n2(w) -IJdw= J~ K2 (W)dw. 
o 0 

(25) 

Similarly, from Eqs. (9) and (24), 

(~n(w)K(w)dw =~ [n2(0) -1]. 
10 w 4 

(26) 

Equation (26) can also be recognized as the limit as w' 
-0 of the Kramers-Kronig relation, Eq. (23). Equation 
(26) is restricted to nonconductors. Sum rules for 
higher powers of the refractive index may also be ob­
tained from the squares and the products of Eqs. (23) 
and (24). Thus from Eqs. (23) and (16), we get 

J ~ [n2(w) - K2(W) - 1]2w2 dw = 4 Joo w2n2(w)K2(w) dw; 
o 0 

from Eqs. (24) and (16), we obtain 

(~ 1[00 10 n2(w)K2(W)dw=4 0 [n2(w) - K2(W) _1]2 dw; 

and from Eqs. (16), (23), and (24), we get 

III. GENERALIZED REFRACTIVE INDEX AT 
COMPLEX FREQUENCIES 

(27) 

(28) 

(29) 

The generalized refractive index of a medium may 
be expressed in the form 

~(w)=1 + r exp(iwT)G(T)dT, (30) 
o 
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where the function G( T) depends on the properties of the 
medium and the time, and W is to be regarded as a 
complex frequency. From Eq. (30), it follows that for 
complex frequencies 

N'2(- w*) = N*2(W). 

For purely imaginary frequencies, W = iw II , 

JV2(iw ") = N* 2(iw "), 

(31) 

(32) 

and hence, on the purely imaginary frequency axis, 
JV2(w) is real. A similar argument may be presented for 
the function N(w) -1. The function N2(w) - 1 obeys the 
relation4 

f.""J N'2(w' + iW") - 112 dw < const (w"> 0), (33) 

which allows by use of Titchmarsh's theorem, for N(w) 
to be written in the form 

N(w) = 1 + (' exp(iwT)F(T) dT, 
o 

(34) 

where F( T) depends on the properties of the medium; 
from which it follows that N(w) is real on the imaginary 
frequency axis and in particular 

K(iw") = 0 (35) 

for real w". 

The simplest result for the refractive index at com­
plex frequencies can be obtained by considering the 
integral of the function [N(w) - 1]/ (w - iwo) around a half­
circle contour containing the real axis, and the upper­
half complex frequency plane. For Wo real and greater 
than zero, and the notation simplified by designating w 
as a real variable, we have the result 

1'" [n(w) -lJdw +1'" WK(w)dw - [(. ) -1]-
Wo 2 + 2 2 + 2 - 'IT n tWo , 

o W Wo 0 W Wo 

and considering the function [N(w) - 1J/(w + iwo), we 
obtain 

(36) 

(37) 

From Eqs. (36) and (37), the results for the refractive 
index on the imaginary frequency axis are 

~[ (. )-1]-1'" WK(w)dw 
2 n tWo - 2 + 2 , 

ow. Wo 

~[(. )-lJ- l"'[n(w)-l]dw 
2 n tWo - Wo 2 + 2 • 

o W Wo 

From Eqs. (38) and (39) the following results for in­
tegrals along the imaginary frequency axis can be 
obtained: 

(38) 

(39) 

S"'[n(iw / )-l JdW I =~ r'" dw
' 

r"'[n(w)-l]dw (40) 
o w' 'IT)o)o w2 +w'z , 

on interchanging the order of integration, Eq. (40) 
becomes 

r"'[n(iw /)-lJdw' = r"'[n(w)-lJdw (41) 
Jo w' )0 w ' 

hence, 

r"'[n(iw)-n(w)]dw=o; (42) 
)0 w 
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and from Eq. (38), 

f[n(iw)-l]dw=f"'K(w)dw. (43) 
o 0 

A result analogous to Eq. (43), is well known for the 
dielectric constant. 5 Kramers-Kronig relations involv­
ing the refractive index on the imaginary axis may be 
derived by restr;cting the contour r to a circular arc 
in the first qua, :ant, then the integral 

fr[N~~ :~] dw 

(WI on the real positive axis) leads to the results 

'i"'[nUw)-l]dW _ [ ( ') 1] pi"'K(W)dW 
w w2 + W'2 - 'IT n w - - w _ w' , 

o 0 

(44) 

l "'w[n(iw)-l]dw _ (I)+pl"'[n(w)-l]dW 
2 12 -'lTK w,, 

o w +w 0 w-w 
(45) 

Sum rules which are more rapidly convergent for 
large frequencies can be generated by noting values of 
the derivatives of the generalized refractive index on the 
imaginary frequency axis. The integral 

evaluated for a semicircular contour in the upper-half 
complex plane yields the result 

r"'[n(w)-l]dW=~[ (')_l]_'lTi (d[N(W)-l]) . 
)0 (w2+1)2 4 nl 4 dw W=l' 

(46) 
and since 

(
d[N(W) -1]) _ 4i 1'" WK(w)dw 

dw w=1 - 'IT 0 (w2 + 1)2 , 
(47) 

Eq. (46) simplies to 

r'" (1 - w2)[n(w) -l]dw 
)0 (w2 + 1)2 (48) 

Equation (48) may be readily checked by differentiating 
the integrals in Eq. (37) with respect to wo, which leads 
to 

r'" wK(w)dw __ 1_ roo [n(w)-1](wg-w2)dw (49) 
Jo (w2 + W~)2 - 2wo )0 (w 2 + W~)2 , 

and thus reduces to Eq. (48) on setting wo= 1. Consider­
ing in a similar manner, the integral 

J [N(w) -l]dw 
J (w 2 + 1)3 , 

leads to the result 

With the result 

(
d2[N(W)-1]) _i r"'[n(w)-1](3w2 -1)dw (51) 

dw2 W=i-'lTJO (w2 +1)3 , 

Eq. (50) simplifies to the same result as was obtained 
by considering the integral 
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f [N(w) -1]dw 
(w + 1)2 , 

i. e. , 

(00 [new) -1](1-w 2 )dw -2 ('" wK(w)dw (52) 
Jo (W2 +02 

- 10 (w2+1)2' 

Equation (52) may be rearranged with the aid of Eq. (2) 
to the alternative form 

2 (oowK(w)dw ~-100 w2 (w 2 +3)[n(w)-1]dW (53) 
Jo (w 2 + 1)2 - 0 (w 2 + 1)2 . 

IV. ZEROS OF THE FUNCTION [n(w) -1] 

From the ADNS sum rule, Eq. (2), it is obvious that 
there must exist at least one zero of the function [new) 

-1] [except in the trivial and unrealistic situation that 
new l= 1 for all w]. If this zero is designated by the point 
w= wo, then from the Kramers-Kronig relationship, Eq. 
(6), we have the immediate result that 

("'wK(w)dw -0 
)0 w2 - w~ - . 

(54) 

The necessity of retaining the principal value in Eq. 
(54) depends on the behavior of K(W) at the point w = wo0 

From the Kramers-Kronig relations, subtracted 
dispersion relations for the real and imaginary parts of 
the generalized refractive index can be written 

( I) (,,) 2 ('2 112)pl"" wK(w)dw 
n w - n w = - w - w (2 12)( 2 ,,2) , rr 0 w -w w-w 

(55) 

( ,)_ ( ")_~( ,,_ Ijpjoo[n(w)-1][W
2
+w

1
w"]dW 

K w K W - W W (2 12)( 2 2) • rr 0 w - w w -w" 

(56) 
For any two given frequencies w~, wg (w~* w:{), which 
are both zeros of the function [new) -1], or alternatively 
for which [n(w~) -n(wg)] vanishes, then from Eq. (55), 

P roo wK(w)dw _ ° 
} 0 (w 2 - W~2)(W2 - wg 2) - . 

(57) 

Similarly, if there exist two distinct frequencies WI' 

w2 (WI * 0, w 2 * 0) such that [K(W I ) - K(W 2 l1= 0, then Eq. 
(56) yields the result 

(58) 

The relationship Eq. (57) also follows directly from Eq. 
(54) when two zeros of the function [n(w) - 1] are known. 
In fact, for a set of distinct frequencies which are zeros 
of [new) -1], a compact form for the sum rules can be 
written as 

J"" ()d _1"'w
3
K(w)dw _i""W

3
K(W)dW_ o • o WK w w - 2 2 - 2 2 - , 

o a W - Wo 0 W - WI 
(59) 

where wo, w l1 ••• designate the zeros of [new) -1]. If 
we employ the f sum rule [Eq. (1)], Eq. (59) becomes 

(60) 
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V. HIGHLY DAMPED CONSTRAINTS 

The desirability of finding highly damped sum rule 
relations for the optical constants lies in the importance 
of deemphasizing certain frequency regions. For the 
high-frequency region, the optical constants are not as­
certainable with high accuracy. The purpose of this 
section is to outline some possibly useful constraints 
for providing a consistency check of experimental 
values, while at the same time, damping the high­
frequency results, so that inaccuracies in this region 
may be ignored. The results obtained make use of some 
of the formal relations for the refractive index at 
imaginary frequency. 

The method of generating highly damped sum rules 
consists of considering the appropriate analytic exponen­
tial function [exp(aw)/(exp(bw) + 1)] exp{iow) (0) 0; b> a; 

a, b, 0 all real) multiplied by the function [N(w) - 1]. 
Considering the integral 

f exp(aw) 
exp(bw) + 1 exp(iow)[N(w) -1]dw, 

with the contour a semicircle in the upper half-plane, 

f exp(aw) 
exp(bw) + 1 exp(iow)[N(w) -1]dw 

=2rriL:(residues at n;i ,n=1,3,oo), (61) 

then using Jordan's Lemma, and taking the limit 0-
+0, 

("" exp(aw) [N(w) -1]dw 
L"" exp(bw) + 1 

2rri "" ~ ~[ ( rri ) ] = - b j~ eXP0iarr/b)(2j + OJ N (2j + 1) b -1 . 

(62) 

Separating Eq. (61) into real and imaginary parts, leads 
to the results 

100 exp(aw) [new) -1]dw 
_..., exp(bw) + 1 

= ~rr j~ Sin(~a (2j + 1)) [n (2j + 1) rrb
i 

) -1] (63) 

and 

f 00 exp(aw lK(w) dw 

_'" exp(bw) + 1 

2rr ~ (rra =-- LJ cos -
b j=O b 

(2j + 1)) [n (2j + 1) rr: ) - 1] . 
(64) 

Some special cases of Eqs. (63) and (64) can be given. 
Taking the lim a - + 0 for Eq. (63), leads to the result 

r [new) -1]dw= 0, 
o 

which is the ADNS sum rule. Taking the lim a - + 0 for 
Eq. (64) and making use of Eq. (38) leads to a trivial 
identity [both sides equal to - r K(w)tanh(~bw)dw]. o 
This identity can be proved easily for general a, b (b 
> a) by employing Eq. (38) and the result 

t cos[(rra/b)(2j+ 1)] 
j=O (2j + 1)2 + b2 w2 rr-2 

2 

= 4rr [coshaw tanh tbw - sinhaw]. 
bw 
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allows the following inequality to be written: The lim b - a leads to similar results. An interesting 
special case is obtained for 2a == b. From Eqs. (63) and 
(38) we have 

b!3(2)1T-1W!> f [n(w) -1] SeChe;) dw, (69) 

!a~ [n(w) - IJ sech (b
2
W) dw 

-~ t iJ~ wK(w)dw 
- b j=O (- 1) w2 + (2j + 1 )21T2b-2 

which is a principal result of this paper. The integral 
in Eq. (69) is very strongly damped at high frequencies. 
The special case 2a == b for Eq. (64) leads to a trivial 
identity. 

(
4b) (~ "" (-w 

== 1T2 }o WK(W)dwJ~(2j+l)2+b2w21T-2 
Now employing the result 

(66) 

A general extension of the above procedure consists 
of considering the situation in which the appropriate 
function has a singularity on the real axis, in addition to 
the singularities on the imaginary frequency axis. 
Consider the integral 

~ (_1)1 
LJ -,-0----'-,.,,- == )3(2) [Catalan's constant (Ref. 6)], 

i=O (2j + 1)2 

where )3(2)",0.91596, and the inequaltiy 

(67) 

f exp(aw)exP(iOw) [N(w) -1]dw 
exp(bw) + 1 w - Wo 

4b i~ 4b 1"" 2" )3(2) wK(w)dw > 2" WK(W) 
1T 0 1T 0 

(68) 

I 

(0) 0: b > a: a, b, 0, and Wo real), with the contour taken 
as a semicircle in the upper half-plane, including the 
real axis, with the contour indented (into the upper com­
plex plane) at the singularity on the real axis. The limit 
0- + ° gives 

pi "" exp(aw)[N(w) - 1 J dw == _ 21Ti fJ exp[(a/b)1Ti(2j + l)]fN(1Ti (2' + 1») _ IJ + i1T exp(awo) [N(w ) - 1] 
_"" [exp(bw)+I)(w-wo) j=O 1Ti(2j+1)-bwo r b J exp(bwo) + 1 0 • 

The real and imaginary parts are 

pf "" [n(w) - 1] exp(aw) dw + 1T exp(awo)K(wo) 
_"" [exp(bw) + 1](w - wo) [exp(bwo) + IJ 

2 t {n[(1Ti/b)(2j+ 1)] -I} 
- j =0 (2j + 1)2 + b2W~1T-2 

X [(2j + 1) cos (1T; (2j + 1) ) + bWo1T-1 sin (~a (2j + 1») ] 

and 

_ 1T[n(wo) - 1] exp(awo) = _ 2 t {n( (1Ti/b )(2j + 1)] - I} 
[exp(bwo) + 1] j=O (2j + 1)2 + b2W~1T-2 

("" K(w)exp(aw)dw 
PI"" [exp(bw) + 1](w - Wo) 

X [ (2j + 1) sin (~a (2j + 1») - bWo1T-1 cos (~a (2j + 1») ] . 
Some interesting special cases can be obtained from Eqs. (71) and (72). Taking the lima-+O in Eqs. (71) and 
(72) leads to the results 

Pj""[n(w)-I Jwtanh(tbw )dW ~ ( )t h(~) -2t (2j+1){n[(1Ti/b)(2j+l)J-l} 
w2 _ w2 + 2 K Wo an 2 - (2J' + 1)2 + b2w21T-2 , 

o 0 j=O 0 

pi"" K(w)tanh(tbw)dw_~t h(~)[ ( )-I]--2b _1~n[(1Ti/b)(2j+l)]-1 
Wo 2 2 2 an 2 n Wo - Wo1T LJ (2' + 1)2 b2 2 _2 o W - Wo j=O J + Wa1T 

Combining Eqs. (73) and (38) and employing the result 

"" 1 "" 2'+ 1 1 
t,(3) = j~ (2j + 1)3 > i~ (2j + 1;2 + b2W~1T-2 (2j + 1)2 + b2w21T-2 , 

where '(m) is Riemann's zeta function [l;(3) =:: 1. 202], leads to the result 

pi""wtanh(i bw )[n(w)-I]dW<2r(3)b2 2_2_-"- ( )t h(~) 
2 2 8 ~ Wp1T z1TK Wo an 2 . 

a W - wa 

Combining Eqs. (73) and (39) leads directly to the inequality 

h K (w
o
)tanh(b

2
Wo) + P ("" w tanh~tbw~[n(w) -1]dw < 0, 

Jo w - Wo 
where the result 
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(73) 

(74) 

(75) 

(76) 

(77) 

(78) 
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and the ADNS sum rule, Eq. (2), have been employed. Equation (77) is a stronger inequality than Eq. (76) for the 
upper bound to the integral. Similar results can be derived from Eq. (74); 

P LOO tanh~~~~~(W) dw + itb31T-3W! 1;(4) > hW;l tanh (b;o) [n(w o) - 1] (79) 

and 

w p roo tanh(bw/2)K(w)dw >htanh(~2w) [n(wo) -1], 
o Jo w2 

- w~ 
(80) 

where 1;(4) '" 1. 082. Equation (80) is the stronger inequality for a lower bound to the integral 

P (ootanh(bw/2)K(w)dw 
)0 w

2 - w~ 

VI. DISCUSSION 
The simplified procedure for derivation of many of 

the sum rules for the optical constants discussed in Sec. 
II is restricted only by the necessity of establishing the 
conditions of summability of the integrands, so that, the 
order of integration may be inverted. Summability en­
compasses the asymptotic behavior that has been as­
sumed in the derivation of these sum rules by Altarelli 
et al. 1 

The establishment of results for the optical constants 
as a function of imaginary frequency are of little utility 
from the point of view of providing a constraint for the 
testing of experimental data. However, they do provide 
a route to other sum rules, which evolve from particular 
functional forms of the optical constants for which poles 
on the imaginary axis appear, as in the case of the in­
tegrals considered in Sec. V. 

Constraints on the optical constants which arise from 
the zeros of the particular optical functions have pos­
sible wide utility. The majority of the known sum rule 
constraints, with the principal exceptions of Eqs. (1) 
and (2), relate the integrals of different optical constants 
over an infinite frequency interval. In order to test 
experimental data by such sum rules, both optical 
constants need to be experimentally accessible, or ob­
tainable through indirect means (i. e. , by Kramers­
Kronig inversions). Sum rules of the type (54) circum­
vent this difficulty, since only experimental results in 
the vicinity of the zero(s) need to be determined for one 
of the optical constants, and not the entire frequency 
interval of the particular optical constant. This repre­
sents a considerable reduction in effort compared with 
determining data over large frequency intervals. 

The key results of Sec. V, Eqs. (69), (77), and (80) 
provide useful results from the point of view of provid­
ing suitable criteria for the quality of optical data. The 
highly damped nature of Eq. (69) essentially eliminates 
the difficulty of obtaining data at high frequencies, or 
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having only poor data available for this region. Attempts 
to obtain strongly damped integral constraints as a 
function of a single optical constant have not as yet met 
with success. 

The generalization of the above sum rules for con­
ductors can be carried out in a straightforward manner. 
Connections between the various optical constants, such 
as the dielectric constant, the conductivity, etc., also 
allow a number of sum rules to be readily obtained. Ex­
tensions of the asymptotic method and the above pro­
cedures to second-order Kramers-Kronig relations for 
nonlinear optical phenomena7-

9 appear to be possible 
and this will be the subject of a further investigation. 
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